

B-Bericht 2005 Obere Ems

Inhaltsübersicht

	VORWORT	15		
	EINFÜHRUNG	18		
1	ALLGEMEINE BESCHREIBUNG DES BEARBEITUNGSGEBIETS OBERE EMS	23		
1.1	Lage und Abgrenzung			
1.2	Hydrographie			
1.3	Fließgewässerlandschaften	38		
1.4	Grundwasserverhältnisse	40		
1.5	Landnutzung	41		
1.6	Anthropogene Nutzungen der Gewässer	43		
2	IST-SITUATION	45		
2.1	Oberflächenwasserkörper	47		
2.1.1	Gewässertypen und Referenzbedingungen	47		
2.1.1.1	Gewässertypen im Bearbeitungsgebiet Obere Ems	48		
2.1.1.2	Referenzbedingungen	51		
2.1.2	Abgrenzung von Wasserkörpern	53		
2.1.3	Beschreibung der Ausgangssituation für die Oberflächengewässer	64		
2.1.3.1	Einführung	64		
2.1.3.2	Gewässergüte	67		
2.1.3.3	Gewässerstruktur	74		
2.1.3.4	Fischfauna			
2.1.3.5	Chemisch-physikalische Parameter			
2.1.3.6	Spezifische synthetische und nicht-synthetische Schadstoffe (Anhänge VIII – X)			
2.2	Grundwasserkörper	173		
2.2.1	Abgrenzung und Beschreibung	173		
2.2.2	Grundwasserabhängige Ökosysteme	181		
2.2.3	Beschreibung der Ausgangssituation für das Grundwasser	181		
2.2.3.1	Einführung	181		
2.2.3.2	Ausgangssituation für die Bestandsaufnahme	182		
3	MENSCHLICHE TÄTIGKEITEN UND BELASTUNGEN	185		
3.1	Belastungen der Oberflächengewässer	186		
3.1.1	Kommunale Einleitungen	186		
3.1.1.1	Auswirkungen kommunaler Kläranlagen unter stofflichen Aspekten	186		
3.1.1.2	Frachten aus kommunalen Kläranlagen			
3.1.1.3	Auswirkungen von Regenwassereinleitungen unter stofflichen Aspekten			
3.1.1.4	Auswirkungen von kommunalen Einleitungen unter mengenmäßigen Aspekten			
3.1.2	Industriell-gewerbliche Einleitungen			
3.1.2.1	Auswirkungen von industriell-gewerblichen Einleitungen unter stofflichen Aspekten	235		
3.1.2.2	Industriell-gewerbliche Einleitungen, Kühlwassereinleitungen, Grubenwassereinleitungen	249		
	unter chemisch-physikalischen und mengenmäßigen Aspekten			
3.1.3	Diffuse Verunreinigungen			
3.1.4	Entnahmen und Überleitungen von Oberflächenwasser	253		

Inhaltsübersicht

3.1.5	Hydromorphologische Beeinträchtigungen			
3.1.6	Abflussregulierungen			
3.1.7	Andere Belastungen			
3.1.8	Zusammenfassende Analyse der Hauptbelastungen der Oberflächengewässer			
3.2	Belastungen des Grundwassers	266		
3.2.1	Punktuelle Belastungen des Grundwassers	266		
3.2.2	Diffuse Belastungen des Grundwassers	273		
3.2.3	Mengenmäßige Belastung des Grundwassers	283		
3.2.4	Andere Belastungen des Grundwassers	292		
3.2.5	Analyse der Belastungsschwerpunkte des Grundwassers	300		
4	AUSWIRKUNGEN DER MENSCHLICHEN TÄTIGKEIT UND ENTWICKLUNGSTRENDS	303		
4.1	Integrale Betrachtung des Zustands der Oberflächenwasserkörper	304		
4.1.1	Methodisches Vorgehen	305		
4.1.2	Ergebnisse	318		
4.1.2.1	Wasserkörperspezifische Ergebnisdarstellung	319		
4.1.2.2	Betrachtung der Gesamtsituation im Bearbeitungsgebiet Obere Ems			
4.2	Erheblich veränderte Wasserkörper			
4.2.1	Vorläufige Ausweisung von erheblich veränderten Wasserkörpern			
4.2.2	Talsperren			
4.2.3	Künstliche Wasserkörper	416		
4.3	Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen	416		
4.3.1	Mengenmäßiger Zustand	417		
4.3.2	Chemischer Zustand	422		
4.3.3	Zusammenfassende Beurteilung der Ergebnisse der Bestandsaufnahme	430		
	im Einzugsgebiet der Oberen Ems			
5	VERZEICHNIS DER SCHUTZGEBIETE	431		
5.1	Gebiete für die Entnahme von Wasser für den menschlichen Gebrauch (Wasserschutzgebiete)	432		
5.2	Gebiete zum Schutz wirtschaftlich bedeutender aquatischer Arten	438		
5.3	Badegewässer (Richtlinie 76/160/EWG)			
5.4	Nährstoffsensible Gebiete (Richtlinie 91/271/EWG und Richtlinie 91/676/EWG)			
5.5	Gebiete zum Schutz von Arten und Lebensräumen			
6	MITWIRKUNG UND INFORMATION DER ÖFFENTLICHKEIT	447		
7	AUSBLICK	451		

Tabellenverzeichnis

1		23		
Tab. 1.1-1	Größe des Bearbeitungsgebiets Obere Ems im Vergleich zum gesamten Einzugsgebiet der Ems			
	(bis Basislinie + 1 Seemeile)			
Tab. 1.2-1	Verzeichnis der Fließgewässer im Bearbeitungsgebiet Obere Ems			
Tab. 1.2-2	Statistische Angaben zur Hydrographie der Oberen Ems			
Tab. 1.2-3	Gewässersteckbrief Ems	35		
Tab. 1.2-4	Gewässersteckbrief Werse	37		
2		45		
Tab. 2.1.1.1-1	Anteil der Fließgewässertypen im Bearbeitungsgebiet Obere Ems (Gewässer mit einem Einzugs-	49		
	gebiet > 10 km², nach Karte der biozönotisch bedeutsamen Fließgewässertypen – Stand 2004)			
Tab. 2.1.2-1	Übersicht der Oberflächenwasserkörper (Links NRW/Rechts NI)	53		
Tab. 2.1.2-2	Oberflächenwasserkörper (Nummer, Bezeichnung, Ausdehnung, Typ, Kategorie)	54		
Tab. 2.1.3.1-1	Einstufungsregeln zur Beschreibung der Ausgangssituation in NRW	67		
Tab. 2.1.3.4-1	Fließgewässertypen im Bearbeitungsgebiet Obere Ems , Leit- und Begleitarten	80		
Tab. 2.1.3.4-2	Kriterien für die Beschreibung der Ausgangssituation für die Fische in NRW	81		
Tab. 2.1.3.4-3	Fischregionen in Niedersachsen	82		
Tab. 2.1.3.4-4	Vorläufige Bewertung der Fischfauna in Niedersachsen	83		
Tab. 2.1.3.4-5	Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische	90		
Tab. 2.1.3.5-1	Einteilung zur Beschreibung der Ausgangssituation für die chemisch-physikalischen Parameter	100		
	in NRW			
Tab. 2.1.3.5-2	Qualitätskriterien für die Parameter N, P, NH ₄ -N in NRW	102		
Tab. 2.1.3.5-3	Qualitätskriterien für den Parameter Temperatur in NRW			
Tab. 2.1.3.5-4	Qualitätskriterien für den Parameter pH-Wert in NRW	111		
Tab. 2.1.3.5-5	Qualitätskriterien für den Parameter Sauerstoff in NRW	112		
Tab. 2.1.3.5-6	Kriterien für Ist-Zustandsbeschreibung des Parameters Chlorid in NRW	114		
Tab. 2.1.3.6-1	Zu betrachtende spezifische synthetische und nicht-synthetische Schadstoffe	115		
Tab. 2.1.3.6-2	Im Bearbeitungsgebiet Obere Ems betrachtete spezifische synthetische und nicht-synthetische	117		
	Schadstoffe			
Tab. 2.1.3.6-3	Qualitätskriterien für die Parameter TOC und AOX in NRW	119		
Tab. 2.1.3.6-4	Qualitätskriterien für den Parameter SO ₄ in NRW	127		
Tab. 2.1.3.6-5	Qualitätskriterien für Metalle in NRW	128		
Tab. 2.1.3.6-6	Qualitätskriterien für Pflanzenbehandlungs- und -schutzmittel	151		
Tab. 2.1.3.6-7	Qualitätskriterien für PCB und PAK	158		
Tab. 2.1.3.6-8	Qualitätskriterien für Nitrit (NO ₂ -N) in NRW	162		
Tab. 2.1.3.6-9	Ausgangssituation Stoffe N _{ges} , P, TOC, AOX und Metalle Cr, Cu, Zn, Cd, Hg und Pb	164		
Tab. 2.1.3.6-10	Ausgangssituation ausgewählter Parameter im niedersächsischen Teil des Bearbeitungsgebiets	172		
	Obere Ems			
Tab. 2.2.1-1	Übersicht über die Grundwasserkörper im Arbeitsgebiet Lippe	178		
Tab. 2.2.1-2	Übersicht über die Grundwasserentnahmen zur Trinkwassergewinnung	180		
Tab. 2.2.3.2-1	Datengrundlagen für die Auswertungen zur Bestandsaufnahme im Bearbeitungsgebiet	184		
	Obere Ems			

Tabellenverzeichnis

3		185
Tab. 3.1.1.1-1	Kläranlagen mit relevanten Erweiterungen (Stand 2004)	187
Tab. 3.1.1.1-2	Kommunale Kläranlagen, die stillgelegt werden und deren Abwasser anderen Kläranlagen zugeleitet wird	187
Tab. 3.1.1.1-3	Kläranlagen und Gewässergüteveränderungen (Stand 2002)	188
Tab. 3.1.1.2-1	Emissionen aus kommunalen Kläranlagen und industriell-gewerblichen Einleitungen im Bearbeitungsgebiet Obere Ems	189
Tab. 3.1.1.4-1	Kommunale Einleiter mit Einleitungen größer als 1/3 MNQ im Bearbeitungsgebiet Obere Ems/NRW	226
Tab. 3.1.2.1-1	Eingeleitete Jahresfrachten der IVU-Anlagen im Bearbeitungsgebiet Obere Ems	236
Tab. 3.2.1-1	Punktuelle Belastungen der Grundwasserkörper im Bearbeitungsgebiet Obere Ems	268
Tab. 3.2.2-1	Signifikanzkriterien zu den Risikopotenzialen diffuser Schadstoffquellen (NRW)	273
Tab. 3.2.2-2	Signifikanzschwellen in Abhängigkeit von den N-Bilanzsalden und der langjährigen mittleren Gesamtabflusshöhe (NI)	274
Tab. 3.2.2-3	Bewertungsmatrix zur Gesamtsignifikanzabschätzung der diffusen Nitrateinträge in Niedersachsen	274
Tab. 3.2.2-4:	Diffuse Belastungen: Besiedlungsanteil, Anteil landwirtschaftlich genutzter Fläche, organischer Stickstoffauftrag, gewichtetes Nitratmittel (NRW)	275
Tab. 3.2.2-5	Gesamtsignifikanzabschätzung diffuser Quellen (NI)	276
Tab. 3.2.2-6	Ergebnisse der Einzelfallprüfung hinsichtlich landwirtschaftlicher Beeinflussung	280
Tab. 3.2.3-1	Ergebnisse der Trendanalysen für die Grundwasserkörper im Bearbeitungsgebiet Obere Ems (NRW)	284
Tab. 3.2.3-2	Mengenmäßige Belastung der Grundwasserkörper: Ergebnis der überschlägigen Wasserbilanzen (NRW)	285
Tab. 3.2.3-3	Ergebnisse der Bilanz auf Basis der Wasserrechte für die Grundwasserkörper im Bearbeitungsgebiet Obere Ems (NI)	287
Tab. 3.2.3-4	Ergebnisse der Bilanz auf Basis der tatsächlichen Entnahmen im Bearbeitungsgebiet Obere Ems (NI)	287
Tab. 3.2.3-5	Ergebnisse der weitergehenden Beschreibung im Bearbeitungsgebiet Obere Ems	288
Tab. 3.2.4-1	Ergebnisse der Analyse im Hinblick auf sonstige anthropogene Einwirkungen	293
Tab. 3.2.5-1	Übersicht Belastungsschwerpunkte	300
4		303
Tab. 4.1.1-1	Regeln zur integralen Betrachtung von Oberflächenwasserkörpern (Schritt 1)	309
Tab. 4.1.1-2	Regel für die Aggregation auf den Wasserkörper	310
Tab. 4.1.1-3	Regeln für Schritt 2	310
Tab. 4.1.1-4	Regeln für Schritte 3 und 4	311
Tab. 4.1.1-5	Ergebnis Gewässergüte	316
Tab. 4.1.1-6	Ergebnis Gewässerstruktur	316
Tab. 4.1.2.1-1	Zusammenfassende Darstellung zur Betrachtung der Zielerreichung	328
Tab. 4.1.2.2-1	Integrale Betrachtung Stufe I im Bearbeitungsgebiet Obere Ems	400
Tab. 4.1.2.2-2	Integrale Betrachtung Stufe II im Bearbeitungsgebiet Obere Ems	402

Tabellenverzeichnis

Tab. 4.1.2.2-3	Integrale Betrachtung Stufe III im Bearbeitungsgebiet Obere Ems	402
Tab. 4.1.2.2-4	Integrale Betrachtung des ökologischen Zustands Biologie im Bearbeitungsgebiet Obere Ems	403
Tab. 4.1.2.2-5	Integrale Betrachtung ökologisch-chemischer Zustand im Bearbeitungsgebiet Obere Ems	404
Tab. 4.1.2.2-6	Integrale Betrachtung ökologischer Zustand im Bearbeitungsgebiet Obere Ems	404
Tab. 4.1.2.2-7	Integrale Betrachtung chemischer Zustand im Bearbeitungsgebiet Obere Ems	405
Tab. 4.1.2.2-8	Gesamteinschätzung im Bearbeitungsgebiet Obere Ems	406
Tab. 4.2.1-1	Kriterien zur vorläufigen Ausweisung von erheblich veränderten Wasserkörpern	408
Tab. 4.2.1-2	Erheblich veränderte und künstliche Oberflächenwasserkörper im Bearbeitungsgebiet	411
	Obere Ems	
Tab. 4.3.2-1	Übersicht über die integrale Betrachtung im Hinblick auf den chemischen Zustand der	424
	Grundwasserkörpergruppe Obere Ems	

Abbildungsverzeichnis

Abb. E1	Wichtige Fristen für die Umsetzung der Wasserrahmenrichtlinie	19			
Abb. E2	Ebenen der Umsetzung der WRRL in NRW				
1		23			
Abb. 1.1-1	Das Bearbeitungsgebiet Obere Ems in der Flussgebietseinheit Ems	24			
Abb. 1.1-2	Übersicht Bearbeitungsgebiet Obere Ems	26			
Abb. 1.3-1	Fließgewässerlandschaften im nordrhein-westfälischen Teil des Bearbeitungsgebiets Obere Ems	39			
	(Basis: LUA-Merkblatt 36)				
Abb. 1.5-1	Landnutzung nach ATKIS	42			
2		45			
Abb. 2.1.1.1-1	Fließgewässertypen	48			
Abb. 2.1.1.1-2	Prozentuale Verteilung der Fließgewässertypen im Bearbeitungsgebiet Obere Ems	49			
	(Gewässer mit einem Einzugsgebiet > 10 km²)				
Abb. 2.1.1.1-3	Charakteristische Laufentwicklung eines kleinen Niederungsfließgewässers in Fluss- und	50			
	Stromtälern (Hellbach SH, aus: Typensteckbrief, Foto: U. Holm)				
Abb. 2.1.1.1-4	Charakteristische Laufentwicklung eines sandgeprägten Tieflandbaches (Rotbach (NRW),	50			
	Foto: M. Sommerhäuser)				
Abb. 2.1.3.1-1	Für die Beschreibung der Ausgangssituation verwendete Immissionsdaten	65			
Abb. 2.1.3.1-2	Schematische Darstellung der Quellen- und Auswirkungsanalyse für die Banddarstellung in	66			
	NRW				
Abb. 2.1.3.2-1	Prozentuale Verteilung der Gewässergüteklassen im Bearbeitungsgebiet Obere Ems bezogen	68			
	auf die Fließgewässerstrecke der Gewässer mit einem Einzugsgebiet > 10 km²				
Abb. 2.1.3.3-1	Gewässerstrukturverteilung der Ems im Bearbeitungsgebiet Obere Ems von der Quelle bis zur	75			
	Landesgrenze (aggregiert auf 100 m-Abschnitte) für Sohle, Ufer und Land (Gewässerumfeld)				
Abb. 2.1.3.3-2	Moosbeeke, Beispiel für Strukturklasse 7	75			
Abb. 2.1.3.3-3	Frischhofsbach, Beispiel für Strukturklasse 1	75			
Abb. 2.1.3.3-4	Gewässerstrukturverteilung im Bearbeitungsgebiet Obere Ems auf der Basis der Abschnitts-	76			
	länge der Erhebung (überwiegend 100 m-Abschnitte) in aggregierter Darstellung				
Abb. 2.1.3.4-1	Hecht und Steinbeißer zählen zum typspezifischen Artinventar weiter Gewässerstrecken im	81			
	Bearbeitungsgebiet Obere Ems				
Abb. 2.1.3.4-2	Lage und Verteilung der Probestrecken, die für das Bearbeitungsgebiet Obere Ems in der	84			
	Datenbank LAFKAT 2000 gespeichert sind				
Abb. 2.1.3.4-3	Historische Verbreitung des Lachses im Bearbeitungsgebiet Obere Ems nach FRENZ (2000) und	85			
	Informationen von Experten des Arbeitskreises "Fische"				
Abb. 2.1.3.5-1	Ausgangssituation für den Parameter $N_{ m ges}$	108			
Abb. 2.1.3.5-2	Ausgangssituation für den Parameter P	108			
Abb. 2.1.3.5-3	Ausgangssituation für den Parameter Ammonium	110			
Abb. 2.1.3.5-4	Ausgangssituation für den Parameter Temperatur	111			
Abb. 2.1.3.5-5	Ausgangssituation für den Parameter pH-Wert	112			
Abb. 2.1.3.5-6	Ausgangssituation für den Parameter Sauerstoff	113			
Abb. 2.1.3.5-7	Ausgangssituation für den Parameter Chlorid				
Abb. 2.1.3.6-1	Ausgangssituation für den Parameter TOC				

Abbildungsverzeichnis

Abb. 2.1.3.6-2	Ausgangssituation für den Parameter AOX	126
Abb. 2.1.3.6-3	Ausgangssituation für den Parameter Sulfat	127
Abb. 2.1.3.6-4	Ausgangssituation für den Parameter Kupfer	136
Abb. 2.1.3.6-5	Ausgangssituation für den Parameter Zink	137
Abb. 2.1.3.6-6	Einhaltung der Qualitätskriterien für den Parameter Zink im nordrhein-westfälischen Teil	138
	des Bearbeitungsgebiets Obere Ems	
Abb. 2.1.3.6-7	Ausgangssituation für den Parameter Cadmium	144
Abb. 2.1.3.6-8	Ausgangssituation für den Parameter Quecksilber	145
Abb. 2.1.3.6-9	Ausgangssituation für den Parameter Nickel	146
Abb. 2.1.3.6-10	Ausgangssituation für den Parameter Blei	147
Abb. 2.1.3.6-11	Ausgangssituation für den Parameter Arsen	148
Abb. 2.1.3.6-12	Ausgangssituation für den Parameter Bor	150
Abb. 2.1.3.6-13	Belastungsschwerpunkt an der Dreierwalder Aa (Beispiel Atrazin)	152
Abb. 2.1.3.6-14	Belastungsschwerpunkt an der Dreierwalder Aa (Beispiel Simazin)	153
Abb. 2.1.3.6-15	Belastungsschwerpunkte an der Werse (Beispiel Isoproturon)	154
Abb. 2.1.3.6-16	Belastungsschwerpunkte an der Werse (Beispiel Metazachlor)	155
Abb. 2.1.3.6-17	Diuronbelastung im Bearbeitungsgebiet Obere Ems	156
Abb. 2.1.3.6-18	Belastung der Ems mit PCB zwischen Warendorf und Rheine (Beispiel PCB 138)	159
Abb. 2.1.3.6-19	Belastung der Ems und der Bever mit PAK (Beispiel Benzo(a)pyren)	160
Abb. 2.1.3.6-20	Ausgangssituation für den Parameter Nitrit	162
3		185
Abb. 3.1.1.1-1	Kläranlage Rheine	186
Abb. 3.1.1.1-2	Einleitung der Kläranlage Nordwalde in den Brüggemannsbach (Emsdettener Mühlenbach)	187
Abb. 3.1.3-1	Auswaschungsgefährdung (N) im nordrhein-westfälischen Teil des Bearbeitungsgebiets	251
	Obere Ems	
Abb. 3.1.3-2	Lage von Altstandorten und Altablagerungen im nordrhein-westfälischen Teil des	252
	Bearbeitungsgebiets Obere Ems (< 200 m Abstand zum Gewässer)	
Abb. 3.1.5-1	Renaturierter Bereich der Ems bei Münster-Dorbaum (angebundener Altarm)	254
Abb. 3.1.5-2	Heckrinder in der Emsaue	254
Abb. 3.1.5-3	Nicht passierbares Querbauwerk an der Ibbenbürener Aa (Dreierwalder Aa)	254
Abb. 3.1.5-4	Intensive landwirtschaftliche Nutzung bis an das Gewässer (Frankenbach)	255
Abb. 3.1.5-5	Ausgebauter Gewässerabschnitt (Fleckenbach)	255
Abb. 3.1.6-1	Umgehungsgerinne am Kleinen Wehr in Telgte	257
Abb. 3.1.6-2	Wehranlage Reinings Mühle an der Dreierwalder Aa	257
Abb. 3.1.6-3	Rückstaubereich der Ems bei Telgte	262
Abb. 3.1.6-4	Laufveränderung der Ems (1841/1998)	263
Abb. 3.2.2-1	Ergebnisse der Einzelfallprüfung hinsichtlich landwirtschaftlicher Beeinflussung	282
	(ohne Ammoniumbelastungen)	
Abb. 3.2.5-1	Belastungen der Grundwasserkörper durch landwirtschaftliche Einflüsse	301

Abbildungsverzeichnis

4		303
Abb. 4.1.1-1	Systemvorgaben der WRRL zur integralen Bewertung des Zustands der Oberflächen- wasserkörper	306
Abb. 4.1.1-2	Einzelschritte der integralen Betrachtung	308
Abb. 4.1.1-3	Schema der Aggregationsschritte für die komponentenspezifischen Bänder	308
Abb. 4.1.1-4	Schematische Darstellung der integralen Betrachtung Stufe I	312
Abb. 4.1.2.1-1	Lage der im Detail betrachteten Wasserkörper im Bearbeitungsgebiet	319
Abb. 4.1.2.1-2	Lage des betrachteten Emswasserkörpers	320
Abb. 4.1.2.1-3	Wieder angebundene Emsschleife "Ringemanns Hals" bei Westbevern	321
Abb. 4.1.2.1-4	Lage der Wasserkörper der Maarbecke	324
Abb. 4.1.2.1-5	Gewässergüte der Maarbecke	324
Abb. 4.1.2.1-6	Gewässerstruktur der Maarbecke	325
6		447
Abb. 6-1	Organisation der Arbeiten auf Landesebene und regionaler Ebene in NRW	449

Kartenverzeichnis

1		23	
Karte 1-1	Oberflächengewässer im Bearbeitungsgebiet Obere Ems	31	
2		45	
Karte 2.1-1	Oberflächenwasserkörper im Bearbeitungsgebiet Obere Ems	61	
Karte 2.1-2	Biologische Gewässergüte im Bearbeitungsgebiet Obere Ems		
Karte 2.1-3	Gewässerstruktur im Bearbeitungsgebiet Obere Ems	77	
Karte 2.1-4	Analyse der Ausgangssituation Fischfauna im Bearbeitungsgebiet Obere Ems (Stand 2004)	87	
Karte 2.1-5	Immissionskonzentrationen für Stickstoff und Phosphor im Bearbeitungsgebiet Obere Ems (Bezugsjahr 2002)	103	
Karte 2.1-6	Immissionskonzentrationen für TOC und AOX im Bearbeitungsgebiet Obere Ems	121	
Karte 2.1-7	Immissionskonzentrationen für Chrom, Kupfer und Zink im Bearbeitungsgebiet Obere Ems	131	
Karte 2.1-8	Immissionskonzentrationen Cadmium, Quecksilber, Nickel und Blei im Bearbeitungsgebiet Obere Ems	139	
Karte 2.2-1	Grundwasserkörper im Bearbeitungsgebiet Obere Ems	175	
3		185	
Karte 3.1-1	Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)	195	
Karte 3.1-2	Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)	201	
Karte 3.1-3	Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)	207	
Karte 3.1-4	Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für N, P und TOC)	213	
Karte 3.1-5	Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für AOX, Cr, Cu und Zn)		
Karte 3.1-6	Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für Cd, Hg, Ni und Pb)	221	
Karte 3.1-7	Einleitungen und Entnahmen im Bearbeitungsgebiet Obere Ems/NRW	229	
Karte 3.1-8	Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)	237	
Karte 3.1-9	Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)	241	
Karte 3.1-10	Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)	245	
Karte 3.1-11	Querbauwerke, Aufwärtspassierbarkeit und Rückstaubeeinflussung im Bearbeitungsgebiet Obere Ems	259	
Karte 3.2-1	Belastungen der Grundwasserkörper durch punktuelle Schadstoffquellen im Bearbeitungsgebiet Obere Ems	269	
Karte 3.2-2	Belastungen der Grundwasserkörper durch diffuse Schadstoffquellen im Bearbeitungsgebiet Obere Ems	277	
Karte 3.2-3	Mengenmäßige Belastungen der Grundwasserkörper im Bearbeitungsgebiet Obere Ems	289	
Karte 3.2-4	Belastungen der Grundwasserkörper durch sonstige anthropogene Einwirkungen im Bearbeitungsgebiet Obere Ems	297	

Kartenverzeichnis

4		303
Karte 4.1-1	Darstellung der Ergebnisse der Einzelschritte für Stufe I im Bearbeitungsgebiet Obere Ems	313
Karte 4.1-2a	Zielerreichung Zustand Fließgewässer im Bearbeitungsgebiet Obere Ems	395
Karte 4.1-2b	Zielerreichung Zustand Fließgewässer im Bearbeitungsgebiet Obere Ems	397
Karte 4.2.1	Erheblich veränderte und künstliche Oberflächenwasserkörper im Bearbeitungsgebiet	413
	Obere Ems	
Karte 4.3-1	Zielerreichung mengenmäßiger Zustand Grundwasserkörper im Bearbeitungsgebiet Obere Ems	419
Karte 4.3-2	Zielerreichung chemischer Zustand Grundwasserkörper im Bearbeitungsgebiet Obere Ems	427
5		431
Karte 5.1-1	Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet Obere Ems	433
Karte 5.5-1	Wasserabhängige FFH- und EU-Vogelschutzgebiete im Bearbeitungsgebiet Obere Ems	441

Vorwort

Die Ems mit ihren Nebenflüssen im Bearbeitungsgebiet Obere Ems ist ein durch die Landwirtschaft geprägter Fluss des nördlichen Westfalens und südwestlichen Niedersachsens. Als notwendige Folge der früher wünschenswerten Steigerung der landwirtschaftlichen Produktion wurde die Ems in den letzten 200 Jahren erheblich umgestaltet. Einige negative Wirkungen des früheren Ausbaus wurden bereits abgemindert. So wurde in den letzten Jahren eine bedeutsame Laufverlängerung durch den Anschluss von Altarmen und die Durchgängigkeit zwischen Rheine und Warendorf geschaffen.

Am 22. Dezember 2000 ist die EG-Wasserrahmenrichtlinie (WRRL) in Kraft getreten. Ziel der WRRL ist es, bis zum Jahr 2015 alle Oberflächengewässer sowie das Grundwasser in den Mitgliedstaaten der Europäischen Union in einen "guten Zustand" zu versetzen und damit den Schutz dieser Gewässer langfristig zu stärken.

Für den "guten Zustand" sind strukturelle, physikalische, biologische und chemische Merkmale ausschlaggebend. An die Bewertung des Zustands stellt die WRRL folgende Anforderungen:

- Ganzheitliche Betrachtung von Oberflächengewässern und Grundwasser sowie der angrenzenden Landökosysteme, unabhängig von Verwaltungsgrenzen
- Integrierter Bewertungsansatz für Oberflächengewässer unter Berücksichtigung biologischer/ökologischer Merkmale in Kombination mit hydrologischen, morphologischen Merkmalen und mengenmäßigen Kriterien sowie der chemischen und chemisch-physikalischen Beschaffenheit
- Kombinierter Ansatz aus Emissionsbegrenzungen und Immissionszielen
- Einbeziehung ökonomischer und sozialer Fragen sowie Information und Beteiligung der Öffentlichkeit

Auf dem Weg zum "guten Zustand" fordert die WRRL als ersten Schritt eine ausführliche Bestandsaufnahme aller Gewässereinzugsgebiete in Europa.

Das Staatliche Umweltamt Münster hatte als Geschäftsstelle Ems-NRW die Aufgabe, einen Bericht über den Zustand der Oberflächengewässer und des Grundwassers im Bearbeitungsgebiet Obere Ems als Bestandteil der internationalen Flussgebietseinheit Ems zu erstellen. Das Bearbeitungsgebiet erstreckt sich von der Quelle der Ems bei Paderborn über das Münsterland bis zur Einmündung der Großen Aa südlich der niedersächsischen Stadt Lingen.

Dank der Mitwirkung weiterer zuständiger Behörden wie des Staatlichen Amts für Umwelt- und Arbeitsschutz Ost-Westfalen-Lippe und des Niedersächsischen Landesbetriebs für Wasserwirtschaft, Küsten- und Naturschutz (Betriebsstelle Meppen) sowie zahlreicher Interessenvertreter aus der Fachöffentlichkeit kann Ihnen nun ein umfassender Bericht über die Vorgehensweise und die Ergebnisse der Bestandsaufnahme für die Obere Ems präsentiert werden.

Die aus der landwirtschaftlichen Nutzung resultierenden Belastungen der Gewässerstruktur und der biologischen und chemischen Beschaffenheit der Gewässer spiegeln sich in den Ergebnissen der vorgelegten Bestandsaufnahme wider.

Vorwort

Sowohl im Grundwasser als auch in den Oberflächengewässern gibt es aber auch noch zahlreiche Daten- und Wissenslücken, die bei vielen Oberflächenwasserkörpern eine abschließende Bewertung gemäß den Vorgaben der WRRL zum jetzigen Zeitpunkt noch nicht zulassen. Bei den Grundwasserkörpern erreichen 18 von 20 nach den vorläufigen Einschätzungen das Ziel des "guten Zustands" insbesondere aufgrund zu hoher Nitratbelastungen nicht. Die Oberflächengewässer erreichen überwiegend den "guten Zustand" nicht. Während im Einzelfall auch regional punktuelle Belastungen eine Rolle spielen, finden sich flächendeckend zu hohe Stickstoffkonzentrationen in den Gewässern. Zudem ist die Gewässerstruktur geprägt durch intensiven Ausbau, der nicht zuletzt aus der Nutzbarmachung der Gewässerauen für die Siedlung und landwirtschaftliche Bewirtschaftung resultiert.

Es handelt sich bei der vorliegenden Bestandsaufnahme um eine vorläufige Einschätzung des Zustands der Gewässer in dem Bearbeitungsgebiet Obere Ems, die in einem nächsten Schritt in einem WRRL-konformen Monitoring zu überprüfen ist. Darüber hinaus gilt es, die Ergebnisse der Bestandsaufnahme auszuwerten und eine Maßnahmenplanung mit Blick auf das Jahr 2015 zu entwickeln.

Mit der Bestandsaufnahme wurde ein dynamischer Prozess in Gang gesetzt, der neue Impulse für die Wasserwirtschaft in der Region sowie in ganz Europa bringt.

Mit den Anstrengungen, die die Behörden unter Beteiligung zahlreicher Interessenvertreter in den letzten Jahren geleistet haben, wurden bereits die richtigen Zeichen in Richtung des "guten Zustands" gesetzt.

An dieser Stelle seien das seit 1988 existierende Ems-Auen-Schutzkonzept genannt oder aber auch die seit 13 Jahren zahlreich initiierten Konzepte zur naturnahen Entwicklung von Fließgewässern (KNEF). Aktuelle Projekte befassen sich u. a. mit der Stickstoffproblematik und mit der Wiederherstellung der Durchgängigkeit der Gewässer. Des Weiteren werden zukünftig die Belange der WRRL Eingang in die Genehmigungsverfahren finden.

Die Ziele der WRRL stellen für alle an der Umsetzung Beteiligten eine Herausforderung in der Wasserwirtschaft für die nächsten Jahrzehnte dar. Die Bestandsaufnahme als grundlegender erster Schritt ist jetzt bewältigt.

Dipl.-Ing. Heinrich Wefers

Leiter des Staatlichen Umweltamts Münster

Die Wasserrahmenrichtlinie (WRRL)

Das Europäische Parlament und der Europäische Ministerrat haben mit der Wasserrahmenrichtlinie (WRRL), die am 22. Dezember 2000 in Kraft trat, für alle Mitgliedstaaten der EU einen Ordnungsrahmen für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik geschaffen. Die WRRL soll zur Entwicklung einer integrierten, wirksamen und kohärenten Wasserpolitik in Europa beitragen.

Mit der WRRL werden europaweit **einheitliche Ziele** zum Gewässerschutz festgelegt, die bis zum Jahre 2015 eingehalten bzw. erreicht sein sollen:

- Natürliche Oberflächengewässer sollen grundsätzlich einen "guten ökologischen Zustand" und einen "guten chemischen Zustand" erreichen.
- Künstliche Oberflächengewässer und als erheblich verändert eingestufte Gewässer sollen ein "gutes ökologisches Potenzial" und einen "guten chemischen Zustand" erreichen.
- Das Grundwasser soll einen "guten mengenmäßigen" und einen "guten chemischen Zustand" erreichen.

Die Ziele sollen erreicht werden durch:

- die Vermeidung einer Verschlechterung sowie durch den Schutz und die Verbesserung des Zustands der aquatischen Ökosysteme und ihrer Auen im Hinblick auf deren Wasserhaushalt
- die Förderung einer nachhaltigen Wassernutzung auf der Grundlage eines langfristigen Schutzes der vorhandenen Ressourcen
- das Anstreben eines stärkeren Schutzes und einer Verbesserung der aquatischen Umwelt, unter anderem durch spezifische Maßnahmen zur schrittweisen Reduzierung bzw. Beendigung von Einleitungen, Emissionen und Verlusten von bestimmten umweltgefährdenden Stoffen
- die Sicherstellung einer schrittweisen Verminderung der Verschmutzung des Grundwassers und Verhinderung seiner weiteren Verschmutzung

Welches Ziel im Einzelfall in welchem Zeitraum für jedes Gewässer erreicht werden soll, ist nach sorgfältiger Abwägung zu entscheiden. Neben wasserwirtschaftlichen spielen hier sozio-ökonomische Aspekte eine Rolle. Zur Erreichung der Ziele sind die kosteneffizientesten Maßnahmen bzw. Maßnahmenkombinationen auszuwählen.

Zeitlich und inhaltlich erfolgt die Umsetzung der WRRL nach einem festen Zeitplan in mehreren Phasen, die logisch aufeinander aufbauen:

- Analyse der Belastungen und Auswirkungen auf die Gewässer sowie wirtschaftliche Analyse der Wassernutzungen (Bestandsaufnahme)
- · Monitoring
- Bewirtschaftungspläne und Maßnahmenprogramme
- · Zielerreichung

Räumlich erfolgt die Umsetzung in Flussgebietseinheiten. Für NRW sind dies Rhein, Weser, Maas und Ems, für Niedersachsen Elbe, Weser, Ems und Rhein. Aus operativen Gründen wurden die Flussgebietseinheiten weiter in Bearbeitungsgebiete und noch kleinere Arbeitsgebiete unterteilt.

Die Planung in Flussgebietseinheiten und Bearbeitungsebenen macht Kooperationen und Abstimmungen über politische und administrative Grenzen hinweg (horizontal) und zwischen den landes- und örtlichen Stellen (vertikal) notwendig. Sie fördert deshalb eine intensive Zusammenarbeit der verschiedenen Stellen innerhalb einer Flussgebietseinheit.

Aufgabe und Bedeutung der Bestandsaufnahme

Die Analyse der Belastungen, die Überprüfung der Auswirkungen auf die Gewässer und die wirtschaftliche Analyse der Wassernutzungen (kurz: Bestandsaufnahme) stehen am Anfang der fachlichen Arbeiten zur Umsetzung der WRRL.

Die erstmalige Bestandsaufnahme wird bis zum Ende des Jahres 2004 abgeschlossen. Sie ist Auftakt eines dynamischen Arbeitprozesses. Zukünftig wird über den Status der Gewässer im Rahmen von so genannten Zustandsbeschreibungen (spätestens ab dem Jahr 2013) berichtet.

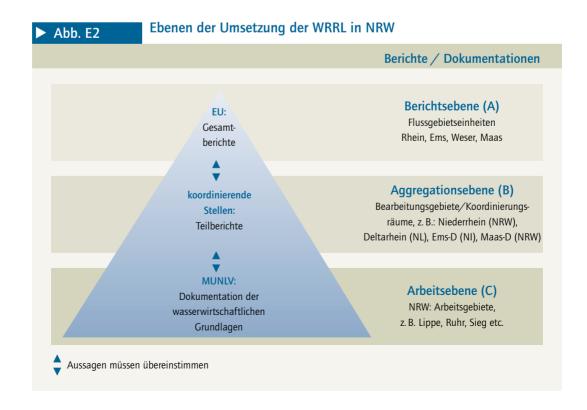
Aufgabe der aktuellen Bestandsaufnahme ist es, die Gewässer zu typisieren bzw. erstmalig zu beschreiben, sie in Wasserkörper einzuteilen, die Belastungen zu analysieren und hinsichtlich ihrer Auswirkungen auf die Gewässer zu beurteilen. Die Bestandsaufnahme wird auf der Basis der vorhandenen wasserwirtschaftlichen Daten und Bewertungsverfahren durchgeführt. Die Ergebnisse sollen den aktuellen Erkenntnisstand widerspiegeln.

Für **Oberflächengewässer** werden signifikante quantitative und qualitative anthropogene Belastungen ermittelt und in ihren Auswirkungen unter Hinzuziehung von Immissionsdaten beurteilt. Als Ergebnis dieser integralen Betrachtung

erfolgt für zuvor abgegrenzte Oberflächenwasserkörper zum Stand 2004 eine Beurteilung der Zielerreichung in drei Klassen: Zielerreichung wahrscheinlich, Zielerreichung unklar, Zielerreichung unwahrscheinlich.

Im **Grundwasser** erfolgt zunächst eine Abgrenzung und Beschreibung der Grundwasserkörper auf der Basis großräumiger hydrogeologischer Einheiten sowie eine erste Analyse möglicher Belastungen. Für die Grundwasserkörper mit signifikanten Belastungen erfolgt eine weitergehende Beschreibung sowie abschließend eine Prüfung der Auswirkungen menschlicher Tätigkeit. Das Ergebnis der Prüfung ist hier eine Beurteilung der Zielerreichung der Grundwasserkörper zum Stand 2004 in zwei Klassen: Ziel-

erreichung wahrscheinlich bzw. Zielerreichung unwahrscheinlich. Im Grundwasser gilt – im Gegensatz zum Oberflächengewässer – das Regionalprinzip. Das besagt, dass die Belastungen immer im Hinblick auf ihre Auswirkungen auf den gesamten Betrachtungsraum (hier: Grundwasserkörper) zu beurteilen sind. Einzelne, lokale Belastungen (und seien sie noch so sanierungswürdig) gefährden somit i. d. R. nicht einen ganzen Grundwasserkörper, während sie bei entsprechender Nähe zu Oberflächengewässern für diese als lokale Belastungen im Hinblick auf den Zustand nach WRRL relevant sein können.


Wichtigste Ergebnisse der Bestandsaufnahme sind eine Einschätzung der vorhandenen Datengrundlage und eine Einschätzung, welche Gewässer die Ziele der WRRL möglicherweise ohne zusätzliche Maßnahmen bis 2015 nicht erreichen werden. Die Bestandsaufnahme zeigt somit die Bereiche und Probleme auf, die zukünftig Gegenstand des Monitorings und möglicherweise zukünftiger Maßnahmenpläne sind.

Umsetzung der Wasserrahmenrichtlinie in Nordrhein-Westfalen und Niedersachsen

Nordrhein-Westfalen ist an den Flussgebietseinheiten Rhein, Ems, Weser und Maas beteiligt und in 12 Arbeitsgebiete gegliedert. Operativ erfolgen hier die Bearbeitung und die Berichtserstellung auf drei Ebenen (Abbildung E2):

- Ebene A: gesamte Flussgebietseinheit: NRW-Beteiligung an Rhein, Weser, Ems und Maas
- Ebene B: Bearbeitungsgebiete: NRW ist für die Bearbeitungsgebiete Niederrhein, Maas-NRW und Obere Ems federführend
- Ebene C: Arbeitsgebiete (Arbeitsebene): 12 Arbeitsgebiete

Niedersachsen ist an den Flussgebietseinheiten Elbe, Weser, Ems und Rhein beteiligt. Auch hier erfolgt die Berichterstellung auf den Ebenen A, B und C. Auf der Berichtsebene A hat Niedersachsen die Federführung für die Flussgebiete Ems und Weser.

Für die Flussgebietseinheit (FGE) Ems hat Niedersachsen drei Berichte auf B-Ebene erstellt, davon wurde einer gemeinsam mit den Niederlanden bearbeitet und einer fasst drei Bearbeitungsgebiete zusammen. Ein weiterer Bericht wurde federführend von den Niederlanden erarbeitet und der vorliegende Bericht zum Bearbeitungsgebiet Obere Ems wurde von NRW erstellt. So werden auf B-Ebene insgesamt fünf Berichte für die FGE Ems erstellt (vgl. S. 23 dieses Berichts und Teil A im "Bericht 2005 über die erste Bestandsaufnahme der FGE Ems").

Die Basis aller Berichte bildet die Ebene C. In Niedersachsen und Nordrhein-Westfalen wurden auf dieser Ebene alle Daten und Informationen zur Beschreibung der Gewässersituation zusammengestellt und unter Hinzuziehung von Vor-Ort-Kenntnissen eingeschätzt. Diese Daten und Informationen sind in NRW in den "Dokumentationen der wasserwirtschaftlichen Grundlagen" und in NI in den "Bestandsaufnahmen zur Umsetzung der WRRL – Berichte 2005" niedergelegt und bilden eine wichtige Grundlage für den zukünftigen wasserwirtschaftlichen Vollzug. Erstmals können bei wasserwirtschaftlichen Planungen unmittelbar alle relevanten Daten betrachtet und im Kontext beurteilt werden.

Grundlage für die Erstellung der nordrheinwestfälischen Dokumentationen war ein unter Federführung des MUNLV verbindlich eingeführter Leitfaden, in dem die unter Berücksichtigung von EU- und LAWA*-Empfehlungen erarbeiteten methodischen Grundlagen dokumentiert sind.

Aus den nordrhein-westfälischen Dokumentationen und den niedersächsischen Bestandsaufnahmen wurden die vorliegenden Ergebnisberichte erstellt, die auch der breiteren Öffentlichkeit ein detailliertes, transparentes, nachvollziehbares Bild des Ist-Zustands der Oberflächengewässer und des Grundwassers vermitteln.

Für die B-Ebene erfolgte ausgehend von den C-Berichten eine stärker verdichtete Darstellung, die dann aber auch Aspekte des gesamten Bearbeitungsgebiets anspricht.

Die Berichte zur gesamten Flussgebietseinheit

(A-Berichte) sprechen Aspekte an, die die gesamte Flussgebietseinheit betreffen. Sie basieren aber auch auf den Arbeiten auf C-Ebene.

Im Zuge aller Arbeiten gibt es intensive Abstimmungen mit den Vertretungen der Selbstverwaltungskörperschaften, d. h. Kommunen und Kreisen, den Wasserverbänden sowie weiteren interessierten Stellen wie z. B. Landwirtschafts-, Fischerei- und Naturschutzverbänden sowie Wasserversorgungsunternehmen und Industrie- und Handelskammern. Abstimmungen gibt es darüber hinaus mit den direkten Nachbarn von Nordrhein-Westfalen, den Niederlanden (NL) und Belgien sowie den Bundesländern Niedersachsen (NI), Rheinland-Pfalz (RP) und Hessen.

Zum vorliegenden Bericht

Die Ergebnisse der Bestandsaufnahme werden mit dem vorliegenden Bericht beschrieben:

Kapitel 1 stellt die **menschlichen Nutzungen** ("driving forces") im Bearbeitungsgebiet dar.

Im **Kapitel 2** erfolgt eine **Abgrenzung der Wasserkörper** und die Beschreibung ihres Ist-Zustands auf der Basis des bisherigen Gewässermonitorings.

Kapitel 3 zeigt die auf die Wasserkörper wirkenden **Belastungen** ("pressures") auf.

Im Kapitel 4 erfolgt eine Betrachtung der Auswirkungen ("impacts") der menschlichen Tätigkeiten im Hinblick auf den Gewässerzustand ("state") erstmalig vor dem Hintergrund der Umweltziele der WRRL.

Kapitel 5 enthält ein Verzeichnis der Schutzgebiete.

Das **Kapitel 6** beschäftigt sich mit der **Information der Öffentlichkeit** während der Erarbeitung der Bestandsaufnahme.

Kapitel 7 beinhaltet einen Ausblick auf die zukünftigen Aktivitäten ("responses"), die zur Verbesserung des Gewässerzustands und damit zur Umsetzung der Wasserrahmenrichtlinie erforderlich sind.

^{*} Länderarbeitsgemeinschaft Wasser

Die wirtschaftliche Analyse ist ebenfalls ein Element der Bestandsaufnahme. Da es sich um ein völlig neues Thema handelte, bedurfte es einiger Zeit, um ihren Inhalt zu klären und international abzustimmen. Die wirtschaftliche Analyse enthält eine Beschreibung der wirtschaftlichen Bedeutung der Wassernutzungen, Aussagen zur Kostendeckung, eine Abschätzung der Entwicklung der Wassernutzungen bis 2015 (Baseline-Scenario) sowie Aussagen zu kosteneffizientesten Maßnahmen. Sie wurde für die Flussgebietseinheit Ems in starker aggregierter Form für den Teil-A-Bericht international abgestimmt. Ergänzend wurden für die beiden an der Flussgebietseinheit Ems beteiligten Staaten nationale Aussagen getroffen. Diese nationalen Berichte sind Bestandteils des gesamten Berichtes der Flussgebietseinheit Ems und insofern in diesem B-Bericht nicht gesondert aufgenommen.


▶ 1.1 Lage und Abgrenzung

1.1

Lage und Abgrenzung

Das Bearbeitungsgebiet Obere Ems ist ein Teil der Flussgebietseinheit Ems.

Die Flussgebietseinheit Ems ist in insgesamt sieben Bearbeitungsgebiete unterteilt. Auf der Berichtsebene B wurden die Bearbeitungsgebiete Hase, Ems/Nordradde und Leda-Jümme zu einer Gruppe "Mittlere Ems" zusammengefasst:

Bearbeitungsgebiet	B-Bericht	Beteiligung	Federführung
Obere Ems	Obere Ems	NRW, NI	NRW
Hase Ems/Nordradde Leda-Jümme	Mittlere Ems	NI, NRW	NI
Nedereems	Nedereems	NL	NL
Untere Ems	Untere Ems	NI	NI
Ems-Ästuar	Ems-Ästuar	NI, NL	NI, NL

Die Größenverhältnisse stellen sich wie folgt dar:

Das Bearbeitungsgebiet Obere Ems umfasst mit 4.829 km² rd. 27 % der Fläche der Flussgebietseinheit Ems (bis Basislinie + 1 Seemeile).

Die Ems entspringt in der Westfälischen Bucht im Osten des Kreises Gütersloh bei 13 m über NN im Naturschutzgebiet Moosheide und mündet nach 371 km Fließstrecke in den Dollart (Nordsee), davon befinden sich 155,9 km Fließstrecke in Nordrhein-Westfalen und 215,1 km in Niedersachsen.

► Tab. 1.1-1

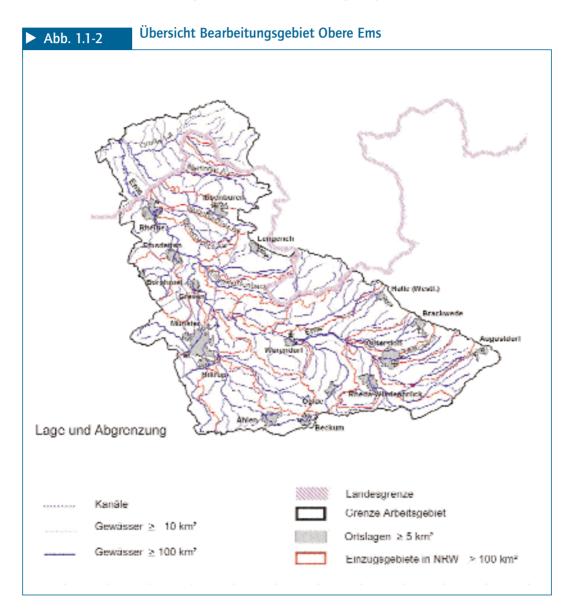
Größe des Bearbeitungsgebiets Obere Ems im Vergleich zum gesamten Einzugsgebiet der Ems (bis Basislinie + 1 Seemeile)

	Einzugsgebietsgröße	Länge des Hauptgewässers
Flussgebietseinheit Ems	17.815 km²	371 km
Bearbeitungsgebiet Obere Ems	4.829,2 km ²	186,3 km
Obere Ems/NI	813,5 km²	30,4 km
Obere Ems/NRW	4.015,7 km ²	155,9 km

Das Bearbeitungsgebiet Obere Ems reicht von der Quelle bis zur Einmündung der Großen Aa südlich von Lingen (Niedersachsen). Es umfasst den in Nordrhein-Westfalen liegenden Einzugsbereich der Ems (4.015,7 km²) sowie die niedersächsischen Einzugsgebiete der Großen Aa und der Oberen Bever (zusammen 813,5 km²).

Begrenzt wird das Bearbeitungsgebiet im Süden von den Beckumer Bergen, im Osten und Nordosten bilden die Höhenzüge der Egge, des Teutoburger Waldes, dessen Ausläufer bei Rheine liegen, und des Osnings eine scharfe Grenze. Bei Rheine durchquert die aus dem Münsterland kommende Ems einen Kalk-Schieferriegel, der den Osning mit den Bentheimer Höhen verbindet. Die Grenze im Westen bilden die östlichen Ausläufer der Baumberge.

In Nordrhein-Westfalen erstreckt sich das Bearbeitungsgebiet über die Regierungsbezirke Münster und Detmold mit dem Staatlichen Umweltamt Münster und dem Staatlichen Amt für Umwelt- und Arbeitsschutz Ostwestfalen-Lippe


(StAfUA OWL: ehemals StUA Bielefeld und StUA Minden). Auf Ebene der Unteren Wasserbehörden sind die Kreise Coesfeld, Steinfurt, Warendorf, Gütersloh, Paderborn, Lippe sowie die kreisfreien Städte Münster und Bielefeld beteiligt.

In Niedersachsen sind die Bezirksregierung Weser – Ems und die Landkreise Osnabrück und Emsland zuständig.

Die Ems ist Gewässer erster Ordnung (Landesgewässer) vom Wehr in Warendorf bis zum Schönefliether Wehr in Greven (Landeswassergesetz NRW). Für den Abschnitt Schönefliether Wehr bei Greven bis Eisenbahnbrücke Rheine (ehemalige Binnenschifffahrtsstraße) gilt dies faktisch ebenfalls seit dem in 1998 zwischen der Bundeswasserstraßenverwaltung und dem Land Nordrhein-Westfalen geschlossenen Übernahmevertrag. Die rechtliche Einordnung als Gewässer 1. Ordnung in das Landeswassergesetz Nordrhein-Westfalen steht noch aus.

► 1.2 Hydrographie

Von der Eisenbahnbrücke in Rheine bis Hanekenfähr (Niedersachsen) unterliegt die Ems als Binnenschifffahrtsstraße dem Binnenschifffahrtsaufgabengesetz.

1.2

Hydrographie

Die Ems besitzt im Bearbeitungsgebiet Obere Ems eine Länge von 186 km und wird aus einer Fläche von 4.829 km² gespeist.

Zur Oberen Ems gehören u.a. folgende bedeutende Nebenflüsse mit ihren jeweiligen

Einzugsgebieten: Werse, Große Aa, Dalkebach, Axtbach, Hessel, Bever, Münstersche Aa und Glane. Insgesamt gibt es 128 Fließgewässer mit einem oberirdischen Einzugsgebiet von mehr als 10 km² (siehe Karte 1-1 und Tabelle 1.2-1).

Davon liegen 96 Gewässer ausschließlich in NRW, 17 Gewässer erstrecken sich über beide Bundesländer und 15 Gewässer liegen gänzlich in Niedersachsen.

Mit dem Dortmund-Ems-Kanal und dem Mittellandkanal existieren außerdem zwei bedeutende künstliche Oberflächengewässer. Diese wurden nachrichtlich mit in die Karte 1-1 und die Tabelle 1.2-1 aufgenommen. Stillgewässer mit einer Fläche > 0,5 km² treten im Bearbeitungsgebiet Obere Ems nicht auf.

Gewässer- kennzahl	Gewässer- name	Einzugs- gebietsgröße [km²]	Gesamtlänge [km]	natürlich/ künstlich	Zuständige Behörden in NRW und NI*
1	2	3	4	5	6
3	Ems	13.163,94	371		Stua MS/Stafua
		Ob. Ems: 4.829	Ob. Ems: 186,3	n	OWL/NLWKN MEP
31112	Schwarzwasserbach	20,24	6,2	n	StAfua owl
3112	Furlbach	48,27	14,6	n	Stafua owl
3114	Sennebach	35,64	25,5	n	Stafua owl
3116	Grubebach	100,73	22,2	n	Stafua owl
31164	Forthbach	33,32	19,2	n	Stua MS/Stafua owl
31172	Eusternbach	26,67	15,9	n	Stua MS/Stafua owl
3118	Hamelbach	21,76	14,4	n	StAfUA OWL
		·			
312	Dalkebach	245,56	23,8	n	StAfUA OWL
3124	Hasselbach	11,92	4,2	n	StAfUA OWL
3126	Menkebach	19,02	20,1	n	StAfUA OWL
3128	Wapelbach	163,34	35,5	n	StAfUA OWL
31282	Rodenbach	14,32	12,5	n	StAfUA OWL
31284	Ílbach	79,82	29,6	n	Stafua owl
312844	Landerbach	20,5			StAfUA OWL
			11,4	n	
314924	Poggenbach	15,68	8,1	n	StAfUA OWL
21212	Duthardead	22.50	0.3		CHARLIA OWI
31312	Ruthenbach	22,58	9,2	n	StAfUA OWL
3132	Lutter	137,31	26,0	n	StAfUA OWL
31322	Trüggelbach	12,98	5,5	n	StAfUA OWL
31324	Reiherbach	27,53	10,7	n	StAfUA OWL
31326	Welzplagebach	27,09	16,9	n	StAfUA OWL
3134	Abrooksbach	69,66	17,4	n	StAfUA OWL
31342	Hovebach	11,56	6,4	n	Stafua owl
31344	Loddenbach	15,57	12,2	n	Stafua owl
3136	Laibach	52,75	23,3	n	Stafua owl
3138	Loddenbach	36,46	20,5	n	Stafua owl
31382	Ruthenbach	15,62	10,3	n	Stafua owl
3142	Bergeler Bach	11,24	8,2	n	StUA MS
3144	Maibach	11,56	7,5	n	Stua MS/Stafua owl
3146	Beilbach	45,57	17,1	n	StUA MS
31472	Flutbach	19,28	8,6	n	Stua MS/Stafua owl
3148	Baarbach	35,34	12,7	n	StUA MS
31482	Westkirchener Bach	10	8,0	n	StUA MS
31492	Südlicher Talgraben	16,21	16,7	n	Stua MS/Stafua owl
	- aa laigiabeli	. 5,21	.5,,	.,	200, 1,110, 50 110, 1 0 1 1
3152	Nördlicher Talgraben	29,55	13,8	n	Stua MS/Stafua owl
	_			n	StUA MS
3154	Holzbach	25,45	11,1	n	SIUA IVIS

^{*} StUA MS - Staatliches Umweltamt Münster; StAfUA OWL - Staatliches Amt für Umwelt- und Arbeitsschutz Ostwestfalen-Lippe NLWKN MEP MEP – Niedersächsisches Landesamt für Wasserwirtschaft, Küstenschutz und Naturschutz, Betriebsstelle Meppen

► 1.2 Hydrographie

1 2 3 4 5 6 316 Hessel 212,11 39,3 n StLAM SYSARJUA OV 31612 Bruchbach 11,88 7,2 n StARJA OWL 3162 Bruchbach 19,01 8,3 n StARJA OWL 31632 Alte Hessel 15,23 9,5 n StARJA OWL 31642 Dissener Bach 19,05 11,7 n StARJA OWL 3168 Speckengraben 36,48 12,4 n StARJA OWL 3168 Speckengraben 36,48 12,4 n StUA MS 3172 Mussenbach 81,65 24,4 n StUA MS 3172 Mussenbach 10,77 5,8 n StUA MS 3172 Mussenbach 10,77 5,8 n StUA MS 3172 Mussenbach 10,77 5,8 n StUA MS 3184 Bever 217,59 39,5 n StUA MS	Gewässer- kennzahl	Gewässer- name	Einzugs- gebietsgröße [km²]	Gesamtlänge [km]	natürlich/ künstlich	StUÄ (NRW)/BR Weser-Ems (NI)
31612 Casumer Bach 11,88 7,2 n StAFUA OWL 3162	1	2	3	4	5	6
3162 Bruchbach 19,01 8,3 n StATUA OWL 31632 Alte Hessel 15,23 9,5 n StATUA OWL 3164 Backhorster Bach 15,11 15,3 n StATUA OWL 3168 Dissener Bach 19,05 11,7 n StATUA OWL 3168 Speckengraben 36,48 12,4 n StUA MS 3172 Mussenbach 81,65 24,4 n StUA MS 31722 Brüggenbach 29,73 11,9 n StUA MS 3180 Bever 217,59 39,5 n StUA MS 3181 Bever 217,59 39,5 n StUA MS 3182 Remseder Bach/ Linksseitiger Talgraben 21,5 7,4 n StUA MS 3184 Frankenbach 21,5 7,4 n StUA MS 32 Werse 762,47 66,6 n StUA MS 3212 Olfe 11,79 7,8 <td< td=""><td>316</td><td>Hessel</td><td>212,11</td><td>39,3</td><td>n</td><td>Stua MS/Stafua owl</td></td<>	316	Hessel	212,11	39,3	n	Stua MS/Stafua owl
31632 Alte Hessel 15,23 9,5 n StATUA OWL 3164 Backhorster Bach 55,11 15,3 n StATUA OWL 31642 Dissener Bach 19,05 11,7 n StAUA MOWL/NIMKN MEP 3168 Speckengraben 36,48 12,4 n StUA MS 3172 Mussenbach 81,65 24,4 n StUA MS 3172 Brüggenbach 29,73 11,9 n StUA MS 3174 Marbecke 10,77 5,8 n StUA MS 318 Bever 217,59 39,5 n StUA MS 3182 Lemseder Bach/ Linksseitiger Talgraben 54,27 16,6 n StUA MS/ NLWKN MEP 3184 Frankenbach 21,5 7,4 n StUA MS 312 Werse 762,47 66,6 n StUA MS 3212 Olfe 11,79 7,8 n StUA MS 3214 Kölberbach 20,25			· ·		n	
Stafua OWL NLWKN MEP StuA MS StuA MS					n	
31642 Dissener Bach 19,05 11,7 n StATUA OWL / NLWKK MEP 3168 Speckengraben 36,48 12,4 n StUA MS 3172 Mussenbach 81,65 24,4 n StUA MS 3172 Brüggenbach 29,73 11,9 n StUA MS 3174 Maarbecke 10,77 5,8 n StUA MS 318 Bever 217,59 39,5 n StUA MS 3182 Remseder Bach/ Linksseitiger Talgraben 54,27 16,6 n StUA MS 3184 Frankenbach 21,5 7,4 n StUA MS 32 Werse 762,47 66,6 n StUA MS 3212 Olfe 11,79 7,8 n StUA MS 3214 Kölberbach 20,25 7,2 n StUA MS 322 Umlaufsbach 39,37 13,2 n StUA MS 322 Umlaufsbach 14,32 6,7 <td< td=""><td></td><td></td><td>· ·</td><td></td><td></td><td></td></td<>			· ·			
NLWKN MEP StUA MS Speckengraben 36,48 12,4 n StUA MS NLWKN MEP StUA MS NLWKN MEP StUA MS NLWKN MEP StUA MS StUA MS NLWKN MEP StUA MS StUA MS						
Mussenbach 81,65 24,4 n StUA MS					n	NLWKN MEP
31722 Brüggenbach 29,73 11,9 n StUA MS 3174 Maarbecke 10,77 5,8 n StUA MS 318 Bever 217,59 39,5 n StUA MS/NLWKN MEP 3182 Remseder Bach/ Linksseitiger Talgraben 54,27 16,6 n StUA MS/NLWKN MEP 3184 Frankenbach 21,5 7,4 n StUA MS 32 Werse 762,47 66,6 n StUA MS 3212 Olfe 11,79 7,8 n StUA MS 3214 Kölberbach 20,25 7,2 n StUA MS 3216 Erlebach 11,29 9,0 n StUA MS 322 Umlaufsbach 39,37 13,2 n StUA MS 322 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n<	3168	Speckengraben	36,48	12,4	n	StUA MS
3174 Maarbecke 10,77 5,8 n StUA MS 318 Bever 217,59 39,5 n StUA MS/NIWKN MEP 3182 Remseder Bach/ Linksseitiger Talgraben 54,27 16,6 n StUA MS/NIWKN MEP 3184 Frankenbach 21,5 7,4 n StUA MS 32 Werse 762,47 66,6 n StUA MS 3212 Olfe 11,79 7,8 n StUA MS 3214 Kölberbach 20,25 7,2 n StUA MS 3216 Erlebach 11,29 9,0 n StUA MS 322 Umlaufsbach 39,37 13,2 n StUA MS 3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3252 Westerbach 19,56 9,8 n <td>3172</td> <td>Mussenbach</td> <td>81,65</td> <td>24,4</td> <td>n</td> <td>StUA MS</td>	3172	Mussenbach	81,65	24,4	n	StUA MS
318 Bever 217,59 39,5 n StUA MS/NILWKN MEP 3182 Remseder Bach/ Linksseitiger Talgraben 54,27 16,6 n StUA MS/NILWKN MEP 3184 Frankenbach 21,5 7,4 n StUA MS 32 Werse 762,47 66,6 n StUA MS 3212 Olfe 11,79 7,8 n StUA MS 3214 Kölberbach 20,25 7,2 n StUA MS 3216 Erlebach 11,29 9,0 n StUA MS 322 Umlaufsbach 39,37 13,2 n StUA MS 3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 3242 Ahrenhorster Bach 50,38 15,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 3268 Getterbach 138,04 35,7 <t< td=""><td>31722</td><td>Brüggenbach</td><td>29,73</td><td>11,9</td><td>n</td><td>StUA MS</td></t<>	31722	Brüggenbach	29,73	11,9	n	StUA MS
NILWKN MEP StUA MS		Maarbecke			n	StUA MS
Linksseitiger Talgraben 21,5 7,4 n StUA MS	318	Bever	217,59	39,5	n	,
3184 Frankenbach 21,5 7,4 n StUA MS 32 Werse 762,47 66,6 n StUA MS 3212 Olfe 11,79 7,8 n StUA MS 3214 Kölberbach 20,25 7,2 n StUA MS 3216 Erlebach 11,29 9,0 n StUA MS 322 Umlaufsbach 39,37 13,2 n StUA MS 3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS <	3182	· ·	54,27	16,6	n	·
3212 Olfe 11,79 7,8 n StUA MS 3214 Kölberbach 20,25 7,2 n StUA MS 3216 Erlebach 11,29 9,0 n StUA MS 322 Umlaufsbach 39,37 13,2 n StUA MS 3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS	3184		21,5	7,4	n	StUA MS
3212 Olfe 11,79 7,8 n StUA MS 3214 Kölberbach 20,25 7,2 n StUA MS 3216 Erlebach 11,29 9,0 n StUA MS 322 Umlaufsbach 39,37 13,2 n StUA MS 3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3268 Getterbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS	32	Werse	762.47	66.6	n	StUA MS
3214 Kölberbach 20,25 7,2 n StUA MS 3216 Erlebach 11,29 9,0 n StUA MS 322 Umlaufsbach 39,37 13,2 n StUA MS 3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 19,26 9,8 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3268 Getterbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS						
322 Umlaufsbach 39,37 13,2 n StUA MS 3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS	3214	Kõlberbach	20,25		n	StUA MS
3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3288 Vieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS <td>3216</td> <td>Erlebach</td> <td>11,29</td> <td>9,0</td> <td>n</td> <td>StUA MS</td>	3216	Erlebach	11,29	9,0	n	StUA MS
3222 Mühlenbach 14,32 6,7 n StUA MS 3232 Flaggenbach 45,08 11,9 n StUA MS 324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS <td>322</td> <td>Umlaufsbach</td> <td>39,37</td> <td>13,2</td> <td>n</td> <td>StUA MS</td>	322	Umlaufsbach	39,37	13,2	n	StUA MS
324 Ahrenhorster Bach 50,38 15,1 n StUA MS 3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	3222	Mühlenbach	14,32	6,7	n	StUA MS
3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	3232	Flaggenbach	45,08	11,9	n	StUA MS
3242 Alsterbach 21,49 10,1 n StUA MS 3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	224	Alexandra materia Disiale	50.30	15.1		CHIA MC
3252 Westerbach 19,56 9,8 n StUA MS 326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS			· ·			
326 Emmerbach 138,04 35,7 n StUA MS 3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	3242	Aisterbach	21,49	10,1	rı	SLUA IVIS
3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	3252	Westerbach	19,56	9,8	n	StUA MS
3268 Getterbach 19,22 7,2 n StUA MS 3269922 Kannenbach 10,99 7,4 n StUA MS 328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	326	Emmerbach	138,04	35,7	n	StUA MS
328 Angel 194,85 38,2 n StUA MS 3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	3268	Getterbach				StUA MS
3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	3269922	Kannenbach	10,99		n	StUA MS
3282 Hellbach 29,51 12,2 n StUA MS 3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	328	Angel	194.85	38.2	n	StUA MS
3284 Nienholtbach 17,51 8,4 n StUA MS 3286 Vossbach 26,6 15,7 n StUA MS 3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS		-				
3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS						
3288 Wieninger Bach 34,04 15,0 n StUA MS 32892 Piepenbach 21,92 9,8 n StUA MS 3294 Kreuzbach 27,43 14,5 n StUA MS	3286	Vossbach			n	StUA MS
3294 Kreuzbach 27,43 14,5 n StUA MS		Wieninger Bach				
	32892	_			n	StUA MS
	3294	Kreuzbach	27,43	14,5	n	StUA MS
	3312	Gellenbach	21,67	10,9	n	StUA MS

^{*} StUA MS – Staatliches Umweltamt Münster; StAfUA OWL – Staatliches Amt für Umwelt- und Arbeitsschutz Ostwestfalen-Lippe NLWKN MEP MEP – Niedersächsisches Landesamt für Wasserwirtschaft, Küstenschutz und Naturschutz, Betriebsstelle Meppen

Verzeichnis der Fließgewässer im Bearbeitungsgebiet Obere Ems (Teil 3) Tab. 1.2-1 Gewässer-Gewässer-Einzugs-Gesamtlänge natürlich/ StUÄ (NRW)/BR kennzahl gebietsgröße künstlich Weser-Ems (NI) name $[km^2]$ [km] 2 3 5 332 StUA MSsche Aa StUA MS 172,23 43,0 n 3322 Schlautbach 27,2 8,9 n StUA MS 3324 Meckelbach 11.47 StUA MS 8,1 n Kinderbach 3328 17,04 10,5 STUA MS n Mühlenbach 3332 69,07 17,1 StUA MS n 33324 StUA MS Flothbach 20,86 8,8 n 334 Glane/Recktebach 351,65 35,1 n StUA MS/ NLWKN MEP 3342 Bullerbach 11,41 9,2 n StUA MS 33432 Kattenvenner Bach 11,67 8,7 n StUA MS 3344 Mühlenbach 67,41 20,4 n StUA MS 33442 Aldruper Mühlenbach 22.19 8,1 StUA MS n 3346 Eltingmühlenbach/ 164,1 51,4 n StUA MS/ Glaner Bach NLWKN MEP 33462 Bockhorner Bach/ n (NRW)/k (NI) StUA MS/ 29,91 11,7 Dümmer Bach NLWKN MEP 33468 Lütkebecke 14,48 11,0 StUA MS 3352 Saerbecker Mühlenbach 38,89 18,0 StUA MS 3354 StUA MS Walgenbach 12,71 8,0 n 336 Emsdettener Mühlenbach 107,97 19,6 StUA MS n 3364 13,87 Landwehrgraben 5,2 n StUA MS 3366 Rösingbach 10,1 7,7 StUA MS n 3368 Aabach 33,23 8,6 n StUA MS 3372 Hummertsbach 21,57 9,9 n StUA MS 3374 Mühlenbach 13,06 7,0 n StUA MS 3376 Frischhofsbach 52,27 18,6 StUA MS n 3378 Wambach 23,66 9,6 StUA MS n 338 Bevergerner Aa 109.08 33.9 StUA MS n 3382 Mühlenbach 19,01 StUA MS 11,5 n 3392 Randelhach StUA MS 14,37 7,7 n 3394 Elsbach 25,69 10,5 n StUA MS/ NLWKN MEP 3396 Listruper Bach 13,63 7,7 NLWKN MEP 3398 Fleckenbach 12,60 6,9 n NLWKN MEP 33994 Elberger Graben 34,83 5,4 n NLWKN MEP 34 Deeper Aa/Große Aa 922,3 35,05 n NLWKN MEP 3412 Fürstenauer Mühlengrab. 25,18 12,9 NLWKN MEP n 3414 Reethach NLWKN MEP 30,25 12.24 n 3416 Ahe 70,17 StUA MS/ 15,2 n NLWKN MEP 34162 Memedingsbach 10,13 9,34 NLWKN MEP 341622 Wolfsbergbach 19,20 4,47 NLWKN MEP

^{*} StUA MS - Staatliches Umweltamt Münster; StAfUA OWL - Staatliches Amt für Umwelt- und Arbeitsschutz Ostwestfalen-Lippe NLWKN MEP MEP - Niedersächsisches Landesamt für Wasserwirtschaft, Küstenschutz und Naturschutz, Betriebsstelle Meppen

► 1.2 Hydrographie

► Tab. 1.2-1 Verzeichnis der Fließgewässer im Bearbeitungsgebiet Obere Ems (Teil					
Gewässer- kennzahl	Gewässer- name	Einzugs- gebietsgröße [km²]	Gesamtlänge [km]	natürlich/ künstlich	StUÄ (NRW)/BR Weser-Ems (NI)
1	2	3	4	5	6
34192	Andervenner Graben	11,02	4,2	n	NLWKN MEP
342	Halverder Aa	136,76	31,0	n	Stua MS/ NLWKN MEP
3422	Vorderer Kölzenkanal	16,12	2,70	n	NLWKN MEP
3424	Voltlager Aa	53,43	18,1	n	StUA MS
3432	Bardelgraben	46,38	23,6	n	Stua MS/ NLWKN MEP
3434	Moosbeeke	36,54	17,5	n	Stua MS/
					NLWKN MEP
3436	Reitbach	8,84	6,85	n	NLWKN MEP
34362	Thuiner Mühlenbach	18,36	6,08	n	NLWKN MEP
3438	Giegel Aa	31,8	11,9	n	Stua MS/ NLWKN MEP
34392	Schinkenkanal	19,92	10,47	n	NLWKN MEP
343992	Lünner Graben	21,79	7,02	k	NLWKN MEP
344	Mettinger Aa/ Hopstener Aa	371,12	49,3	n	Stua MS/ NLWKN MEP
3442	Hauptgraben	35,78	9,8	n	StUA MS
3444	Strootbach	23,52	9,3	n	Stua MS
34454	Meerbecke	18,62	5,2	n	StUA MS
3446	Breischener Bruchgraben	18,19	7,2	n	Stua MS
3448	Dreierwalder Aa	137,36	36,1	n	Stua MS/ NLWKN MEP
34486	Altenrheiner Bruchgraben	26,64	8,0	n (NRW)/k (NI)	Stua MS/NLWKN MEP
346	346 Bramscher Mühlenbach		10,14	k	NLWKN MEP
34892	Dortmund-Ems-Kanal (NI)	k. A.	Obere Ems/ NI 16,6	k	NLWKN MEP
70501	Dortmund-Ems-Kanal (NRW)	k. A.	Obere Ems/ NRW 78,4	k	Stua MS
73101	Mittellandkanal	k. A.	22,5	k	StUA MS

^{*} StUA MS – Staatliches Umweltamt Münster; StAfUA OWL – Staatliches Amt für Umwelt- und Arbeitsschutz Ostwestfalen-Lippe NLWKN MEP MEP – Niedersächsisches Landesamt für Wasserwirtschaft, Küstenschutz und Naturschutz, Betriebsstelle Meppen

▶ Beiblatt 1-1

Oberflächengewässer im Bearbeitungsgebiet Obere Ems

	Gewasser (Firmugsgebiet > 10 km²)
	Kanal
0000000	Staatsgrenze
400000	Bundeslandgrenze
Fluss	gebietseinheit Ems
	Bearbeitungsgebiet Obere Ems
100	Rearbeitungsgebiete Hase, Ems / Nordradde
Bena	chbarte Flussgebietseinheiten
	Hussgebietseinheiten Rhein, Weser

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Normghoti 22, 48147 Millastra

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1. Bestandsaufnahme

Flussychietseinheit Eins, Bearbeitungsgebiet Obere Eins

Beiblatt zu K 1 - 1:

Oberflächengewässer im Bearbeitungsgebiet Obere Ems

Hydrographie

Verglichen mit anderen Tieflandflüssen Deutschlands entwässert die Ems ein niederschlagreiches Gebiet. Die Schwankungsbreite zwischen dem niedrigsten Niedrigwasser und dem höchsten Hochwasser ist mit 1:800 außerordentlich hoch. Entsprechend herrschen im Sommer (August) mitunter extrem geringe Wasserführungen, dagegen treten vor allem in den Wintermonaten (Januar, Februar) weit ausufernde Hochwässer auf. Für die Jahre der Zeitreihe von 1950 bis 1999 beträgt am Pegel Rheda der mittlere Niedrigwasserabfluss MNQ = 0,392 m³/s, der mittlere Abfluss $MQ = 3,27 \text{ m}^3/\text{s}$ und der mittlere Hochwasserabfluss MHQ = $28.7 \text{ m}^3/\text{s}$ bei einem oberirdischen Einzugsgebiet von 343 km².

Nach Zufluss der Nebengewässer Dalkebach, Axtbach und Hessel im Oberlauf der Ems im Bearbeitungsgebiet beträgt am Pegel Einen für die Jahre der Zeitreihe von 1954 bis 1999 der mittlere Niedrigwasserabfluss MNQ = 3,43 m³/s, der mittlere Abfluss $MQ = 15,1 \text{ m}^3/\text{s}$ und der mittlere Hochwasserabfluss MHQ = 114 m³/s bei einem oberirdischen Einzugsgebiet von 1.486 km².

Nach Zufluss der Bever, Werse und der Münsterschen Aa im Mittellauf der Ems im Bearbeitungsgebiet beträgt am Pegel Greven für die Jahre der Zeitreihe von 1940 bis 1999 der mittlere Niedrigwasserabfluss MNQ = 3,67 m³/s, der mittlere Abfluss $MQ = 27.5 \text{ m}^3/\text{s}$ und der mittlere Hochwasserabfluss MHQ = 223 m³/s bei einem oberirdischen Einzugsgebiet von 2842 km².

Von Greven bis Rheine münden die Nebenflüsse Glane und Bevergerner Aa in die Ems. Im Unterlauf der Ems im Bearbeitungsgebiet am Pegel Rheine, kurz vor Übertritt der Ems auf niedersächsisches Gebiet, beträgt für die Jahre der Zeitreihe von 1940 bis 1999 der mittlere Niedrigwasserabfluss MNQ = $5,77 \text{ m}^3/\text{s}$, der mittlere Abfluss MO = 36.8 m³/s und der mittlere Hochwasserabfluss MHO = 252 m³/s bei einem oberirdischen Einzugsgebiet von 3.740 km².

Kurz bevor die Ems das Bearbeitungsgebiet nach Norden hin verlässt, mündet die niedersächsische Große Aa (Deeper Aa) mit einem Einzugsgebiet von 922 km² in die Ems. Pegeldaten vom Pegel Plantlünne (AEo 480 km²) aus einer Zeitreihe von 1961 bis 2001 ergeben einen mittleren Niedrigwasserabfluss MNQ = 1,010 m^3/s , einen mittleren Abfluss MQ = 5,670 m^3/s und einen mittleren Hochwasserabfluss MHO = $46,50 \text{ m}^3/\text{s}.$

Nachfolgend sind in Steckbriefen die wesentlichen wasserwirtschaftlichen Daten der Ems im Bearbeitungsgebiet und des Hauptnebenflusses, der Werse, zusammengestellt.

Statistische Angaben zur Hydrographie der Oberen Ems Tab. 1.2-2

		Datenbasis
Länge aller Fließgewässer > 10 km²	2.247 km (1.885 km NRW, 362 km NI)	ATKIS
Gewässernetzdichte (Gewässer > 10 km²)	0,47 km/km ²	
mittlerer Abfluss im Unterlauf	36,8 m ³ /s	Pegel Rheine
mittlerer Niedrigwasserabfluss	5,77 m ³ /s	Zeitreihe
mittlerer Hochwasserabfluss	252 m³/s	1940 bis 1999
wichtigster Nebenfluss	Werse	

Hydrographie

1.2

Gewässersteckbrief Ems (Teil1) ► Tab. 1.2-3 Bundesrepublik Deutschland 1. Land 2. Bundesland Nordrhein-Westfalen/Niedersachsen Gewässer 1. Aggregationsebene Fms 5. Flussgebietseinheit 6. Geschäftsstelle Flussgebietsgemeinschaft Ems, Geschäftsstelle Ems 7 Gewässertyp Sandgeprägter Tieflandbach, Fließgewässer der Niederungen, sand- und lehmgeprägter Tieflandfluss (Quelle bis Mündung) Größe des oberirdi-4.829 km² (4.016 km² NW, 813 km² NI) 8. schen EZG 9. Lauflänge der Ems im 186,3 km (155,9 km NW, 30,4 km NI) Bearbeitungsgebiet Obere Ems 135 - 21,80 m über NN (NI) 10. Höhenlage 11. Mittleres Gefälle > 1,0 % Mittlere Jahresnieder-775 mm schlagshöhe 13 Zuflüsse mit EZG-Größe 145 (113 NW, 32 NI) $> 10 \text{ km}^2$ 14. Geologie Das Münsterländer Becken schließt nördlich an das rheinische Schiefergebirge und das Sauerland an. Es liegt auf der Nordabdachung der variszisch gefalteten Rheinischen Masse, deren zentraler Teil seit der postorogenen Hebung im Oberkarbon und Perm stetig Hochgebiet war. Es stellt ein Ost-West gestrecktes, asymetrisches allseitig geschlossenes Synklinalsystem dar. Im Süden liegen jüngere, mesozoische und känozoische Sedimente des Münsterländer Beckens transgressiv und diskordant auf dem gefalteten Paläozoikum. Im Westen, Norden und Osten wird das Münsterländer Becken von Großschollen umrandet. Diese sind im Westen das niederrheinische Senkungsfeld, im Norden das Niedersächsische Tektogen und im Osten die hessische Senke. Während das Münsterländer Becken im Norden und Osten durch die linamentartigen Störungszonen des Osnings und der Egge begrenzt wird, ist die Westgrenze durch Staffelbrüche gekennzeichnet (Landesamt für Wasser und Abfall (LWA) NRW Heft 45, 1990) Strömungsenergie aufgrund der niedrigen Reliefenergie gering Durchschnittliche Was-5-10 m im Oberlauf, 12-30 m im Abschnitt zwischen Warendorf und Rheine; im Rückstau serbreite (Ausbauzuwerden Breiten bis 60 m erreicht stand) 17. Durchschnittliche Wasstark schwankend von wenigen Dezimetern bis zu Tiefen von 5-7 Metern sertiefe Form und Gestalt des abwechselnd gestreckte bis schwach gewundene Einzelbettgerinne mit geringen Talbo-18. Hauptgewässerbettes denbreiten und mäandrierende Strecken in breiten Sohlentälern mit hohem Verlagerungspotential und damit große Vielfalt an besonderen Auenstrukturen 19. Talform - im Quellbereich 2,5 km langes Kastental - bis Rietberg kein eigentliches Tal vorhanden danach verläuft die Ems zwischen Uferwällen (zunächst 300-400 m breites, urstromartiges Tal dann Verbreiterung bis auf etliche 100 m) 20. 69 % landwirtschaftlich genutzte Fläche Flächennutzung 17 % Wald- und Forstfläche, 13 % bebaute Fläche 1 % Sonstiges

► 1.2 Hydrographie

► Ta	nb. 1.2-3 Gewä	ässersteckbrief Ems (Teil2)
21.	Bevölkerungsdichte	302 Einwohner/km ²
22.	Bevölkerungszahl gesamt	1.459.180 Einwohner (1.345.980 NW, 113.200 NI)
23.	Spezifische Belastungs- faktoren	nahezu vollständiger technischer Ausbau; landwirtschaftliche Nutzung 69 %
24.	Gewässergüte	Der Abschnitt der Ems von der Quelle bis zur Kreisgrenze Gütersloh/Warendorf muss weitestgehend der Gewässergüteklasse II-III zugeordnet werden. Nur zwischen Rietberg und Hövelhof, oberhalb der Kläranlage Rietberg und unterhalb der Einmündung des Furlbaches, wird sie als "mäßig belastet" in die Güteklasse II eingestuft werden. Ab etwa der Kreisgrenze Warendorf/Gütersloh stellt sich die Gewässergüte als durchgängig qut (Gewässergüteklasse II) dar.
25.	Gewässerstruktur	Die obere Ems ist überwiegend in die Strukturklassen 4-6 einzustufen. Von der Quelle bis Rheine ist fast der gesamte Lauf der Ems technisch ausgebaut worden. Für die Gewässerstruktur der Oberen Ems (Quelle) bis zur Ortslage Greffen ergibt sich für die Gewässersohle überwiegend eine Einstufung in die Strukturklasse 6. Die Strukturen der Ufer und des Gewässerumfelds wurden überwiegend mit stark bis sehr stark verändert (Strukturgüteklassen 5 bis 6) eingestuft. Ausnahmen sind eine ca. 2 km lange Gewässerstrecke unterhalb Rietberg, wo die Ems eine nur mäßige Beeinträchtigung (Strukturklasse 3) aufweist, sowie ein Gewässerabschnitt mit natürlicher Weichholzaue und Erlenbruchwälder auf dem Gelände der Flora Westfalica, dem Gelände der ehemaligen Landesgartenschau entlang der Ems in Rheda-Wiedenbrück. Auch im Bereich des Standortübungsplatzes Münster-Dorbaum und der oberhalb liegenden, wieder aktivierten Altarme liegt die Struktur im Bereich Strukturklasse 3.
26.	Säurebindungsvermögen	Die Ems führt mit einem ks-Wert von
27.	Durchschnittliche Zusammensetzung des Sohlsubstrats	4,2 mmol/l mittelhartes Wasser. Überwiegend Sand, bei Rheine räumlich begrenzt Festgestein
28.	Chlorid	Das 90 Perzentil betrug 2002 81 mg/l, der Schwankungsbereich reicht von 34 (Min.) bis 84 (Max.) mg/l.
29.	Durchschnittliche Was- sertemperatur	Die durchschnittliche Wassertemperatur betrug vom 10.01.1996 bis 18.06.2003 12,3 °C (296 Werte).
30.	Schwankungsbereich der Wassertemperatur (Wasserwirtschaftsjahr)	Sommerdurchschnitt 16,9 °C, Sommermaximum 24,2 °C, Sommerminimum 6,0 °C Winterdurchschnitt 7,9 °C, Wintermaximum 16,5 °C, Winterminimum 0,1 °C. (10.01.1996 bis 18.06.2003)
31.	Schwankungsbereich der Lufttemperatur	Sommer Mittel: Min. 11,2 °C, Max. 15,8 °C Winter Mittel: Min. 2,1 °C, Max. 6,1 °C
32.	Durchschnittliche Luft- temperatur	9,3 °C (Sommer 14,5 °C, Winter 4,1 °C) Alle Lufttemperaturdaten basieren auf einer Messreihe von 1966-2002 (St. Arnold)
33.	Sonstige Besonderheiten	Niedrigwasserführung (MNQ am Pegel Rheine) 5,8 m³/s Mittelwasserführung (MQ am Pegel Rheine) 37 m³/s Höchstes Hochwasser 1990 – 1998 (am Pegel Rheine) 349 m³/s, 100 jähriges Hochwasser 550 m³/s 1946 Rheine: 1030 m³/s (HHQ))

Hydrographie

1.2

► Ta	ıb. 1.2-4 Gewa	ässersteckbrief Werse (Teil1)
1.	Land	Bundesrepublik Deutschland
2.	Bundesland	Nordrhein-Westfalen
3.	Gewässer	Werse
4.	1. Aggregationsebene	Ems
5.	Flussgebietseinheit	Ems
6.	Geschäftsstelle	Staatliches Umweltamt Münster
7.	Gewässertyp	Kiesgeprägter Tieflandbach, Fließgewässer der Niederungen, sand-lehmgeprägter Tieflandfluss (Quelle bis Mündung)
8.	Größe des oberirdi- schen EZG	762,47 km ²
9.	Lauflänge der Werse	67 km
10.	Höhenlage	140 - 37 m über NN
11.	Mittleres Gefälle	1,6 %00
12.	Mittlere Jahresnieder- schlagshöhe	775 mm
13.	Zuflüsse mit EZG-Größe > 10 km²	Olfe, Kälberbach, Erlebach, Umlaufbach, Mühlenbach, Flaggenbach, Alsterbach, Ahren- horster Bach, Westerbach, Emmerbach, Getterbach, Angel, Hellbach, Nienholtbach, Vo- bach, Wieninger Bach, Piepenbach, Kreuzbach.
14.	Geologie	Die Werse liegt überwiegend im Sedimentationsbecken des Kreidemeers der Westfälischen Bucht. Es ist im Einzugsgebiet der Werse geprägt von Mergelkalk- und Tonmergelsteinen aus dem Unteren Obercampan, zum Teil überlagert von schluffigen Eis- und Schmelzwasserablagerungen der pleistozänen Grundmoräne. Die unmittelbare Umgebung des Bachbetts besteht geologisch aus Mergel über pleistozänen Schmelzwassersanden, die unmittelbare Gewässersohle aus holozänen Ablagerungen (Sand und Schluff).
15.	Strömungsenergie	Aufgrund der niedrigen Reliefenergie gering, in den Stauhaltungen nimmt die Strö- mungsgeschwindigkeit bis auf 0,003 m/sec. ab.
16.	Durchschnittliche Was- serbreite (Ausbauzu- stand)	Im Oberlauf wenige dm, in Ahlen ca. 9 m, in den Stauhaltungen in Münster bis etwa 30 m, im freifließenden Unterlauf dann 5–10 m.
17.	Durchschnittliche Was- sertiefe	stark schwankend von wenigen Dezimetern bis zu Tiefen von 2-3 Metern
18.	Form und Gestalt des Hauptgewässerbetts	Der kiesgeprägte Tieflandbach der Verwitterungsgebiete weist im Querprofil eine Kaste form und im Längsverlauf eine unregelmäßige Uferlinie auf. Das Fließgewässer der Niederungen ist durch die Ausbaumaßnahmen der Vergangenheit in NRW verschwunde und stellt sich heute als sandgeprägter Tieflandbach dar. Da dieses Sohlmaterial der Eision weniger Widerstand entgegensetzt bilden sich hier deutliche Mäander mit steilen Prallhängen und flach ansteigenden Gleithängen aus.
19.	Talform	Das eigentlich zu erwartende Kastental des kiesgeprägten und sich anschließenden sand geprägten Fließgewässers ist durch den vollständigen Ausbau und die Verrohrungen im Stadtgebiet von Beckum verschwunden. Lediglich im Unterlauf finden sich Mäanderbögdinnerhalb eines Tales mit z. T. für einen Tieflandbach außergewöhnlich steilen Talflanken
20.	Flächennutzung	70 % landwirtschaftlich genutzt davon $\frac{2}{3}$ Ackerflächen, $\frac{1}{3}$ Grünland, 13 % Wald
21.	Bevölkerungsdichte	321 Einwohner/km ²
22.	Bevölkerungszahl ges.	244.737 Einwohner
23.	Spezifische Belastungs- faktoren	Die Werse ist nahezu vollständig technisch ausgebaut. Es existieren zahlreiche, z. T. historische Staue.
24.	Gewässergüte	Der Gütezustand der Werse ist in die Güteklasse II-III, stellenweise in Güteklasse II einz stufen. Einträge aus kommunalen Kläranlagen, Fischteichen u. ä., besonders aber diffus Einträge aus der Landwirtschaft belasten den Stoffhaushalt der Werse und führen auf

38

Fließgewässerlandschaften

► Tab. 1.2-4 Gewässersteckbrief Werse (Teil2)			
		der gesamten Fließstrecke, vor allem in Rückstaubereichen zu Eutrophierungserscheinungen.	
25.	Gewässerstruktur	Von Beckum bis Drensteinfurt dominieren die Strukturklassen 5-7 für Sohle, Ufer und Land. Ursache ist der nahezu vollständige Gewässerausbau der aus Gründen des Hochwasserschutzes und der Melioration durchgeführt wurde. Auf den letzten 1,2 km vor Einmündung in die Ems verläuft die Werse in einer alten Emsschleife, die im Zuge des Ausbaus der Ems abgeschnitten wurde.	
26.	Säurebindungsvermögen	Die Werse führt mittelhartes Wasser.	
27.	Durchschnittliche Zusammensetzung des Sohlsubstrats	Überwiegend Sand, unterhalb der Havichhorster Mühle (Münster) Mergelschwellen. In den Rückstaubereichen Schlamm.	
28.	Chlorid	Mittelwert aus 133 Werten (1996-2003) 56 mg/l (Min. 17, Max. 324 mg/l)	
29.	Durchschnittliche Was- sertemperatur	Die durchschnittliche Wassertemperatur betrug von Jan. 1996 bis Juli 2003 12,5 °C (247 Werte).	
30.	Schwankungsbereich der Wassertemperatur (Wasserwirtschaftsjahr)	Sommermaximum 26,0 °C, Winterminimum 0,1 °C. (Jan. 1996 bis Juli 2003)	
31.	Schwankungsbereich der Lufttemperatur	Sommer Mittel: Min. 11,2 °C, Max. 15,8 °C Winter Mittel: Min. 2,1 °C, Max. 6,1 °C	
32.	Durchschnittliche Luft- temperatur	9,3 °C (Sommer 14,5 °C, Winter 4,1 °C) Alle Lufttemperaturdaten basieren auf einer Messreihe von 1966-2002 (St. Arnold)	

1.3

Fließgewässerlandschaften

Die typischen und regional unterschiedlichen Ausprägungen von Struktur und Abfluss eines Gewässers bilden die "Kulisse" für eine charakteristische Besiedlung durch Pflanzen und Tiere. Die WRRL berücksichtigt die unterschiedliche Charakteristik der Gewässer bereits im groben Rahmen durch die Ausweisung so genannter Ökoregionen.

Als Ökoregionen bezeichnet die WRRL die übergeordneten naturräumlichen Einheiten. Das Bearbeitungsgebiet Obere Ems wird vorwiegend der Ökoregion "Zentrales Tiefland" (Kennziffer 14) zugeordnet. Kleine Anteile des Bearbeitungsgebietes liegen in der Ökoregion "Zentrales Mittelgebirge" (Kennziffer 9).

Entsprechend der unterschiedlichen naturräumlichen Gegebenheiten werden in Nordrhein-Westfalen Fließgewässerlandschaften gemäß LUA (Landesumweltamt) Merkblatt 36 (2002) zugeordnet.

In Niedersachsen dient die geomorphologische Karte der Gewässerlandschaften nach Briem (2001) als Grundlage.

Unter einer Fließgewässerlandschaft wird ein Landschaftsraum verstanden, der in Bezug auf die gewässerprägenden geologischen und geomorphologischen Ausprägungen als weitgehend homogen zu bezeichnen ist, jedoch in Abhängigkeit von den Böden, der Hydrologie oder der Lage im Längsverlauf eines Gewässers mehrere Gewässertypen enthalten kann.

Eine weitere Unterteilung der Gewässer erfolgt aufgrund der Höhenlage. Es werden Tieflandund Mittelgebirgsgewässer unterschieden. Innerhalb dieser beiden Naturräume gibt es eine große Vielfalt regionaler Bach- und Flusstypen, die sich in den Talformen, in der Laufentwicklung, den Sohlsubstraten und in der jahreszeitlichen Abflussverteilung unterscheiden.

Im nordrhein-westfälischen Teil des Bearbeitungsgebietes kommen zehn Fließgewässerlandschaften (gem. LUA Merkblatt 36, 2002)

- · Sande und Kiese der Niederungen
- · Verwitterungsgebiete, Flussterrassen und Moränengebiete
- · Sandgebiete
- Organische Substrate der Niederungen (Nieder-, Übergangs- und Hochmoore)
- Sandige Lehme der Niederterrassen
- · Lössgebiete

- Verkarstete Kalkgebiete
- · Schwach-karbonatische Deckgebirge
- · Muschelkalkgebiete
- · Hoch- und Übergangsmoore

Im niedersächsischen Teil des Bearbeitungsgebietes Obere Ems existieren nach Briem (2001) die folgenden 13 Gewässerlandschaften:

- Buntsandstein im Teilgebiet Große Aa
- Sandbedeckung in den Teilgebieten Große Aa und Obere Bever
- Hochmoor im Teilgebiet Große Aa

Fließgewässerlandschaften im nordrhein-westfälischen Teil des ▶ Abb. 1.3-1 Bearbeitungsgebiets Obere Ems (Basis: LUA-Merkblatt 36) Arbeitsgebiet Ems-NRW Fließgewässerlandschaften Substrattlachen der Niederungen Hießgewässerlandschaften sonstige Flächen Sandoébiete Hoch- and Obergangemore Sand und Kiese der Niederungen. Lossgebiete Rhein Sandige Lehme der Niederungen, meist über fein- bis grubsandigen uder sandig-keisigen Substraten Verwitteningsgebiete. I lüssterrassen and Moranengebiete Sitiatisches Grundgebirge Vorland des Silikatischen Grundgebirges Miederungen Schluffige Lehme der Auen, melst über Sanden und Kies Landosgrenze Vulkangebiete Schwech karbonatisches Deckgebirge Grehze Arbeitsgeblet Organische Substiele der Niederungen (Nieder-, Übergangs und Hochmoore) Muschelkalkgebiete Verkerstete Kelkgebiete Gewässer z 100 km²

Grundwasserverhältnisse

- Sandig im Teilgebiet Obere Bever
- Grobmaterialaue im Teilgebiet Große Aa
- Kalkig, mergelig in den Teilgebieten Große Aa und Obere Bever
- Löss über 2 m Mächtigkeit im Teilgebiet Große Aa
- Malm im Teilgebiet Obere Bever
- Ältere Aue in den Teilgebieten Große Aa und Obere Bever
- · Tertiär im Teilgebiet Große Aa
- Endmoräne im Teilgebiet Große Aa
- Grundmoräne in den Teilgebieten Große Aa und Obere Bever
- Sandig, tonig in den Teilgebieten Große Aa und Obere Bever

Es sind im Bearbeitungsgebiet vorwiegend die Landschaften des Tieflands anzutreffen.

Die Mittelgebirgsprägung (schwach-karbonatisches Deckgebirge, Muschelkalkgebiete, Verkarstete Kalkgebiete) beschränkt sich lediglich auf den nördlichen und östlichen Teil, d. h. auf den Teutoburger Wald und den Bielefelder Höhenrücken. Großräumig wird das Bearbeitungsgebiet hauptsächlich durch Sande und Kiese der Niederungen gekennzeichnet. Im südlichen Bereich dominieren die Verwitterungsgebiete, Flussterrassen und Moränengebiete. Im östlichen Teil befindet sich entlang des Bielefelder Höhenrückens ein breiter Streifen der Sandgebiete. Diese Fließgewässerlandschaft kommt auch großflächig rund um Münster vor. Das Bearbeitungsgebiet Obere Ems ist dadurch geprägt, dass die Ems und ihre Hauptzuflüsse überwiegend in einem mehr oder weniger breiten Streifen der sand- und kiesgeprägten Niederungsgebiete liegen, an den sich beidseitig Sandgebiete anschließen. Im Emsoberlauf sind die Sandgebiete nur schmal ausgebildet, im Unterlauf dagegen existieren größere Flächen. Einige Hauptzuflüsse, vor allem die des Emsunterlaufs, liegen abschnittsweise oder vollständig direkt in Sandgebieten. Punktuell existieren im Bearbeitungsgebiet kleinflächig Niederungsgebiete mit organischen Substraten (Nieder-, Übergangsund Hochmoore), z.B. nordöstlich von Steinfurt und nördlich von Ostbevern. Sehr kleinflächig, aber über das gesamte Gebiet verstreut, sind Sandige Lehme der Niederterrassen, meist über fein- bis grobsandigen oder sandig-kiesigen Substraten vorhanden (z. B. Angelunterlauf südöstlich von Münster, ein Teilbereich des Teutoburger Waldes bei Mettingen, Bereich südlich

von Rheda-Wiedenbrück u. a.). Die Lössgebiete sind seltener, aber großflächiger vorhanden (Werseoberlauf südlich von Ahlen, Teutoburger Wald bei Mettingen, Baumberge westlich von Münster). Hoch- und Übergangsmoore existieren nur im Nordosten (östlich von Recke) und äußerst kleinflächig nordöstlich von Burgsteinfurt.

Im Gebiet der Großen Aa überwiegen die niedersächsischen Gewässerlandschaften "Ältere Aue", "Grundmoräne" und "Endmoräne". Im Bereich der Oberen Bever überwiegen "Grundmoräne", "Ältere Aue" und die Gewässerlandschaft "kalkig, mergelig".

Typologisch sind die Fließgewässer des Bearbeitungsgebietes Obere Ems gemäß der bundesweiten Typenkarte (LAWA, 2004) in acht Typen unterteilt, wobei die Fließgewässertypen "Sandgeprägte Tieflandbäche", "Kleine Niederungsfließgewässer in Fluss- und Stromtälern" und "Sand- und lehmgeprägte Tieflandflüsse" mit zusammen 87,6 % der Gewässerstrecken dominieren. Näheres zu den Gewässertypen im Bearbeitungsgebiet siehe Kapitel 2.1.1.

Grundwasserverhältnisse

Die bedeutendste Grundwasserlandschaft des Bearbeitungsgebiets ist die Westfälische Bucht mit dem Münsterländer Becken. Hier bestimmen die Ems und ihre Zuflüsse neben den geologischen und klimatologischen Gegebenheiten die Grundwasserverhältnisse.

Der Südwesthang des Teutoburger Waldes von Rheine im Westen bis Augustdorf im Osten und der Osthang der Baumberge mit den ihnen nordöstlich vorgelagerten Altenberger Höhen stehen mit dem Flachlandgebiet des Münsterlandes hinsichtlich des Grundwassers in einer engen Beziehung, da die Hangflächen über die zur Ems hin fließenden Oberflächengewässer entwässern.

Durch die Infiltration ihres Oberflächenwassers in das Grundwasser der sandig-kiesigen Schichten des Flachlandgebiets erfolgt ihr hydraulischer Anschluss an das Flachland.

Hier bestimmen die Tal- und Terrassenablagerungen der Ems und ihrer größeren Nebenläufe und die Füllungen der zugehörigen, im Tertiär entstandenen Urrinnen – Uremsrinne, Vorosningrinne und Münsterländer Kiessandzug – die Grundwasserverhältnisse. Ihre im Quartär und insbesondere während der Eiszeiten abgelagerten Lockergesteine bilden hier die einzigen bedeutenden Grundwasserleiter, deren Mächtigkeiten im Mittel zwischen 15 m bis 20 m liegen, örtlich auch noch etwas darüber.

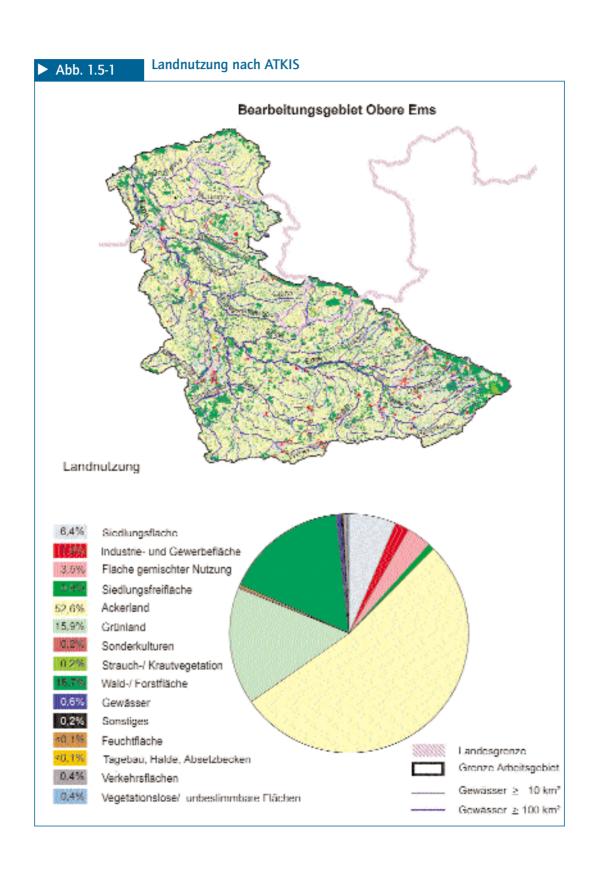
Auch der nördliche Teil des Bearbeitungsgebiets, nördlich der westlichen Ausläufer des Teutoburger Waldes und das Flachland nördlich der Ibbenbürener Karbonscholle, ist als Grundwasserlandschaft dem Flachlandgebiet des Münsterlandes sehr ähnlich.

Das hier anzutreffende Relief der Dachfläche der Festgesteine ist allerdings weniger stark ausgeprägt als im Münsterländer Becken, da das oberstromige Einzugsgebiet weniger groß war und ist.

Über die Grundwasserverhältnisse in dem hier anstehenden Untergrund ist wenig bekannt. Die Festgesteine des Mesozoikums (südliches Emsland) bis hin zum Paläozoikum (Ibbenbürener Karbonscholle) sind komplexe hydrogeologische Landschaften. Die tektonische Zergliederung mit der einhergehenden Vielfalt der Gesteinsabfolgen lässt eine einheitliche hydrogeologische Aussage nicht zu. In größerer Tiefe sind als Grundwasserleiter die anstehenden Sandsteine, Kalksteine und Mergelsteine anzusehen. Entscheidend für ihre Grundwasserführung ist jedoch die Vernetzung der vorhandenen vertikalen und horizontalen Trennfugen und deren Anbindung an größere benachbarte tektonische Verwerfungssysteme. Bisher erlangte kein Festgesteinsgrundwasserleiter in diesem Raum eine überregionale Bedeutung.

Die rezenten anthropogenen Eingriffe durch den Abbau von Steinkohle bis in etwa 1.500 m Tiefe in der Ibbenbürener Karbonscholle dürften weitere Veränderungen in den Grundwasserverhältnissen bewirkt haben und noch bewirken.

Eine differenzierte Beschreibung der Grundwasserverhältnisse erfolgt in Kapitel 2.2.1 "Abgrenzung und Beschreibung der Grundwasserkörper".


1.5

Landnutzung

Im Bearbeitungsgebiet Obere Ems beansprucht die landwirtschaftliche Nutzung mit 69 % den größten Flächenanteil. Die Wald- und Forstflächen haben einen Anteil von 17 %. Die Abbildung 1.5-1 verdeutlicht, dass die Waldflächen überwiegend im Oberlauf der Ems zu finden sind, während das sonstige Bearbeitungsgebiet von der landwirtschaftlichen Nutzung beherrscht wird.

Der Anteil der bebauten Fläche (Siedlungsfläche inkl. u. a. Industrie, Gewerbe) beträgt 13 %. Hier liegen die Schwerpunkte in den Städten Gütersloh, Ahlen, Münster und Rheine.

► 1.5 Landnutzung

1.6

Anthropogene Nutzungen der Gewässer

Die Gewässer im Bearbeitungsgebiet unterliegen vielfältigen Nutzungen, die ihre Gestalt und Beschaffenheit stark überprägen können. Nachfolgend werden die wichtigsten gewässerbezogenen Nutzungen charakterisiert.

Landwirtschaftliche Nutzung

Das Bearbeitungsgebiet ist stark durch landwirtschaftliche Nutzung geprägt. Die Landwirtschaft nutzt mit Ackerland, Grünland und Flächen für Sonderkulturen einen Flächenanteil von 69 % der gesamten Fläche des Bearbeitungsgebiets.

Die Landwirtschaft wirkt unter anderem als Nutzer von gewässerangrenzenden Flächen auf den morphologischen Zustand der Gewässer. Zur Verbesserung der landwirtschaftlichen Nutzung von gewässernahen Flächen wurden umfangreiche Ausbau- und Unterhaltungsmaßnahmen in und am Gewässer unternommen. Zahlreiche Querbauwerke wurden unter anderem errichtet, um der ausbaubedingten Grundwasserabsenkung entgegenzuwirken. Durch die Aufbringung von mineralischen und Wirtschafts-Düngern sind Belastungen des Grundwassers aufgetreten.

Abwasserableitung

Abwasserableitungen von Schmutz- und Niederschlagswasser stellen eine wichtige Nutzungsart der Gewässer dar.

Im Jahr 2002 wurde das Abwasser von rund 1,3 Mio. Einwohnern und ca. 1,1 Mio. Einwohnergleichwerten aus kleineren industriell/gewerblichen Betrieben im Bearbeitungsgebiet in 83 kommunalen Kläranlagen (70 KA in NRW, 13 KA > 2.000 EW in NI) gereinigt und in das Gewässersystem eingeleitet.

Zusätzlich wurden die Abwässer von 54 ausschließlich industriell/gewerblichen Kläranlagen – 53 KA-IGL (Industrie-Gewerbe-Landwirtschaft) in NRW, 1 KA-IGL in NI – eingeleitet. Speziell bei den industriellen Einleitern liegen durch die Vermischung von Kühlwasser und Produktionsabwasser bedingt z. T. sehr hohe Wassermengen vor. Hinzu kommen zahlreiche

Niederschlagswassereinleitungen aus den Misch- und Trennsystemen der Siedlungsentwässerung.

Trink- und Brauchwassernutzung

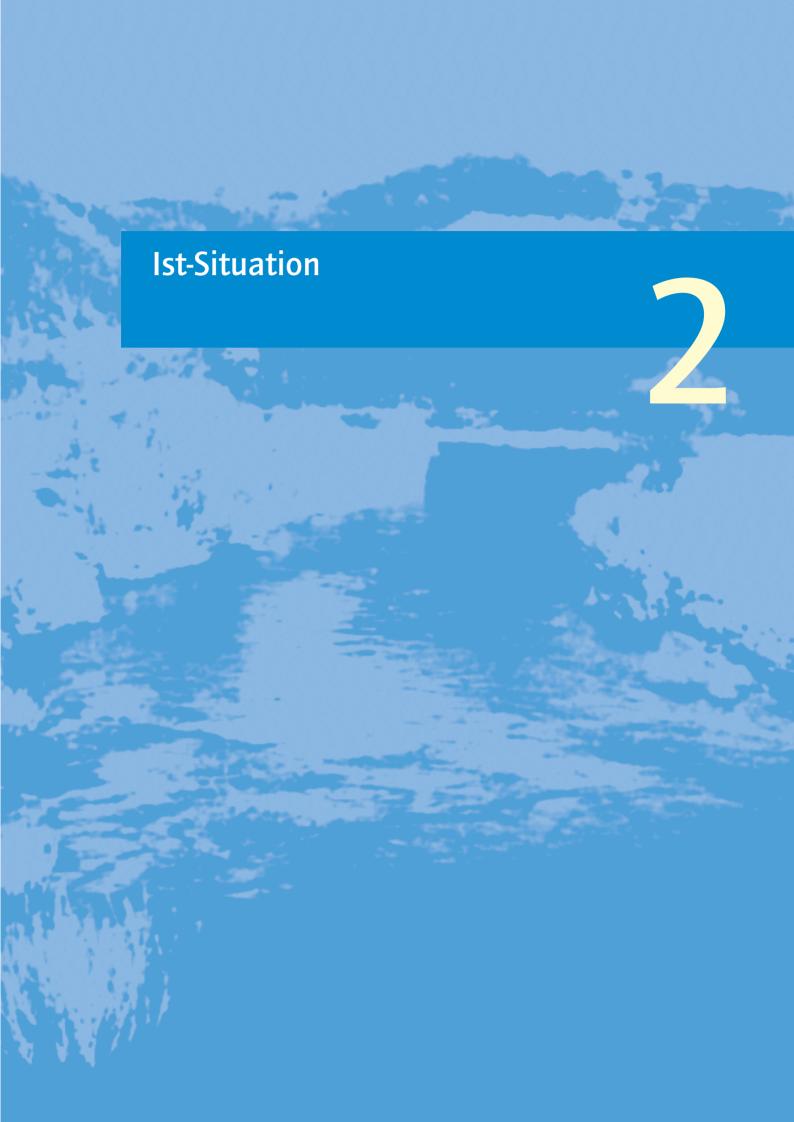
Fast 80 % der ca. 72,1 Mio m³ (65 Mio. m³ NRW; 7,1 Mio. m³ NI) Rohwasser für die öffentliche Wasserversorgung im Bearbeitungsgebiet wird aus "originärem" Grundwasser gewonnen. Für die restlichen 20 % wird Oberflächenwasser zur Anreicherung des Grundwassers genutzt.

Querbauwerke

Im Bearbeitungsgebiet Obere Ems gibt es zahlreiche Querbauwerke (NRW: 1377, NI: 128 Sohlbauwerke und 489 Durchlassbauwerke). Einige der Querbauwerke dienen dem Hochwasserschutz und dem Schutz der Gründungen historischer Bauwerke (z. B. Mühlen). Außerdem wird ein Teil der Querbauwerke (23 Bauwerke, ausschließlich NRW) zur Energieerzeugung aus Wasserkraft genutzt. Ein Großteil der Bauwerke dient als Kulturstau der Anhebung des Wasserspiegels zur landwirtschaftlichen Nutzung gewässernaher Flächen.

Fischteiche

Vor allem die am Fuß der Erhebungen des Münsterlandes entspringenden Quellen bzw. die sie speisenden Oberläufe werden häufig zur Anlage von Fischteichen genutzt. Dies ist insbesondere am Teutoburger Wald, den Beckumer Bergen und den Baumbergen der Fall, gilt aber auch für die übrigen Oberläufe.


Schifffahrt

Im Bearbeitungsgebiet Obere Ems ist die Ems in einem Abschnitt von 37,6 km (7,2 km NRW, 30,4 km NI) von der Eisenbahnbrücke in Rheine bis zur Grenze des Bearbeitungsgebietes als Binnenschifffahrtsstraße ausgewiesen. Außerdem liegen Teile des Dortmund-Ems-Kanals sowie des Mittellandkanals mit einer Gesamtlänge von 117,6 km im Bearbeitungsgebiet.

▶ 1.6 Anthropogene Nutzungen der Gewässer

Steinkohlenbergbau

Die Deutsche Steinkohle AG in Ibbenbüren nutzt die Ibbenbürener Aa zur Ableitung der jährlich anfallenden ca. 18 Mio. m³ stark chloridhaltigen Grubenwässer. Eine erhebliche stoffliche und hydraulische Belastung des Gewässers ist die Folge.

2 Ist-Situation

Dieses Kapitel enthält eine Beschreibung und Analyse der Ausgangssituation für die Bestandsaufnahme nach WRRL im Einzugsgebiet der Ruhr. Hierbei werden die Oberflächengewässer und das Grundwasser gesondert betrachtet. Diese Analyse stützt sich auf vorhandene wasserwirtschaftliche Daten und Informationen sowie auf Expertenwissen.

Die Vorgehensweisen im Rahmen der Bestandsaufnahme gemäß WRRL für Oberflächengewässer und Grundwasser sind aufgrund der Vorgaben der WRRL nicht unmittelbar vergleichbar (siehe Anhang II der WRRL).

Für die Beschreibung der Oberflächengewässer werden in einem ersten Schritt die typologischen Verhältnisse sowie die entsprechenden Referenzen zugeordnet und beschrieben. Diese dienen im weiteren Verlauf der Bestandsaufnahme als Grundlage für die Einschätzung der Zielerreichung bzw. der späteren Zustandsbeschreibung im Rahmen des Monitorings.

Die Ausweisung der Gewässertypen und die Beschreibung von Referenzen ist bereits im Rahmen der Bestandsaufnahme gefordert, obwohl hier die Beurteilung der Gewässer in der Regel noch auf die bisher vorhandenen Daten zurückgreift und somit nicht typspezifisch ist. Ausnahmen bilden die vorliegenden Auswertungen zur Fischfauna sowie die Gewässerstrukturgütedaten. Der Festlegung der Typen und Referenzen wird zukünftig im an die Bestandsaufnahme anschließenden Monitoring eine große Bedeutung zukommen.

Auf Grundlage der vorliegenden Immissionsdaten, die aus den bisherigen Gewässergütemessprogrammen sowie aus der Strukturgütekartierung und ergänzenden Expertenabfragen stammen, werden in diesem Kapitel erste Einschätzungen des Gewässerzustands erarbeitet und im Zusammenhang dargestellt.

Anschließend erfolgt die Analyse der Belastungen, die im Weiteren zur aktuellen Ausgangssituation der Gewässer in Beziehung gesetzt werden. Letztlich werden in einem integralen Ansatz, d. h. in der zusammenfassenden Betrachtung der Immissions- und Emissionsdaten die Zielerreichung im Sinne der WRRL erstmalig eingeschätzt und die Grundlagen für ein differenziertes Monitoring gelegt.

Die Bestandsaufnahme für das Grundwasser gliedert sich zunächst in eine erstmalige und eine weitergehende Beschreibung. In der erstmaligen Beschreibung werden die Grundwasserkörper abgegrenzt und beschrieben. Es erfolgt außerdem eine erste Analyse der Belastungen zur Selektion der Grundwasserkörper, für die eine weitergehende Beschreibung mit zusätzlicher Datenanalyse zu erfolgen hat. Die Bestandsaufnahme für das Grundwasser mündet in der Prüfung der menschlichen Auswirkungen, in deren Rahmen der Grad der Zielerreichung der Grundwasserkörper beurteilt wird. Auf Basis der Ergebnisse der Prüfung werden Art und Umfang des nachfolgenden Monitorings festgelegt.

2.1

Oberflächenwasserkörper

Die Wasserrahmenrichtlinie erfordert zukünftig eine Klassifizierung des ökologischen und des chemischen Zustands der Oberflächengewässer in die Klassen "sehr gut", "gut", "mäßig", "unbefriedigend" und "schlecht". Das Ziel der WRRL ist die Erreichung des "guten Zustands". Die Bewertung erfolgt zukünftig auf Basis eines WRRLkonformen Monitorings durch Vergleich des Ist-Zustands mit dem Referenzzustand (vgl. Kap. 2.1.1).

Der Referenzzustand ist in den Oberflächengewässern von zahlreichen naturräumlichen und regionalen Kriterien abhängig, also typspezifisch. Entsprechend erfolgt die Bewertung der Gewässer und Gewässerabschnitte mit Bezug auf den jeweiligen für das Gewässer bzw. den Gewässerabschnitt relevanten Typ.

Um diesem Anspruch gerecht zu werden und die vorhandene typologische Variabilität der Gewässer berücksichtigen zu können, müssen die Gewässer in Bewertungseinheiten unterteilt werden. Die so entstehenden Einheiten werden als "Wasserkörper" (WK) definiert. Die Abgrenzung der Wasserkörper ist in Kap. 2.1.2 beschrieben.

Die Festlegung des Referenzzustands und die Abgrenzung von Wasserkörpern muss gemäß Wasserrahmenrichtlinie bereits während der Bestandsaufnahme durchgeführt werden, obwohl die verfügbaren Daten zur Einschätzung der Gewässersituation sich weder am Gewässertyp noch an den Grenzen von Wasserkörpern orientieren.

Die bisherigen Gütemessprogramme waren zumindest teilweise auf andere Fragestellungen ausgerichtet und weisen – gemessen an den Kriterien der Wasserrahmenrichtlinie – systembedingt noch Datenlücken und vor allem offene Fragen in Bezug auf eine WRRL-konforme Bewertung auf.

Eine Ausrichtung der Monitoring- und Bewertungskonzepte auf die Vorgaben der Wasserrahmenrichtlinie ist erst zum Jahr 2006 vorgesehen. Zurzeit kann nach den Kriterien der Wasserrahmenrichtlinie nur eine erstmalige Einschätzung erfolgen (s. Kap. 4).

Basis für diese erstmalige Einschätzung sind die folgenden Komponenten, für die belastbare Daten verfügbar waren:

- die biologische Gewässergüte (Saprobie)
- · die Gewässerstruktur
- · die Fischfauna
- die allgemeinen chemisch-physikalischen Komponenten
- spezifische synthetische und nicht-synthetische Schadstoffe

Im Kap. 2.1.3. wird für diese Komponenten die Ist-Situation der Gewässer im Bearbeitungsgebiet beschrieben und anhand der bisherigen Klassifizierungsgrenzen bewertet.

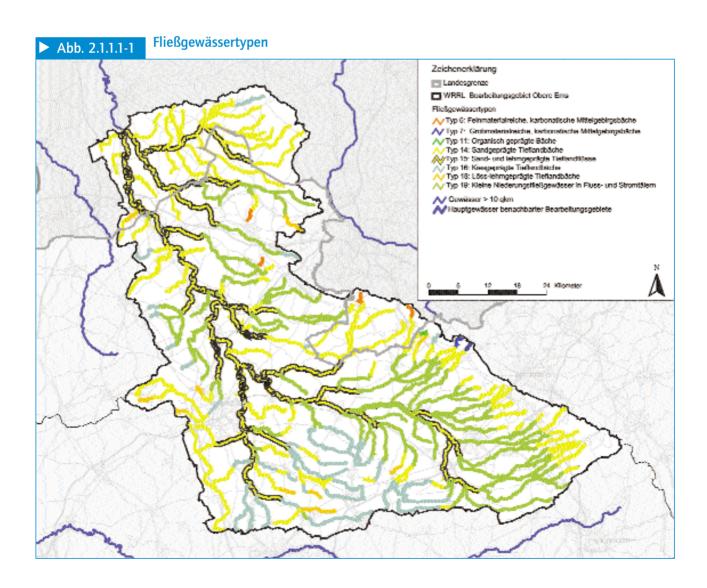
2.1.1

Gewässertypen und Referenzbedingungen

Die Gewässerflora und -fauna, die in einem Oberflächengewässer anzutreffen ist, ist unter potenziell natürlichen, vom wirtschaftenden Menschen gänzlich unbeeinflussten Bedingungen nicht überall gleich, sondern von regionalen und naturräumlichen Bedingungen abhängig. Diesem natürlichen Unterschied muss bei der zukünftig nach Wasserrahmenrichtlinie durchzuführenden Einstufung des Gewässerzustands Rechnung getragen werden.

Jedes Gewässer und jeder Gewässerabschnitt müssen einem **Gewässertyp** zugeordnet werden, für den eine Referenz festzulegen ist.

Diese Referenz beschreibt, welche Gewässerflora und -fauna sich bei den für diesen Gewässertyp üblichen naturräumlichen und regionalen Bedingungen ausbildet. Der Grad der Übereinstimmung bzw. der Abweichung von diesem Referenzzustand bestimmt, ob der Oberflächenwasserkörper in einem "sehr guten", "guten", "mäßigen", "unbefriedigenden" oder "schlechten" Zustand ist.

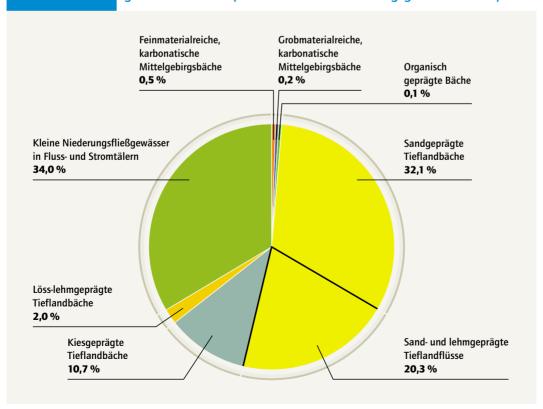

2.1.1.1

Gewässertypen im Bearbeitungsgebiet Obere Ems

Im Bearbeitungsgebiet finden sich die Fließgewässertypen

- Feinmaterialreiche, karbonatische Mittelgebirgsbäche
- Grobmaterialreiche karbonatische Mittelgebirgsbäche

- Organisch geprägte Bäche
- Sandgeprägte Tieflandbäche
- Sand- und lehmgeprägte Tieflandflüsse
- Kiesgeprägte Tieflandbäche
- Löss-lehmgeprägte Tieflandbäche
- Kleine Niederungsfließgewässer in Fluss- und Stromtälern


Tab. 2.1.1.1-1

Anteil der Fließgewässertypen im Bearbeitungsgebiet Obere Ems (Gewässer mit einem Einzugsgebiet > 10 km², nach Karte der biozönotisch bedeutsamen Fließgewässertypen - Stand 2004)

Ökoregion	Kenn- ziffer	Fließgewässertypen	Typ- Nummer	Größenklasse	Länge (km)	Anteil an Gesamt- länge (%)
Mittelgebirge	9	Feinmaterialreiche, karbonatische Mittelgebirgsbäche	6	Bach	11,626	0,5
Mittelgebirge	9	Grobmaterialreiche karbonatische Mittelgebirgsbäche	7	Bach	5,001	0,2
Tiefland	14	Organisch geprägte Bäche	11	Bach	2,000	0,1
Tiefland	14	Sandgeprägte Tieflandbäche	14	Bach	687,987	32,1
Tiefland	14	Sand- und lehmgeprägte Tiefland- flüsse	15	kleiner Fluss	212,763	9,9
Tiefland	14	Sand- und lehmgeprägte Tiefland- flüsse	15	großer Fluss	222,847	10,4
Tiefland	14	Kiesgeprägte Tieflandbäche	16	Bach	227,235	10,6
Tiefland	14	Kiesgeprägte Tieflandbäche	16	kleiner Fluss	2,600	0,1
Tiefland	14	Löss-lehmgeprägte Tieflandbäche	18	Bach	41,980	2,0
Tiefland	14	Kleine Niederungsfließgewässer in Fluss- und Stromtälern	19	Bach	611,168	28,5
Tiefland	14	Kleine Niederungsfließgewässer in Fluss- und Stromtälern	19	kleiner Fluss	116,979	5,5

► Abb. 2.1.1.1-2

Prozentuale Verteilung der Fließgewässertypen im Bearbeitungsgebiet Obere Ems (Gewässer mit einem Einzugsgebiet > 10 km²)

Die Fließgewässertypen 19 (Kleine Niederungsfließgewässer in Fluss- und Stromtälern) und 14 (Sandgeprägte Tieflandbäche) sind mit einem Anteil von insgesamt 64,1 % (34 % Typ 19 und 32,1 % Typ 14) die prägenden Fließgewässertypen im Bearbeitungsgebiet Obere Ems.

Das kleine Niederungsfließgewässer in Flussund Stromtälern (Typ 19) fliesst als äußerst gefällearmes, geschwungenes bis mäandrierendes Gewässer (teils Mehrbettgerinne) in breiten Auen oder Urstromtälern, die nicht vom beschriebenen Gewässertyp, sondern von einem großen Fluss oder Strom gebildet wurden. Eine Talform ist nicht erkennbar. Die gering eingeschnittenen, durch stabile Ufer gekennzeichneten Gewässer weisen je nach den abgelagerten Ausgangsmaterialien organische Komponenten bzw. fein- bis grobkörnige mineralische Komponenten (häufig Sande und Lehme, seltener Kies oder Löss) auf. Das Wasser ist durch Schwebstofftransport oft trübe und bei den organisch reicheren Niederungsgewässern durch Huminstoffe bräunlich gefärbt. Charakteristisch ist ein Wechsel von Fließ- und Stillwassersituationen sowie von Beschattung und Lichtstellung mit ausgeprägten Makrophyten- und Röhrichtbeständen. Bei Hochwasser wird die gesamte Aue lang andauernd überflutet. Rückstauerscheinungen gibt es bei Hochwasserführung des niederungsbildenden Flusses.

Abb. 2.1.1.1-4 Charakteristische Laufentwicklung eines sandgeprägten Tieflandbaches (Rotbach (NRW). Foto: M. Sommerhäuser)

Der sandgeprägte Tieflandbach (Typ 14) ist ein stark mäandrierendes (bei Grundwasserprägung mehr gestrecktes) Fließgewässer in einem flachen Mulden- oder breiten Sohlental. Neben der stets dominierenden Sandfraktion stellen Kiese kleinräumig nennenswerte und gut sichtbare Anteile (Ausbildung von Kiesbänken), lokal finden sich auch Tone und Mergel. Wichtige sekundäre Habitatstrukturen stellen Totholz, Erlenwurzeln, Wasserpflanzen und Falllaub dar. Diese organischen Substrate stellen jedoch keine dominierenden Anteile. Das Profil ist flach, jedoch können Tiefenrinnen und hinter Totholzbarrieren auch Kolke vorkommen. Prall- und Gleithänge sind deutlich ausgebildet, Uferabbrüche kommen vor, Uferunterspülungen sind wenig ausgeprägt. Niedermoorbildungen können im Gewässerumfeld vorhanden sein.

Der ausführliche Typensteckbrief für alle in Deutschland vorkommenden Gewässertypen ist von der Länderarbeitsgemeinschaft Wasser (LAWA) unter Mitwirkung von Nordrhein-Westfalen und Niedersachsen erarbeitet worden und unter www.wasserblick.net dokumentiert (zzt. keine Druckfassung).

Abb. 2.1.1.1-3 Charakteristische Laufentwicklung eines kleinen Niederungsfließgewässers in Fluss- und Stromtälern (Hellbach SH, aus: Typensteckbrief, Foto: U. Holm)

2.1.1.2

Referenzbedingungen

Ebenfalls nach Vorarbeiten von Nordrhein-Westfalen und Niedersachsen werden seitens der LAWA für alle in Deutschland vorkommenden Fließgewässertypen die dort im Referenzzustand zu erwartenden Biozönosen beschrieben. Diese Arbeiten sind noch nicht in allen Teilen abgeschlossen. Es müssen noch Validierungsprozesse

stattfinden, die dabei die neuen, der WRRL entsprechenden und noch in Entwicklung befindlichen Probenahme- und Sammeltechniken verwenden

Exemplarisch sind nachfolgend für den im Bearbeitungsgebiet Obere Ems überwiegend anzutreffenden Gewässertyp "kleine Niederungsfließgewässer in Fluss- und Stromtälern" (Typ 19) die nach aktuellem Kenntnisstand geltenden Referenzbedingungen beschrieben.

Typensteckbrief für Typ 19 (kleines Niederungsfließgewässer in Fluss- und Stromtälern)

Charakterisierung der Makrozoobenthos-Besiedlung

Funktionale Gruppen:

Die charakteristische Verzahnung von trägen Fließgewässerabschnitten und ausgesprochenen Stillgewässersituationen führt zu einem hohen Anteil von Arten schwach strömender Gewässerabschnitte einerseits und Stillgewässern andererseits; es herrschen hyporhithrale bis epipotamale Arten vor, hinzu kommen zahlreiche Litoralarten. Der Makrophytenreichtum begünstigt einen hohen Anteil von Phytalbewohnern, hinzu kommen vor allem Bewohner der Feinsedimente sowie der Hartsubstrate (im natürlichen Zustand v. a. Totholz). In den (organischen) Feinsedimenten lebende Sediment-/ Detritusfresser stellen die größte Ernährungstypen-Gruppe dar. Euryöke und eurythermische Arten.

Typspezifische Arten:

Potenziell große Artenvielfalt durch das Vorkommen von Fließ- und Stillwasserarten, darunter *Gammarus roeseli, Caenis spp., Calopteryx splendens, Tinodes waeneri,* Neureclipsis bimaculata, Agrypnia spp., Phryganea spp., Oecetis spp., Ceraclea spp., Mystacides spp., Molanna angustata, Simulium angustipes, Simulium erythrocephalum, Begleitende Arten bzw. Taxa: Dytiscus spp., Limnephilus spp., Halesus radiatus, Goera pilosa, molluskenreiche Fauna.

Charakterisierung der Makrophyten- und Phytobenthos-Gemeinschaft

Dieser Bachtyp ist durch eine artenreiche Makrophytengemeinschaft gekennzeichnet, die auf Grund der günstigen Lichtstellung großflächig die Sohle bedecken kann. Als Wasserpflanzen treten Arten auf, die keinen ausgesprochenen Fließwassercharakter mehr zeigen, sondern ebenfalls in Stillgewässern zu finden sind, wie z. B. *Potamogeton natans, Myriophyllum spicatum* oder *Nuphar lutea*.

Charakterisierung der Fischfauna

Aufgrund der großen Substrat- und Strömungsvielfalt ist die Fischzönose sehr artenund individuenreich: Arten der Fließ- und Stillgewässer sowie strömungsindifferente Arten, Arten die mineralische Laichsubstrate bevorzugen oder an Makrophyten ablaichen. Neben Fischarten, die bevorzugt kleinere Gewässer besiedeln, kommen auch Arten größerer Gewässer vor. Die kiesigen Gewässerabschnitte dieses Bachtyps werden z. B. durch Forelle und Groppe besiedelt, während langsam fließende Gewässerabschnitte mit hohem organischen Anteil bzw. lang anhaltend flächenhaft überflutete Auenbereiche das Vorkommen von Arten wie Karausche, Rotauge und Hecht ermöglichen. Generell ist die Fischartenzusammensetzung dieses Gewässertyps zudem von der Fischfauna des Hauptflusses bzw. -stroms beeinflusst.

Anmerkungen	Typ 19 (kleines Niederungsfließgewässer in Fluss- und Stromtälern) wird im Gegensatz zu den anderen Fließgewässertypen des Tieflands nicht über die dominierende Sohlsubstratfraktion definiert! Charakteristisch für diesen Flusstyp sind die fehlende Talform und die hydrologische Überprägung durch das größere Fließgewässer, in das die Gewässer des Typs einmünden. Lichtstellung und ausgedehnte Röhrichtbestände sind hier kein Artefakt, sondern typspezifisch. Bei Niedermoorböden im direkten Einzugsgebiet häufig huminstoffreiches, bräunlich gefärbtes Wasser. Naturnahe Gewässer dieses Typs sind allerdings heute auf Grund der intensiven Nutzung der Auen nur noch selten anzutreffen, es handelt sich meist um begradigte, ausgebaute und gedeichte Gewässer. Verwechselungsmöglichkeit: Gegenüber den Typen 11 und 12: Organisch geprägte Bäche und Flüsse weist dieser Gewässertyp keine erkennbare Talform auf sowie ein sehr geringes Gefälle. Es handelt sich nicht um ein "hydrologisch eigenständiges" Fließgewässer, vielmehr wird das Fließverhalten von einem größeren Fließgewässer, in das es einmündet bzw. in dessen Aue es liegt, hydrologisch überprägt (z. B. Rückstauerscheinungen) Biozönotisch weist der Typ 19 einen großen Anteil von Stillgewässerarten auf, während die Typen 11 und 12 durch Fließ- und Auengewässer-Arten charakterisiert werden. Der Gewässertyp tritt nur bei kleinen Gewässern (Bäche bis 300 km²) auf). Periodisch oder permanent durchströmte Altarme der großen Flüsse und Ströme sind nicht Typ 19, sondern Typ 15 oder 20 zuzuordnen. Hinweis: Die Beschreibung dieses Typs wird ggf. um Ergebnisse aus laufenden Forschungsprojekten ergänzt werden.
Beispielgewässer	Hellbach (SH), verschiedene Zuläufe von Warnow und Nebel (MV)
Vergleichende Literatur (Auswahl)	LUA NRW (2001) "Fließgewässer der Niederungen", NLÖ (2000) "Fließgewässer der großen Feinmaterialauen in Sandgebieten", LANU (2001) "Teilmineralisch geprägte Fließgewässer der Niederungen und Moorgebiete"

2.1.2

Abgrenzung von Wasserkörpern

Im Rahmen der Bestandsaufnahme werden Fließgewässer mit einem Einzugsgebiet größer 10 km² bzw. Stillgewässer mit einer Fläche größer 0,5 km² berücksichtigt. Kleinere Gewässer, von denen Belastungen ausgehen, die andere Wasserkörper in der Flussgebietseinheit signifikant beeinflussen, werden bei der Betrachtung der Belastungen als "Punktquelle" gesehen (z. B. Gewässer, deren Einzugsgebiete kleiner als 10 km² sind und an denen sich eine Aufreihung von Fischteichanlagen befindet). Zudem finden sie über die Betrachtung der diffusen Belastungen Berücksichtigung.

Die zu betrachtenden Gewässer werden in "nicht unbedeutende, einheitliche Abschnitte", die so genannten Wasserkörper, unterteilt. Die Abgrenzung der Wasserkörper ist vorläufig, sie erfolgte gemäß der Regelung der Wasserrahmenrichtlinie und dem entsprechenden CIS-Guidance Document¹ nach einheitlichen Kriterien für ganz Nordrhein-Westfalen und Niedersachsen wie folgt:

- 1. Abgrenzung beim Übergang von einer Gewässerkategorie zur nächsten (Fluss/See) und beim Übergang zwischen natürlichen, erheblich veränderten und künstlichen Gewässerabschnitten²
- 2. Abgrenzung beim Übergang von einem Gewässertyp zum nächsten. Abweichungen hiervon ergeben sich nur bei sehr kleinräumigen Wechseln (z. B. kurze Niederungsgewässer-Abschnitte)

3. Abgrenzung bei wesentlicher Änderung physikalischer (geographischer und hydromorphologischer) Eigenschaften, in der Regel bei größeren Gewässereinmündungen.

Für den nordrhein-westfälischen Teil des Bearbeitungsgebiets Obere Ems ergeben sich nach dieser Methodik 235 Wasserkörper, von denen sieben als vorläufig erheblich verändert (hmwb) und sechs als künstlich (awb) eingestuft sind (vgl. Kap. 4.2). Die sieben erheblich veränderten Wasserkörper haben einen prozentualen Anteil an den gesamten Fließgewässerstrecken von knapp 3 %. Die künstlichen Gewässer nehmen einen Anteil von 5 % ein. 92,4 % der Gewässerstrecken gelten damit als natürlich.

Im niedersächsischen Teil des Bearbeitungsgebiets Obere Ems wurden von den 31 Wasserkörpern 26 als vorläufig erheblich verändert (hmwb) und vier als künstlich (awb) ausgewiesen (vgl. Kap. 4.2). Somit werden 88 % der Gewässerstrecken als erheblich verändert und knapp 10% als künstlich angesehen. 2% der Gewässerstrecken werden hier als natürlich eingestuft.

Die Länge der ausgewiesenen Wasserkörper variiert stark zwischen 0,9 km und maximal 57 km. Die durchschnittliche Länge liegt bei rd. 10 km.

Die räumliche Abgrenzung der Oberflächenwasserkörper ist in Karte 2.1-1 dargestellt, Tabelle 2.1.2-1 gibt eine Übersicht. Alle 266 Wasserkörper im Bearbeitungsgebiet Obere Ems sind in Tabelle 2.1.2-2 aufgeführt.

Übersicht der Oberflächenwasserkörper (Links NRW/Rechts NI) ► Tab. 2.1.2-1

Gewässerkategorie		Anzahl der	Länge [km]			
		Wasserkörper	gesamt	min.	mittlere	max.
Flüsse	natürlich	222/1	1.734/8	1,0/-	7,6/8	57/-
	erheblich verändert	7/26	50/319	1,3/2,4	7,0/12,2	9,6/31
	künstlich	6/4	101/35	0,9/2	23,8/9	70/17
Summe		235/31	1.885/362	-	-	-
Stillgewässer	natürlich	0	-		-	
	erheblich verändert	0	-		-	
	künstlich	0	-		_	
Summe		0	-	-		

¹ Horizontal Guidance "Water bodies"

² Die Ausweisung erheblich veränderter und künstlicher Wasserkörper ist ein gesonderter Schritt, wird in Kap. 4.2 ausführlich beschrieben.

Oberflächenwasserkörper

Den einzelnen Wasserkörpern werden in der folgenden Tabelle die Kategorien natürlich (n), künstlich (k) und vorläufig erheblich verändert (v) zugeordnet.

Darüber hinaus erfolgt auch eine Zuordnung zum entsprechenden Gewässertyp:

6 = Feinmaterialreiche, karbonatische Mittelgebirgsbäche

- 7 = Grobmaterialreiche, karbonatische Mittelgebirgsbäche
- 11 = Organisch geprägte Bäche
- 14 = Sandgeprägte Tieflandbäche
- 15 = Sand- und lehmgeprägte Tieflandflüsse
- 16 = Kiesgeprägte Tieflandbäche

0

8,3

8,3

19

n

- 18 = Löss-lehmgeprägte Tieflandbäche
- 19 = Kleine Niederungsfließgewässer in Flussund Stromtälern

Oberflächenwasserkörper (Nummer, Bezeichnung, Ausdehnung, Typ, Kategorie) (Teil 1) Tab. 2.1.2-2 Gewässer Länge Wasserkörper-Nummer Bezeichnung von his Gewäs- Kate-[km] [km] [km] sertyp gorie Oberflächenwasserkörper im nordrhein-westfälischen Teil des Bearbeitungsgebietes Obere Ems Ems DE_NRW_3_206483 Rheine bis Münster 206,483 263,688 57,205 15 n DE_NRW_3_263688 Münster bis Warendorf 263.688 296.8 33,112 15 Ems n Warendorf bis Gütersloh 296,8 20 15 DE_NRW_3_296800 316.8 Ems ٧ Gütersloh bis Rietberg 19,686 Ems DE_NRW_3_316800 316,8 336,486 15 n Rietberg bis Hövelhof Ems DE_NRW_3_336486 336,486 358,886 22,4 19 n DE_NRW_3_358886 Hövelhof bis Schloß Holte-Stukenbrock 358,886 362,409 3,523 14 Ems n DE NRW 31112 0 Hövelhof 19 Schwarzwasserbach 0 3.9 3.9 n DE_NRW_31112_3990 Hövelhof 3,99 2,238 Schwarzwasserbach 6.228 19 Furlbach DE_NRW_3112_0 Delbrück bis Hövelhof 0 6,9 6,9 19 n Furlbach DE NRW 3112 6900 Hövelhof bis Augustdorf 6,9 14,586 7,686 14 n Sennebach DE_NRW_3114_0 Rietberg bis Schloß Holte-Stukenbrock 0 17,5 17,5 19 n Sennehach DE_NRW_3114_17500 Schloß Holte-Stukenbrock 17.5 25,526 8 0 2 6 14 n Grubebach DE_NRW_3116_0 Rheda-Wiedenbrück bis Delbrück 22,235 22,235 19 0 n Forthbach DE_NRW_31164_0 n 19 Rheda-Wiedenbrück bis Langenberg 5,4 5,4 n Forthbach DE_NRW_31164_5400 Langenberg 5,4 7,6 2,2 14 n Forthbach DE_NRW_31164_7600 Langenberg bis Oelde 7,6 19,212 11,612 16 n Eusternbach DE_NRW_31172_0 Rheda-Wiedenbrück bis Langenberg 0 3,8 19 3,8 n 15,898 12,098 16 Eusternbach DE_NRW_31172_3800 Langenberg bis Oelde 3.8 n Hamelbach DE_NRW_3118_0 Rheda-Wiedenbrück 0 2,8 2,8 19 n Hamelbach DE_NRW_3118_2800 Rheda-Wiedenbrück 2,8 5,8 3 14 n 14,403 Hamelbach DE_NRW_3118_5800 Rheda-Wiedenbrück bis Oelde 5.8 16 8.603 n Herzebrock-Clarholz bis Gütersloh Dalkehach O 0,949 0 949 15 DE_NRW_312_0 v Rielefeld 9,001 19 Dalkebach 0.949 9,95 DE_NRW_312_21762 ٧ Gütersloh 995 11,812 19 Dalkehach DE_NRW_312_949 21,762 n Dalkebach DE_NRW_312_9950 Gütersloh bis Bielefeld 21,762 23,762 2 14 n Hasselbach DE_NRW_3124_0 Gütersloh bis Bielefeld 0 2,192 2,192 19 n 4,192 Hasselbach DE_NRW_3124_2192 Bielefeld 2,192 2 14 n Menkebach DE_NRW_3126_0 Gütersloh bis Bielefeld 0 12 12 19 n Menkebach DE_NRW_3126_12000 Bielefeld bis Oerlinghausen 12 20,074 8,074 14 n Wapelbach DE_NRW_3128_0 Gütersloh bis Rheda-Wiedenbrück 0 4,9 15 4.9 n Wapelbach DE_NRW_3128_29200 Schloß Holte-Stukenbrock 4,9 29,2 24,3 19 n DE_NRW_3128_4900 Rheda-Wiedenbrück bis Schloß Holte-Stukenbrock 35,525 6,325 14 Wapelbach 29,2 n Rodenbach DE_NRW_31282_0 Verl his Schloß Holte-Stukenbrock 0 6,7 19 6,7 n Rodenbach DE_NRW_31282_6700 Schloß Holte-Stukenbrock 6,7 12,545 5,845 14 n Ölbach DE_NRW_31284_0 Rheda-Wiedenbrück bis Schloß Holte-Stukenbrock 0 19,4 19,4 19 n Ölbach DE_NRW_31284_19400 Schloß Holte-Stukenbrock bis Oerlinghausen 19,4 29,618 10,218 14 n Landerbach Verl bis Schloß Holte-Stukenbrock

DE_NRW_312844_0

2.1

Oberflächenwasserkörper (Nummer, Bezeichnung, Ausdehnung, Typ, Kategorie) (Teil 2) Tab. 2.1.2-2 Gewässer Wasserkörper-Nummer Bezeichnung his Länge Katevon Gewäs-[km] [km] [km] sertyp gorie Landerbach DE_NRW_312844_8300 Schloß Holte-Stukenbrock 8,3 11,392 3,092 14 Ruthenbach DE_NRW_31312_0 Harsewinkel bis Rheda-Wiedenbrück 0 9,235 9,235 19 n Lutter DE NRW 3132 0 Harsewinkel 0 4,193 4,193 15 n Lutter DE NRW 3132 20093 Bielefeld 4,193 20,093 15,9 19 n Lutter DE_NRW_3132_4193 Harsewinkel bis Bielefeld 20.093 25.961 5.868 14 n Trüggelbach Bielefeld DE_NRW_31322_0 0 5,529 5,529 14 n DE_NRW_31324_0 Gütersloh Reiherhach 0 2.5 2.5 19 n Reiherbach DE_NRW_31324_2500 Gütersloh bis Bielefeld 2,5 10,653 8.153 14 n Welzplagebach DE_NRW_31326_0 Harsewinkel bis Gütersloh 0 14.6 14,6 19 n Welzplagebach DE_NRW_31326_14600 Gütersloh 14,6 16,885 2,285 14 n Lichtebach DE_NRW_31328_0 Harsewinkel bis Bielefeld 14,5 14,5 19 n Lichtebach DE_NRW_31328_14500 Bielefeld 14,5 18,98 4,48 14 n Abrooksbach DE_NRW_3134_0 Harsewinkel bis Steinhagen 9.59 9,59 19 Abrooksbach DE_NRW_3134_15290 Steinhagen 9,59 15,29 5.7 19 n Abrooksbach DE_NRW_3134_9590 Steinhagen 15.29 17,375 2,085 14 n Hovebach DE_NRW_31342_0 Steinhagen 0 3.3 3.3 19 n 6,379 3,079 Hovebach DE_NRW_31342_3300 Steinhagen 3.3 14 n Loddenbach DE_NRW_31344_0 Steinhagen 0 6,7 6,7 19 n Loddenbach DE_NRW_31344_6700 Steinhagen 6,7 12,188 5,488 14 n Laibach DE_NRW_3136_0 Harsewinkel bis Halle (Westf.) 0 14,785 14,785 19 n Laibach DE_NRW_3136_14785 Halle (Westf.) 14,785 6,435 21.22 14 DE_NRW_3136_21220 Halle (Westf.) 23,272 2,052 7 Laibach 21.22 n Loddenbach DE_NRW_3138_0 Harsewinkel bis Halle (Westf.) 0 16,491 16,491 19 n Loddenbach DE NRW 3138 16491 Halle (Westf.) 16,491 20,466 3,975 14 n Ruthenbach DE NRW 31382 0 Halle (Westf.) 0 5,1 5,1 19 n Halle (Westf.) Ruthenbach DE_NRW_31382_5100 5,1 10.33 5,23 14 n Axtbach DE_NRW_314_0 Warendorf bis Beelen n 6,682 6.682 15 n Axtbach DE_NRW_314_20982 Oelde 6,682 20,982 14,3 19 n Axtbach DE_NRW_314_26357 Oelde 20,982 26,357 5,375 14 n Axtbach DE_NRW_314_6682 Beelen bis Oelde 26,357 34,132 7,775 16 n Bergeler Bach DE_NRW_3142_0 Oelde 14 0 3,6 3,6 n 8,151 Bergeler Bach DE_NRW_3142_3600 Oelde 3,6 4,551 16 n Maibach DE_NRW_3144_0 Herzebrock-Clarholz 0 1,5 1,5 19 n Maibach DE_NRW_3144_1500 Herzebrock-Clarholz bis Oelde 1,5 4,4 2,9 14 n Maibach Oelde 7.521 3.121 18 DE_NRW_3144_4400 44 n Beilbach 0 DE_NRW_3146_0 Beelen bis Ennigerloh 9.2 9,2 19 n Beilbach DE_NRW_3146_14565 Oelde bis Ennigerloh 9.2 14.565 5.365 16 n 14,565 Beilbach DE_NRW_3146_9200 Ennigerloh bis Oelde 17.129 2.564 14 n Flutbach DE_NRW_31472_0 Beelen bis Herzebrock-Clarholz 0 8,623 8,623 19 n Baarbach DE_NRW_3148_0 Warendorf bis Ennigerloh 0 8,5 8,5 19 n Baarbach DE_NRW_3148_8500 Enniaerloh 8,5 12,718 4,218 16 Westkirchener Bach DE_NRW_31482_0 Beelen bis Ennigerloh 0 2,5 2,5 19 n Westkirchener Bach DE_NRW_31482_2500 Ennigerloh 2,5 8,038 5,538 16 n Südlicher Talgraben DE_NRW_31492_0 Warendorf bis Herzebrock-Clarholz 0 16,659 16,659 19 n DE_NRW_314924_0 Herzebrock-Clarholz 0 8.144 8.144 19 Poggenbach n Nördlicher Talgraben DE_NRW_3152_0 Warendorf bis Harsewinkel 0 13,795 13,795 19 n Holtbach DE_NRW_3154_0 Warendorf bis Ennigerloh 0 8.583 19 8.583 n Holtbach DE_NRW_3154_8583 Ennigerloh 8,583 11,113 2,53 16 n Hessel DE_NRW_316_0 Warendorf bis Sassenberg 0 10,872 10,872 15 n

Sassenberg bis Borgholzhausen

10,872

31,394

20,522

19

n

DE_NRW_316_10872

Hessel

Tab. 2.1.2-2 Oberflächenwasserkörper (Nummer, Bezeichnung, Ausdehnung, Typ, Kategorie) (Teil 3)

Gewässer	Wasserkörper-Nummer	Bezeichnung	von [km]	bis [km]	Länge [km]	Gewäs- sertyp	Kate- gorie
Hessel	DE_NRW_316_31394	Borgholzhausen bis Halle (Westf.)	31,394	36,387	4,993	14	n
Hessel	DE_NRW_316_36387	Halle (Westf.)	36,387	39,336	2,949	7	n
Casumer Bach	DE_NRW_31612_0	Versmold bis Borgholzhausen	0	4,517	4,517	14	n
Casumer Bach	DE_NRW_31612_4517	Borgholzhausen	4,517	7,216	2,699	16	n
Bruchbach	DE_NRW_3162_0	Versmold	0	1,6	1,6	19	n
Bruchbach	DE_NRW_3162_1600	Versmold	1,6	5,1	3,5	14	n
Bruchbach	DE_NRW_3162_5100	Versmold bis Borgholzhausen	5,1	8,3	3,2	18	n
Alte Hessel	DE_NRW_31632_0	Versmold bis Borgholzhausen	0	9,482	9,482	19	n
Backhorster Bach	DE_NRW_3164_0	Versmold	0	7,8	7,8	19	n
Backhorster Bach	DE_NRW_3164_13341	Borgholzhausen	7,8	13,341	5,541	14	n
Backhorster Bach	DE_NRW_3164_7800	Versmold bis Borgholzhausen	13,341	15,341	2	11	n
Dissener Bach	DE_NRW_31642_0	Versmold	0	1,063	1,063	14	n
Speckengraben	DE_NRW_3168_0	Sassenberg	0	9,1	9,1	19	n
Speckengraben	DE_NRW_3168_9100	Sassenberg	9,1	12,403	3,303	14	n
Mussenbach	DE_NRW_3172_0	Telgte bis Warendorf	0	7,884	7,884	19	
Mussenbach	DE_NRW_3172_7884	Warendorf bis Ennigerloh	7,884	24,367	16,483	16	n
		Everswinkel bis Warendorf				19	
Brüggenbach	DE_NRW_31722_0 DE_NRW_31722_2200		0	2,2	2,2	16	n
Brüggenbach		Warendorf bis Ennigerloh	2,2	11,869	9,669	19	n
Maarbecke	DE_NRW_3174_0	Telegte	1,000	1,686	1,686		n
Maarbecke	DE_NRW_3174_1686	Telgte bis Everswinkel	1,686	5,75	4,064	14	n
Bever	DE_NRW_318_0	Telgte bis Sassenberg	0	21,995	21,995	15	n
Bever	DE_NRW_318_21995	Sassenberg bis Glandorf	21,995	25,966	3,971	14	n
Frankenbach	DE_NRW_3184_0	Ostbevern bis Warendorf	0	7,382	7,382	19	n
Werse	DE_NRW_32_0	Münster bis Ahlen	0	43,489	43,489	15	n
Werse	DE_NRW_32_43489	Ahlen	43,489	48,2	4,711	16	n
Werse	DE_NRW_32_48200	Ahlen	48,2	50,96	2,76	19	V
Werse	DE_NRW_32_50960	Ahlen bis Beckum	50,96	66,646	15,686	16	n
Olfe	DE_NRW_3212_0	Ahlen bis Beckum	0	7,765	7,765	18	n
Kälberbach	DE_NRW_3214_0	Ahlen bis Drensteinfurt	0	7,203	7,203	14	n
Erlebach	DE_NRW_3216_0	Drensteinfurt	0	8,997	8,997	16	n
Umlaufsbach	DE_NRW_322_0	Drensteinfurt bis Ascheberg	0	13,187	13,187	16	n
Mühlenbach	DE_NRW_3222_0	Drensteinfurt bis Ascheberg	0	6,749	6,749	16	n
Flaggenbach	DE_NRW_3232_0	Sendenhorst bis Drensteinfurt	0	5,207	5,207	16	n
Flaggenbach	DE_NRW_3232_5207	Drensteinfurt bis Ascheberg	5,207	11,884	6,677	14	n
Ahrenhorster Bach	DE_NRW_324_0	Sendenhorst	0	1,9	1,9	19	n
Ahrenhorster Bach	DE_NRW_324_11500	Sendenhorst	1,9	11,5	9,6	14	n
Ahrenhorster Bach	DE_NRW_324_1900	Sendenhorst	11,5	15,141	3,641	18	n
Alsterbach	DE_NRW_3242_0	Sendenhorst	0	4,9	4,9	16	n
Alsterbach	DE_NRW_3242_4900	Sendenhorst	4,9	7,3	2,4	14	n
Alsterbach	DE_NRW_3242_7300	Sendenhorst	7,3	10,101	2,801	16	n
Westerbach	DE_NRW_3252_0	Sendenhorst	0	2,4	2,4	19	n
Westerbach	DE_NRW_3252_2400	Sendenhorst	2,4	9,803	7,403	14	n
Emmerbach	DE_NRW_326_0	Sendenhorst bis Münster	0	7,086	7,086	15	n
Emmerbach	DE_NRW_326_7086	Münster bis Ascheberg	7,086	35,668	28,582	14	n
Getterbach	DE_NRW_3268_0	Münster	0	7,222	7,222	14	n
Kannenbach	DE_NRW_3269922_0	Münster	0	7,372	7,372	14	n
Angel	DE_NRW_328_0	Münster bis Everswinkel	0	12,791	12,791	15	n
Angel	DE_NRW_328_12791	Everswinkel bis Sendenhorst	12,791	18,391	5,6	16	n
Angel	DE_NRW_328_18391	Sendenhorst bis Ennigerloh	18,391	27,436	9,045	14	n
Angel	DE_NRW_328_27436	Ennigerloh bis Beckum	27,436	38,18	10,744	16	n

18,048

8,041

8,081

2,86

8,041

8,081

14

19

15

n

n

n

15,188

0

0

2.1

Oberflächenwasserkörper (Nummer, Bezeichnung, Ausdehnung, Typ, Kategorie) (Teil 4) Tab. 2.1.2-2 Gewässer Wasserkörper-Nummer Bezeichnung his Länge Katevon Gewäs-[km] [km] [km] sertyp gorie Hellbach DE_NRW_3282_0 Ahlen 0 2,7 2,7 14 Hellbach DE_NRW_3282_2700 Ahlen bis Beckum 2,7 12,215 9,515 16 n Nienholtbach DE NRW 3284 0 Sendenhorst 0 3,04 3,04 14 n Nienholtbach DE NRW 3284 3040 Sendenhorst bis Ahlen 3,04 5,2 2,16 16 n Nienholtbach DE NRW 3284 5200 Ahlen 8.357 3.157 18 5.2 n Voßbach DE NRW 3286 0 15.716 Everswinkel bis Ennigerloh 0 15 716 16 n DE_NRW_3288_0 Everswinkel 0 Wieninger Bach 3 4 3.4 16 n 8,5 DE_NRW_3288_3400 Everswinkel bis Warendorf 5,1 Wieninger Bach 3.4 14 n Wieninger Bach DE_NRW_3288_8500 Warendorf bis Ennigerloh 8,5 15,029 6,529 16 n Piepenbach DE_NRW_32892_0 Münster bis Everswinkel 0 7,3 7,3 19 n Piepenbach DE_NRW_32892_7300 Everswinkel 7,3 9,839 2,539 14 n Kreuzbach DE_NRW_3294_0 Münster bis Telgte 0 14.46 14,46 14 n Gellenbach DE_NRW_3312_0 Greven bis Ostbevern 0 10,915 10.915 14 n Münstersche Aa DE_NRW_332_0 Greven bis Münster 0 11,785 11,785 15 n Münstersche Aa DE_NRW_332_11785 Münster 11,785 15,857 4,072 19 n Münstersche Aa Münster 15.857 20,8 4.943 16 DE_NRW_332_15857 ٧ 34 729 13,929 Münstersche Aa DE_NRW_332_20800 Münster bis Altenberge 20.8 14 n Altenberge bis Havixbeck 34,729 Münstersche Aa DE_NRW_332_34729 38,829 4,1 14 n Münstersche Aa DE_NRW_332_38829 Havixbeck 38,829 42,959 4,13 14 n Schlautbach DE_NRW_3322_0 Havixbeck 0 5,4 5,4 14 n Schlautbach DE_NRW_3322_5400 Havixbeck 8,903 3,503 5.4 n Meckelbach DE_NRW_3324_0 Münster 0 5,1 5.1 14 n Meckelhach DE_NRW_3324_5100 Münster 5,1 8,128 3,028 18 n Kinderbach DE NRW 3328 0 Münster 0 3,2 3,2 19 n DE_NRW_3328_3200 Kinderbach Münster 3,2 7,7 4,5 14 n Kinderhach DE_NRW_3328_7700 Münster 7,7 10 507 2 807 18 n Mühlenbach DE_NRW_3332_0 Greven bis Altenberge n 13.594 13.594 19 n Mühlenbach DE_NRW_3332_13594 Altenberge 13,594 17,064 3,47 16 n Flothbach DE_NRW_33324_0 Greven bis Münster 0 8.802 8,802 19 n Glane DE_NRW_334_0 Saerbeck bis Lengerich 0 15,784 15,784 15 n Glane DE_NRW_334_15784 Lengerich bis Lienen 15,784 32,348 16,564 19 n 0 Bullerbach DE_NRW_3342_0 Lengerich bis Lienen 9.152 9.152 19 n Kattenvenner Bach DE_NRW_33432_0 Ladbergen 0 8,732 8,732 19 n Mühlenbach DE NRW 3344 0 Ladbergen 0 4 4 14 n Mühlenbach 4 19 DE_NRW_3344_18200 Lienen 18 2 14 2 n Mühlenbach Ladbergen bis Lienen 18,2 20,353 DE_NRW_3344_4000 2,153 19 n DE_NRW_33442_0 Aldruper Mühlenb. Ladbergen bis Lengerich 0 8.06 8,06 19 n Greven bis Ostbevern 0 Eltings Mühlenbach DE_NRW_3346_0 15,537 15,537 15 n Eltings Mühlenbach DE_NRW_3346_15537 Ostbevern 15,537 18,317 2,78 14 n Eltings Mühlenbach DE_NRW_3346_18317 Ostbevern bis Glandorf 18,317 27,556 9,239 14 n Bockhorner Bach DE_NRW_33462_0 Ostbevern bis Glandorf 1.76 1.76 16 Bockhorner Bach DE_NRW_33462_9912 Glandorf bis Lienen 9,912 11,707 1,795 16 n Lütkebecke DE_NRW_33468_0 Greven 0 2,5 2,5 14 n Lütkebecke DE_NRW_33468_2500 Greven bis Ladbergen 2,5 11,018 8,518 19 n Saerbecker Mühlenb DE_NRW_3352_0 Emsdetten bis Saerbeck 1,088 1,088 19 0 n Saerbecker Mühlenb. DE_NRW_3352_1088 Saerbeck 1,088 4,688 3,6 14 n 4,688 Saerbecker Mühlenb. DE_NRW_3352_15188 Tecklenburg bis Lengerich 15.188 10,5 19 n

Saerbeck bis Tecklenburg

Emsdetten bis Nordwalde

Saerbeck bis Greven

DE_NRW_3352_4688

DE_NRW_3354_0

DE_NRW_336_0

Saerbecker Mühlenb.

Emsdettener Mühlenb.

Walgenbach

Tab. 2.1.2-2 Oberflächenwasserkörper (Nummer, Bezeichnung, Ausdehnung, Typ, Kategorie) (Teil 5)

Gewässer	Wasserkörper-Nummer	Bezeichnung	von [km]	bis [km]	Länge [km]	Gewäs- sertyp	Kate- gorie
Emsdettener Mühlenb.	DE_NRW_336_16081	Nordwalde bis Altenberge	8,081	16,081	8	19	n
Emsdettener Mühlenb.	DE_NRW_336_8081	Nordwalde	16,081	19,585	3,504	16	n
Landwehrgraben	DE_NRW_3364_0	Nordwalde bis Steinfurt	0	2,9	2,9	19	n
Landwehrgraben	DE_NRW_3364_2900	Steinfurt	2,9	5,246	2,346	16	n
Rösingbach	DE_NRW_3366_0	Nordwalde	0	7,695	7,695	19	n
Aabach	DE_NRW_3368_0	Nordwalde bis Steinfurt	0	6	6	19	n
Aabach	DE_NRW_3368_6000	Steinfurt	6	8,58	2,58	16	n
Hummertsbach	DE_NRW_3372_0	Rheine bis Emsdetten	0	6,88	6,88	14	n
Hummertsbach	DE_NRW_3372_6880	Emsdetten	6,88	9,899	3,019	14	n
Mühlenbach	DE_NRW_3374_0	Rheine	0	7,009	7,009	14	n
Frischhofsbach	DE_NRW_3376_0	Rheine bis Neuenkirchen	0	10,674	10,674	14	n
Frischhofsbach	DE_NRW_3376_10674	Neuenkirchen bis Steinfurt	10,674	18,645	7,971	14	n
Wambach	DE_NRW_3378_0	Rheine	0	4,077	4,077	14	n
Wambach	DE_NRW_3378_4077	Rheine bis Neuenkirchen	4,077	6,777	2,7	16	n
Wambach	DE_NRW_3378_6777	Neuenkirchen	6,777	9,6	2,823	16	n
Bevergerner Aa	DE_NRW_338_0	Rheine bis Hörstel	0	11,476	11,476	15	n
Bevergerner Aa	DE_NRW_338_11476	Hörstel bis Tecklenburg	11,476	31,676	20,2	19	n
Bevergerner Aa	DE_NRW_338_31676	Tecklenburg	31,676	33,891	2,215	14	n
Mühlenbach	DE_NRW_3382_0	Hörstel bis Tecklenburg	0	9,3	9,3	19	n
Mühlenbach	DE_NRW_3382_9300	Tecklenburg	9,3	11,495	2,195	6	n
Randelbach	DE_NRW_3392_0	Rheine	0	1,385	1,385	19	n
Randelbach	DE_NRW_3392_1385	Rheine bis Neuenkirchen	1,385	7,707	6,322	14	n
Elsbach	DE_NRW_3394_7647	Salzbergen bis Wettringen	7,647	10,527	2,88	14	n
Halverder Aa	DE_NRW_342_2556	Freren bis Voltlage	2,556	14,596	12,04	15	n
Voltlager Aa	DE_NRW_3424_0	Hopsten	0	6,049	6,049	14	n
Bardelgraben	DE_NRW_3432_4736	Hopsten bis Mettingen	4,736	23,581	18,845	14	n
Moosbeeke	DE_NRW_3434_8343	Hopsten bis Recke	8,343	17,463	9,12	14	n
Giegel Aa	DE_NRW_3438_10089	Schapen bis Hopsten	10,089	11,884	1,795	14	n
Mettinger Aa	DE_NRW_344_14915	Spelle bis Hopsten	14,915	20,304	5,389	15	n
Mettinger Aa	DE_NRW_344_20304	Hopsten bis Recke	20,304	29,104	8,8	15	n
Mettinger Aa	DE_NRW_344_29104	Recke bis Westerkappeln	29,104	43,304	14,2	19	n
Mettinger Aa	DE_NRW_344_43304	Westerkappeln	43,304	49,317	6,013	18	n
Hauptgraben	DE_NRW_3442_0	Mettingen bis Westerkappeln	0	9,801	9,801	19	n
Strootbach	DE_NRW_3444_0	Recke	0	2,6	2,6	19	n
Strootbach	DE_NRW_3444_2600	Recke bis Ibbenbüren	2,6	6,5	3,9	14	n
Strootbach	DE NRW 3444 6500	Ibbenbüren	6,5	9,336	2,836	6	n
Meerbecke	DE_NRW_34454_0	Hopsten bis Ibbenbüren	0	5,221	5,221	19	n
Breischener Bruchgr.	DE_NRW_3446_0	Hopsten	0	7,16	7,16	19	n
Dreierwalder Aa	DE_NRW_3448_1494	Spelle bis Hörstel	1,494	15,075	13,581	15	n
Dreierwalder Aa	DE_NRW_3448_15075	Hörstel bis Tecklenburg	15,075	31,2	16,125	19	n
Dreierwalder Aa	DE_NRW_3448_31200	Tecklenburg	31,2	36,104	4,904	16	n
Altenrheiner Bruchgr.	DE_NRW_34486_1839	Hörstel bis Rheine	1,839	8,012	6,173	14	n
Dortmund Ems Kanal	DE_NRW_70501_50331	Senden bis Spelle	50,331	120,276	69,945	_	k
DEK Altkanal Hiltrup	DE_NRW_70507_59125	Münster	59,125	61,953	2,828	_	k
DEK Altkanal Fuestrup	DE_NRW_70508_77520	Münster bis Greven	77,52	80,242	2,722	_	k
DEK Erste Fahrt	DE_NRW_70509_108545	Hörstel	108,545	110,203	1,658	_	k
Bergeshövede	, 0000_100045		.00,010	,203	.,000		I.
DEK Fahrt bei Rodde	DE_NRW_705091_111800	Rheine	111,8	113,111	1,311	_	k
Mittellandkanal	DE_NRW_73101_0	Hörstel bis Westerkappeln	0	22,505	22,505		k

Oberflächenwasserkörper 2.1 ◀

Gewässer	Wasserkörper- Nummer	Bezeichnung	von [km]	bis [km]	Länge [km]	Gewäs- sertyp	Kate gorie
Ob	erflächenwasserk	örper im niedersächsischen Teil des Bearbeitungsg	jebietes Obe	ere Ems			
Ems	01001	Salzbergen bis Lingen	175,792	206,483	30,74	15	V
Grosse Aa	01002	Einmündung Speller Aa bis Ems	0	7,271	7,27	15	٧
Grosse Aa	01003	bis Einmündung Speller Aa	7,271	24,267	17	15	V
Speller Aa, Dreierwalder Aa	01004	Speller Aa	0	13,963	13,96	15	V
Schaler Aa	01005	Schaler Aa	0	2,556	2,58	15	V
Voltlager Aa	01030	Voltlager Aa	6,049	18,109	12,01	14	v
Weeser Aa, Vorderer Kölzenkanal	01031	Weeser Aa	14,597	31,006	19,11	14	V
Lünner Graben	01017	Lünner Graben	0	7,022	7,02	14	k
Giegel Aa	01018	Giegel Aa	0	10,089	10,08	14	V
Moosbeeke	01019	Moosbeeke	0	8,343	8,33	14	v
Bardelgraben	01020	Bardelgraben	0	4,736	4,74	14	V
Deeper Aa, Fürstenauer Müh-	01006	Deeper Aa	24,267	35,018	19,4	14	V
lenbach, Andervenner Graben	0.000	Seepe. 7 ta	2.,207	00,0.0	.07.		
Fürstenauer Mühlenbach	01007	Oberlauf	4,491	12,921	8,43	16	V
Reetbach	01008	Reetbach	0	12,242	12,24	14	v
Ahe, Wolfsbergbach,	01009	Ahe	0	15,172	28,99	14	v
Memedingsbach	01003	7 die		15,172	20,55		•
Elberger Graben, Kanalgraben,	01010	Elberger Graben	0	7,193	7,19	14	v
Verbundgraben	01010	Liberger Graben		7,155	7,15		'
Fleckenbach	01011	Fleckenbach	0	6,839	6,84	14	V
Listruper Bach	01012	Listruper Bach	0	7,679	7,68	14	V
Elsbach	01012	Elsbach	0	7,647	7,63	18	n
Bramscher Mühlenbach	01013	Bramscher Mühlenbach	0	10,115	10,12	14	k
Schinkenkanal	01014	Schinkenkanal	0	10,113	10,12	14	V
Reitbach, Thuiner Mühlenbach	01015	Reitbach	0	6.845	12,93	14	V
Hopstener Aa	01016		12,482	14,915	2,44	15	V
•	01021	Hopstener Aa	12,462		1,81	14	
Altenrheiner Bruchgraben		Altenrheiner Bruchgraben		1,839			k
DEK Disassas Basik	01023	Grenze NRW bis Gleesen	1.062	16,4	16,59	-	k
Dissener Bach	01024	Dissener Bach	1,063	11,509	10,68	14	V
Bever, Süßbach	01025	Bever, Süßbach	25,966	39,407	13,44	14	V
Rankenbach, Remseder Bach, Linksseitiger Talgraben	01026	Rankenbach, Remseder Bach, Linksseitiger Talgraben	0	17,173	17,17	14	V
Glaner Bach, Oedingberger Bach, Wispenbach, Kolb	01027	Glaner Bach, Oedingberger Bach, Wispenbach, Kolbach	27,569	51,337	23,85	14	V
Recktebach	01028	Recktebach	32,502	35,117	2,8	14	V
Dümmer Bach	01029	Dümmer Bach	1,757	9,912	8,32	14	V

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

▶ Beiblatt 2.1-1

Oberflächenwasserkörper im Bearbeitungsgebiet Obere Ems

Gewasser (Finzugsgebiet > 10 km²) Kanal Staatsgrenze Dundestandgrenze Flussgebietseinheit Ems Bearbeitungsgebiet Übere Ems Bearbeitungsgebiete Hase, Ems / Nordradde Benachbarte Flussgebietseinheiten Hussgebietseinheiten Rhein, Weser Oberflächenwasserkörper natürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Oberflächenwasserkörper Beginn Fride		
Staatsgrenze Dundeslandgrenze Flussgebietseinheit Ems Bearbeitungsgebiet Übere Ems Bearbeitungsgebiete Hase, Ems / Nordradde Benachbarte Flussgebietseinheiten Hussgebietseinheiten Hhein, Weser Oberflächenwasserkörper natürliche (inkl. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Oberflächenwasserkörper O Beginn		Gewasser (Finzugagebiet > 10 km²)
Bundeslandgrenze Flussgebletseinheit Ems Bearbeitungsgebiet Übere Ems Bearbeitungsgebiete Hase, Ems / Nordradde Benachbarte Flussgebietseinheiten Hussgebietseinheiten Rhein, Weser Oberflächenwasserkörper natürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Oberflächenwasserkörper O Beginn		Kanal
Flussgebietseinheit Ems Bearbeitungsgebiet Übere Ems Bearbeitungsgebiete Hase, Ems / Nordradde Benachbarte Flussgebietseinheiten Hussgebietseinheiten Khein, Weser Oberflächenwasserkörper natürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Öberflächenwasserkörper O Beginn		Staatsgrenze
Bearbeitungsgebiete Hase, Ems / Nordradde Benachbarte Flussgebietseinheiten Hussgebietseinheiten Hhein, Weser Oberflächenwasserkörper matürliche (inkt. erhebtich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Oberflächenwasserkörper O Beginn	onunn	Bundeslandgrenze
Benachbarte Flussgebietseinheiten Hussgebietseinheiten Hhein, Weser Oberflächenwasserkörper natürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Oberflächenwasserkörper O Beginn	Fluss	gebietseinheit Ems
Benachbarte Flussgebietseinheiten Hussgebietseinheiten Hhein, Weser Oberflächenwasserkörper matürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Oberflächenwasserkörper O Beginn		Bearbeitungsgebiet Übere Ems
Oberflächenwasserkörper natürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Oberflächenwasserkörper O Beginn	1	Bearbeitungsgebiete Hase, Ems / Nordradde
Oberflächenwasserkörper natürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Oberflächenwasserkörper O Beginn	Benad	:hbarte Flussgebietseinheiten
natürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Obertlächenwasserkörper O Beginn		Hussgebietseinheiten Rhein, Weser
natürliche (inkt. erheblich veränderte) Wasserkörper künstliche Wasserkörper Abgrenzung Obertlächenwasserkörper O Beginn		
künstliche Wasserkörper Abgrenzung Obertlächenwasserkörper O Beginn	Oberf	Tächenwasserkörper
Abgrenzung Oberflächenwasserkörper O Beginn	and the same	natürliche (inkl. erheblich veränderte) Wasserkörper
O Beginn	_	künstliche Wasserkörper
r	Abgr	enzung Oberflächenwasserkörper
■ Fride	0	Beginn
		Fride:

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Nevarginal 22, 46147 Milaster

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1: Destandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 2,1 - 1;

Oberflächenwasserkörper im Bearbeitungsgebiet Obere Ems

2.1.3

Beschreibung der Ausgangssituation für die Oberflächengewässer

2.1.3.1

Einführung

Die Beschreibung der Ausgangssituation der Oberflächengewässer erfolgt im Wesentlichen auf Basis der vorliegenden Immissionsdaten.

Da die Wasserrahmenrichtlinie gemäß Artikel 5 künftig ebenfalls auf Immissionsuntersuchungen gestützte Zustandsbeschreibungen vorsieht, wurde die Aufbereitung und Darstellung der Ist-Zustandsbeschreibung – so weit möglich – an die Struktur der künftigen Beschreibungen angeglichen.

Gemäß Wasserrahmenrichtlinie wird der Zustand in den ökologischen und den chemischen Zustand gegliedert.

Ökologischer Zustand

Der ökologische Zustand wird durch die in Anhang V der WRRL aufgeführten biologischen Qualitätskomponenten beschrieben. Diese sind:

- Phytoplankton
 Phytobenthos
 Makrophyten

 Wasserflora
- Makrozoobenthos (benthische wirbellose Fauna)
- · Fischfauna

Weiter sollen Parameter zur Unterstützung der Einschätzung der biologischen Komponenten in die Zustandsbeschreibung eingehen. Hierzu gehören:

- hydromorphologische Bedingungen (Wasserhaushalt, Durchgängigkeit, morphologische Bedingungen)
- allgemeine chemische und chemisch-physikalische Parameter

Schließlich sind gemäß Anhang VIII der WRRL spezifische synthetische und nicht-synthetische Schadstoffe zu betrachten; hierzu gehören im Wesentlichen die in der Gewässerschutzrichtlinie 76/464/EWG und in den Tochterrichtlinien genannten Stoffe.

Chemischer Zustand

Die in der Wasserrahmenrichtlinie selbst genannten prioritären und prioritär gefährlichen Stoffe in den Anhängen IX und X beschreiben den chemischen Zustand.

Datengrundlage

Nicht alle für die Beschreibung der Ausgangssituation erforderlichen Daten liegen vor. Aus diesem Grunde musste teilweise auf Daten und Informationen zurückgegriffen werden, die Qualitäts- und Hilfskomponenten in etwa widerspiegeln.

Die vorliegenden Daten wurden nach bestehenden und erprobten Verfahren erhoben und zu Zwecken der Bestandsaufnahme im Zusammenhang dokumentiert und ausgewertet. Die bestehenden und erprobten Verfahren entsprechen teilweise nicht den Vorgaben der WRRL für die zukünftige Zustandsbewertung, dennoch bilden sie aufgrund ihrer zumeist langfristigen Validierung eine gute Basis für die Beschreibung der Ausgangssituation.

Nachfolgend werden die in Nordrhein-Westfalen und Niedersachsen verwendeten Daten und Verfahren kurz erläutert:

In Abbildung 2.1.3.1-1 ist dargestellt, welche in **Nordrhein-Westfalen** landesweit aus bisherigen Messverfahren und -programmen zur Verfügung stehenden Daten verwendet wurden.

Als Hilfsgröße für die zukünftig über referenzgestützte Verfahren zu bewertenden biologischen Qualitätskomponenten wurden die flächendeckend in Nordrhein-Westfalen bisher erhobenen Daten zur Gewässergüte (Saprobie), Daten und Expertenwissen zur Fischfauna und die Daten aus der landesweiten Strukturkartierung herangezogen. Weiterhin wurden die Daten aus der immissionsseitigen Untersuchung der stofflichen Gewässergüte herangezogen. Auf die inhaltliche Bedeutung der einzelnen Komponenten und die ver-

fügbare Datenlage wird in den Kapiteln 2.1.3.2 bis 2.1.3.6 näher eingegangen. Bewertungsgrundlage für die einzelnen Komponenten waren jeweils vorhandene landesweite Regelungen und/oder die EG-Richtlinien.

Mehrere dieser Europäischen Richtlinien, die in die Wasserrahmenrichtlinie integriert wurden, sowie die korrespondierenden Umsetzungen in nationales Recht geben für viele der zu betrachtenden Stoffe und Parameter Qualitätsziele vor. Die zu berücksichtigenden EG-Richtlinien sind im Folgenden aufgeführt:

- Richtlinie 76/464/EWG (Gewässerschutzrichtlinie) mit Tochterrichtlinien
- Richtlinie 91/414/EWG (Pflanzenschutzmittelrichtlinie)
- Richtlinie 91/676/EWG (Nitratrichtlinie)
- Richtlinie 78/659/EWG (Fischgewässerrichtlinie)

In Niedersachsen konnten zur Beschreibung der biologischen Komponenten neben den bisher erhobenen Daten zur Gewässergüte (Saprobie) und vereinzelten Daten zur Fischfauna auch eine Reihe von Daten zur Trophie (Makrophyten, Phytoplankton, Phyobenthos) herangezogen werden. Für die Beschreibung der unterstützenden Komponenten wurden auch in Niedersachsen die Daten aus der landesweiten Strukturkartierung sowie die chemisch-physikalischen Daten aus der Gewässergüteüberwachung zugrundegelegt. Weiterhin wurden für die Beschreibung der Stoffe der Anhänge VIII, IX und X (spezifische synthetische und nicht-synthetische Schadstoffe) die Daten aus der immissionsseitigen Untersuchung der stofflichen Gewässergüte verwendet.

Die WRRL fordert eine zusammenfassende Betrachtung der verschiedenen immissionsseitig vorliegenden Daten und Informationen sowie die Bewertung von Gewässerabschnitten (Wasserkörpern) aufgrund dieser Informationen.

Für die Beschreibung der Ausgangssituation verwendete Abb. 2.1.3.1-1 **Immissionsdaten Datengrundlage WRRL Datengrundlage Bestandsaufnahme** Ökologischer Zustand **Biologische Komponenten** Phytoplankton Phytobenthos für Ist-Zustandserhebung zu geringe Datenbasis Makrophyten als Saprobie berücksichtigt Makrozoobenthos Daten und Expertenwissen berücksichtigt Fische Unterstützende Komponenten Hydromorphologie mit Gewässerstrukturgüte berücksichtigt • Chemisch-physikalische Parameter vorhandene Daten verwendet Spezifische Schadstoffe vorhandene Daten verwendet • Stoffe des Anhangs VIII **Chemischer Zustand** • Stoffe der Anhänge IX und X vorhandene Daten verwendet

Die Daten zur Gewässergüte und der Gewässerstruktur werden schon seit Längerem mit der Erstellung der jährlich erstellten Gewässergüteund Gewässerstrukturkarte in gewässerparallele Linieninformationen übertragen. Die Informationen zu stofflichen Belastungen sowie Daten zur Trophie im Gewässer sind aber typischerweise Punktinformationen.

Diese Punktinformationen wurden in **Nordrhein-Westfalen** auf Basis des bei den Staatlichen Umweltämtern vorhandenen Expertenwissens unter Hinzuziehung weiterer Fachleute auf das von der Messstelle repräsentierte Gewässersystem übertragen. Soweit möglich wurde die Quelle einer Belastung ermittelt und die Reichweite der Belastung im Gewässer abgeschätzt. Dies ist in Abbildung 2.1.3.1-2 schematisch dargestellt.

Die Quellen- und Auswirkungsanalyse bildete damit in Nordrhein-Westfalen zunächst die Basis für die Beschreibung der Ausgangssituation in Kapitel 2. Hierauf wurde später im Rahmen der in Kapitel 4 behandelten integralen Betrachtung für die teilautomatisierte Einschätzung der Zielerreichung im Sinne der Wasserrahmenrichtlinie aufgebaut.

Für die Farbgebung der gewässerparallelen Stoffbänder wurden – soweit vorhanden – verbindliche Qualitätsziele aus EG-Richtlinien oder nationaler Gesetzgebung als Einstufungskriterium gewählt. Für Stoffe, für die bisher keine verbindlichen Qualitätsziele festgelegt sind, wurden Hilfskriterien herangezogen. Dies sind zum Beispiel LAWA-weit vereinbarte Zielvorgaben. Qualitätsziele und Hilfskriterien werden nachfolgend unter dem Begriff "Qualitätskriterien" zusammengefasst.

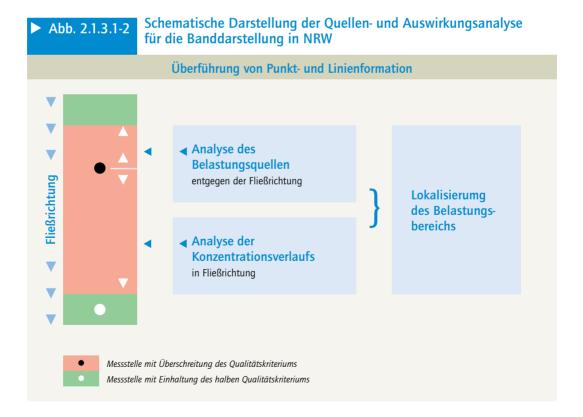


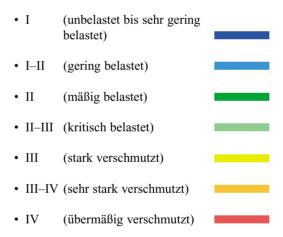
Tabelle 2.1.3.1-1 gibt die generellen Einstufungsregeln in Nordrhein-Westfalen sowie die Farbgebung der gewässerparallelen Bänder wieder:

► Tab. 2.1.3.1-1 Einstufungsregeln zur Beschreibung der Ausgangssituation in NRW

Ausgangssituation	Bandfarbe
QZ/QK eingehalten	
Halbes QZ/QK überschritten	
QZ/QK überschritten	
Datenlage nicht ausreichend, Belastungen aufgrund	
emissionsseitiger Informationen zu vermuten,	
Auswirkungsbereich auch nicht grob lokalisierbar	

OZ = Qualitätsziel OK = Qualitätskriterium

In **Niedersachsen** wurden die Immissionsdaten für die jeweilige Messstelle bewertet und, falls erforderlich, mit erhobenen Belastungsdaten verschnitten, um so zu einer vorläufigen Beurteilung zu kommen. Je nach Zugehörigkeit der Stoffe zu den einschlägigen Stofflisten der WRRL (Anhänge VIII, IX und X) waren die Ergebnisse für die spätere Bewertung der Wasserkörper ausschlaggebend. Vor-Ort-Kenntnisse wurden für die Beurteilung ebenfalls herangezogen.


2.1.3.2

Gewässergüte

Die "Gewässergüte" eines Fließgewässers beschreibt die Belastung mit leicht abbaubaren, organischen Substanzen. Diese Gewässerbelastung wirkt sich auf die aquatischen Lebensgemeinschaften hauptsächlich über die Verringerung des Sauerstoffgehalts im Gewässer aus. Außerdem kann die Zufuhr von organischen Stoffen und Nährstoffen über die Veränderung der Nahrungsbasis des Fließgewässer-Ökosystems eine Umstrukturierung der Lebensgemeinschaft bewirken.

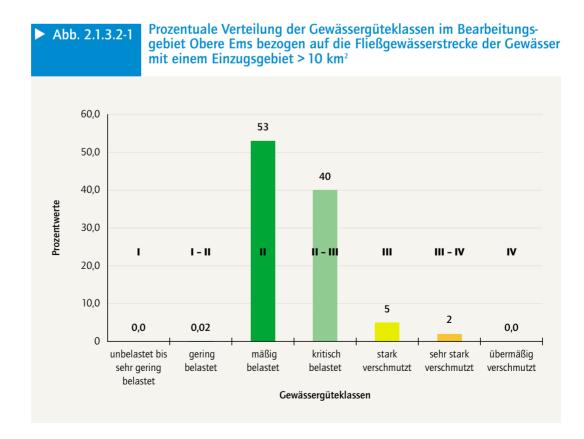
Die Klassifizierung der biologischen Gewässergüte von Fließgewässern erfolgte in Deutschland bisher auf Basis des empirisch abgeleiteten Saprobiensystems. Hierbei werden Organismen (Saprobien) – vorrangig des Makrozoobenthos – als Indikatoren verwendet. Über eine statistische Auswertung wird der "Saprobienindex" als gewogenes Mittel der Saprobienwerte aller Indikatororganismen ermittelt.

Der Saprobienindex ist ein wichtiges Element für die Bestimmung der Gewässergüteklassen. Ergänzend zum Saprobienindex werden zur Festlegung der Gewässergüteklassen noch zusätzliche Kriterien herangezogen. Insgesamt sieht die Güteklassifizierung der LAWA ein siebenstufiges System vor¹:

Es wird bislang angestrebt, in allen Gewässern mindestens die biologische Güteklasse II zu erreichen.

Die Gewässergüte wurde an allen Gewässern, für die eine Belastung durch zum Beispiel Kläranlagen angenommen wird, untersucht. Ab 1976 zunächst im Zweijahres-Rhythmus, zuletzt im Abstand von fünf Jahren. Für die Bestandsaufnahme wurde jeweils das aktuelle Messergebnis zugrunde gelegt.

¹ Güteklassifizierung der LAWA


Für die nordrhein-westfälischen Gewässer, die bisher nicht im Gewässerüberwachungssystem erfasst wurden – dies betrifft einige Gewässeroberläufe – wurde im Jahr 2003 ein Screening durchgeführt, so dass auch hier eine auf Expertenwissen basierende Einstufung möglich war.

Die Gewässergütesituation der einzelnen Gewässer des Bearbeitungsgebiets Obere Ems ist in der Karte 2.1-2 dargestellt. Bezogen auf die einzelnen Wasserkörper ist die Situation in Tab. 2.1.3.4-5 beschrieben.

Im dichter besiedelten und industrialisierten Oberlauf muss der Ems und ihren Nebengewässern überwiegend die Gewässergüteklasse II-III (kritisch belastet) zugeordnet werden (siehe Karte 2.1-2). Neben Einleitungen aus kommunalen und industriellen Kläranlagen belasten diffuse Einträge aus der bis unmittelbar am Gewässer praktizierten, intensiven landwirtschaftlichen Nutzung den Stoffhaushalt. Auch die Nebengewässer weisen überwiegend eine kritische Belastung (Güteklasse II-III) auf. Lediglich Furlbach und Forthbach (Schwalenbach) werden auf der

gesamten Fließstrecke als nur "mäßig belastet" in die Güteklasse II eingestuft. Als stark verschmutzt (Güteklasse III) müssen Lichtebach, Reiherbach, Welzplagebach, Ruthenbach und Hamelbach angesehen werden. Hier finden sich viele gewerblich genutzte Bereiche, sodass neben den großen Niederschlagswassereinleitungen und strukturellen Defiziten u. a. auch die Abwässer der Firmen zur Gewässerbelastung beitragen.

Die biologische Gewässergütesituation der Ems im Mittellauf ab etwa der Kreisgrenze Warendorf/Gütersloh bis zum Austritt aus dem Bearbeitungsgebiet Obere Ems stellt sich als durchgängig gut, d. h. Gewässergüteklasse II dar. Die Emissionen gereinigter Abwässer der Städte Warendorf, Telgte, Münster, Greven, Emsdetten und Rheine haben keinen negativen Einfluss auf die Güteklassifizierung. Auf der gesamten Fließstrecke liegt eine umfangreiche Benthosbesiedlung vor; lediglich im Rückstaubereich der Ems in Rheine ist zeitweise die Besiedlungsmöglichkeit durch die Ablagerung von Detritus eingeschränkt. Zahlreiche Nebengewässer können durchgängig in die Güteklasse II eingeordnet

werden, aber auch hier finden sich mit Mussenbach, Maarbecke und einem Abschnitt der Werse stark verschmutzte Abschnitte. Maarbecke und Werse sind durch Kläranlageneinleitungen (kommunal und industriell) belastet, im Mussenbach ist eine konkrete Ursache der Belastung nicht bekannt.

Der Oberlauf der Dreierwalder/Hörsteler/Ibbenbürener Aa ist mäßig belastet, ab unterhalb des Ibbenbürener Aasees zeigt die biologische Besiedlung den Grenzbereich zwischen Güteklasse II und II-III an. Es wird hier mit Güteklasse II-III bewertet. Im weiteren Fließverlauf ist die Ibbenbürener/Hörsteler/Dreierwalder/Speller Aa ab der Einleitung salzhaltiger Grubenwässer der DSK Anthrazit Ibbenbüren GmbH biologisch weitgehend verödet und wird daher in Güteklasse III-IV eingestuft. Zudem ist das Gewässer geogen bedingt stark verockert. In der Speller Aa findet mangels entsprechender Besiedlung kaum eine Selbstreinigung statt. Nur so ist zu erklären, dass an der dort liegenden Trendmessstelle neben sehr hohen Salzgehalten auch regelmäßig hohe Konzentrationen an Ammoniumstickstoff (größer 1 mg/l) und Nitritstickstoff festgestellt werden.

Die niedersächsischen Nebengewässer im Bereich der Großen Aa sind ebenso wie die Gewässer im Bereich der oberen Bever in die Güteklasse II-III einzustufen. Als Belastungsschwerpunkte sind neben der Strukturarmut sowohl die Restfrachten der einleitenden Kläranlagen als auch Einträge aus der Fläche zu vermuten.

Abbildung 2.1.3.2-1 zeigt zusammenfassend die Verteilung der Gewässergüteklassen im Bearbeitungsgebiet Obere Ems.

Als "kritisch belastetet (Güteklasse II-III)" müssen 40% der Gewässerstrecken im Bearbeitungsgebiet angesehen werden, "stark verschmutzte (III)" und "sehr stark verschmutzte (III-IV)" Gewässerstrecken haben zusammen einen Anteil von 7%. Damit sind 53% der Gewässerstrecken im Bearbeitungsgebiet in die Güteklasse II einzustufen.

Die Zielvorgabe Güteklasse II ist vor dem Hintergrund der Qualitätsanforderungen der WRRL zu überprüfen und ggf. anzupassen. Hier wird vor allem die Frage der Einführung des typspezifischen Saprobienindex eine wesentliche Rolle spielen. Ob der typspezifische Saprobienindex zukünftig Bedeutung erlangt, wird wesentlich davon abhängen wie groß der Aufwand zu seiner Ermittlung wird.

▶ Beiblatt 2.1-2

Biologische Gewässergüte im Bearbeitungsgebiet Obere Ems

Gewasser (Firmugsgebiet > 10 km²) Kanal Staatsgrenze Bundeslandgrenze Flussgebietseinheit Ems Bearbeitungsgebiet Obere Ems Bearbeitungsgebiete Hase, Ems / Nordradde Benachbarte Flussgebietseinheiten Hussgebietseinheiten Khein, Weser Biologische Gewässergüte unbelastet bis sehr gering belastet LII gering belastet Ш mäßig belastet kritisch belastet Ш stark verschmutzt III - IV sehr stark verschmutzt IV ubermaßig verschmutzt Sonstige Trocken Keine Daten vorhanden

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Neverghott 22, 48147 Millaster

Umsetzung der Europaischen Wasserrahmemiehtlinie, Phase 1. Bestandsaufnahme

Flussysbretsembert Erns, Bearbertungsysbret Obere Erns

Beiblatt zu K 2.1 - 2:

Biologische Gewässergüte im Bearbeitungsgebiet Obere Ems

Oberflächenwasserkörper

2.1.3.3

Gewässerstruktur

Unter Gewässerstruktur werden im Folgenden strukturelle Differenzierungen des Gewässerbetts und seines Umfelds verstanden, soweit sie hydraulisch, gewässermorphologisch und hydrobiologisch wirksam und für die ökologischen Funktionen des Gewässers und der Aue von Bedeutung sind.

Die Gewässerstruktur ist ein Maß für die ökologische Qualität der Gewässerstrukturen und der durch diese Strukturen angezeigten dynamischen Prozesse. Abflussdynamik und Strukturausstattung bestimmen ganz wesentlich die Funktionsfähigkeit der Gewässer und die Lebensbedingungen am und im Gewässer.

Die Erfassung der Gewässerstruktur erfolgt in Nordrhein-Westfalen im Rahmen von Gewässerbegehungen in definierten Abschnitten, deren Längsausdehnung in Abhängigkeit der Gewässergröße variiert. Für die kleinen Fließgewässer erfolgte die Kartierung in 100-m-Abschnitten und für die großen Fließgewässer in 200-m-, 500-m- oder 1.000-m-Abschnitten nach den Kartieranleitungen für die Gewässerstruktur in Nordrhein-Westfalen (LUA-Merkblatt Nr. 14 und Nr. 26).

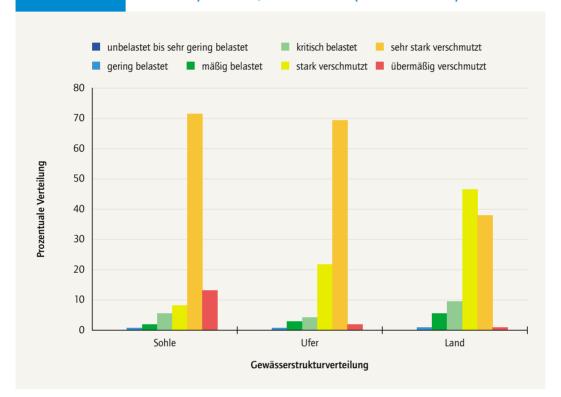
In Niedersachsen wurde eine Übersichtskartierung durchgeführt, bei der jeweils 1000-Meter-Abschnitte erfasst wurden. Die Methoden der Strukturkartierung richteten sich nach einem vom NLÖ (Niedersächsisches Landesamt für Ökologie) in Anlehnung an die LAWA erarbeiteten Erhebungs- und Bewertungsverfahren (LAWA 2000, Rasper & Kairies 2000).

Ähnlich wie bei der Gewässergüte wird die Gewässerstruktur in 7 Stufen klassifiziert, von Klasse 1 (unverändert) bis Klasse 7 (vollständig verändert):

- Klasse 1: unverändert
- Klasse 2: gering verändert
- Klasse 3: mäßig verändert
- Klasse 4: deutlich verändert

- · Klasse 5: stark verändert
- Klasse 6: sehr stark verändert
- Klasse 7: vollständig verändert

Die Gewässerstrukturklassen beschreiben das Maß der Abweichung des aktuellen Zustands vom potenziell natürlichen Zustand und damit dem Referenzzustand im Sinne der WRRL. Insofern ist dieses Beurteilungsverfahren WRRL-konform und deckt die Beurteilung der hydromorphologischen Verhältnisse ab. Auf LAWA-Ebene wurde vereinbart, dass in Gewässerabschnitten mit Strukturklasse 6 und 7 aufgrund der morphologischen Veränderungen die Ziele der WRRL wahrscheinlich nicht erreicht werden.


Die Gewässerstruktursituation der einzelnen Gewässer ist in der Karte 2.1-3 dargestellt. Bezogen auf spezifische Wasserkörper ist die Situation in Tab. 2.1.3.4-5 am Ende des Kapitels 2.1.3.4 aufgeführt.

Die gewässerstrukturellen Verhältnisse wechseln im Gegensatz zur Gewässergüte sehr kleinräumig, so dass eine individuelle und abschnittsbezogene Darstellung (s. Karte 2.1-3) und Erläuterung erforderlich ist. Grundsätzlich ist die strukturelle Situation eng mit dem lokalen Nutzungsdruck korrelierbar.

Die Ems als Hauptgewässer des Bearbeitungsgebiet s wurde in der Vergangenheit begradigt und in einem Trapezprofil festgelegt. Wie Abb. 2.1.3.3-1 zeigt, überwiegt im Bereich Ufer und Sohle, mit einem Anteil von jeweils rd. 70 %, die Gewässerstrukturklasse 6 (sehr stark verändert). Im Gewässerumfeld der Ems überwiegt die Strukturklasse 5 (stark verändert). Einzige nennenswerte Ausnahme stellt die rund 7,5 km lange Gewässerstrecke zwischen Telgte und Münster-Handorf dar. Zur Laufverlängerung der Ems wurden hier drei ehemalige Altarme angeschlossen, die Böschungsfußsicherung entfernt und so eigendynamische Prozesse initiiert.

Auch in den größeren Nebengewässern der Ems finden sich keine langen naturnahen Fließstrecken. Ausnahmen bilden z. B. der Frischhofsbach und der Eltingmühlenbach. Darüber hinaus ist zu bemerken, dass viele Gewässer nach EinAbb. 2.1.3.3-1

Gewässerstrukturverteilung der Ems im Bearbeitungsgebiet Obere Ems von der Quelle bis zur Landesgrenze (aggregiert auf 100 m-Abschnitte) für Sohle, Ufer und Land (Gewässerumfeld)

tritt in die Emsaue bessere Strukturen aufweisen als in ihren Oberläufen.

Neben den strukturellen Mängeln ist die nahezu flächendeckende Verbreitung der Wanderungshindernisse ein signifikantes Belastungsmerkmal im Bearbeitungsgebiet.

Als sonstige signifikante morphologische Belastungen sind die Düker der Wasser- und Schifffahrtswege von Bedeutung, die als schwer zu beseitigende Wanderungshindernisse einzuschätzen sind.

Insgesamt ist der Großteil der Streckenabschnitte für Sohle und Ufer in Strukturklasse 6 einzuordnen, lediglich beim Gewässerumfeld (gewässernahe Aue bis ca. 100 m vom Gewässer) ist die Bewertung geringfügig besser mit Strukturklasse 5. Schlechte Beurteilungen müssen vor allem in den Siedlungslagen entlang der Ems vergeben werden, bessere Abschnitte finden sich vor allem, wenn der Ausbau unterblieben ist (bei Rietberg und Münster-Handorf).

Abb. 2.1.3.3-2 Moosbeeke, Beispiel für Strukturklasse 7

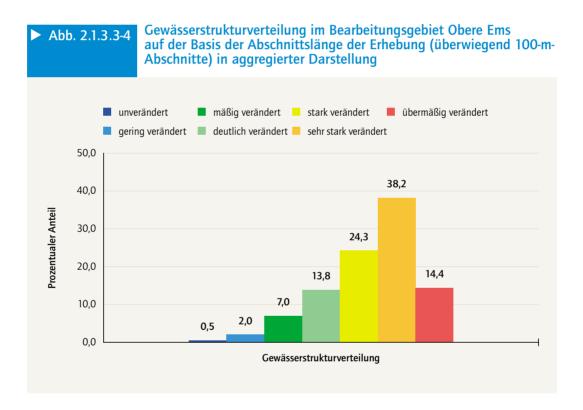
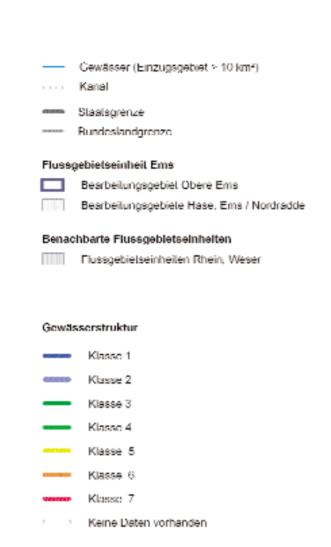
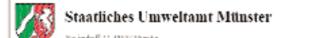


Abb. 2.1.3.3-3 Frischhofsbach. Beispiel für Strukturklasse 1

Abbildung 2.1.3.3-4 gibt die prozentuale Verteilung der Gewässerstrukturklassen für alle Gewässer mit einem Einzugsgebiet > 10 km² innerhalb des Bearbeitungsgebiets Obere Ems wieder (1.918 km von rd. 2.247 km Gewässerstrecke sind kartiert).


Nur knapp 2,5 % der Fließgewässerstrecken der Gewässer mit einem Einzugsgebiet > 10 km² weisen die Strukturklassen 1 oder 2 auf.


Auch in dieser Zusammenfassung bestätigt sich das vorangehend beschriebene Bild, dass Gewässerabschnitte mit mäßigen bis starken Veränderungen deutlich überwiegen und somit Gewässer mit strukturellen Defiziten für das Bearbeitungsgebiet Obere Ems prägend sind.

▶ Beiblatt 2.1-3

Gewässerstruktur im Bearbeitungsgebiet Obere Ems

Bezirksregierung Weser - Ems

Umsetzung der Europäischen Wasserrahmennehthme, Phase 1. Bestandsaufriahme

Flussychietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 2.1 - 3:

Gewässerstruktur im Bearbeitungsgebiet Obere Ems

2.1.3.4

Fischfauna

Die Untersuchung und Beschreibung der Fischfauna als Qualitätskomponente der WRRL ist von großer Bedeutung, weil Fische einerseits i. d. R. das Endglied der aquatischen Nahrungskette darstellen und damit auch Schädigungen der anderen Glieder der Nahrungskette widerspiegeln. Zudem reagiert die Fischfauna sehr empfindlich auf strukturelle Defizite der Gewässer, wie z. B. die ökologische Durchgängigkeit oder die Zerstörung von Laichhabitaten.

Für die Beurteilung der Ausgangssituation ist es notwendig, die Verbreitung der Langdistanzwanderfische zu beschreiben. In den Gewässern, in denen natürlicherweise keine Wanderfische auftreten, wird das Vorkommen der Leit- bzw. Begleitarten dokumentiert.

Die Betrachtung der Fische erfolgt zur Beschreibung der vorkommenden Leit- und Begleitarten WRRL-konform gewässertypbezogen bzw. in Niedersachsen bezogen auf Fischregionen. In Nordrhein-Westfalen wurden die Fischarten bereits vor Vorliegen der LAWA-Typen und -Referenzbedingungen der feiner differenzierten NRW-Typologie zugeordnet. In Tabelle 2.1.3.4-1 sind die NRW- und die LAWA-Typen zur Erläuterung nebeneinander gestellt.

In Tab. 2.1.3.4.-1 werden für die neun im Bearbeitungsgebiet Obere Ems auftretendenden Gewässertypen (NRW-Typologie) die Leit- und Begleitarten angegeben. Die vier prägenden Gewässertypen sind dabei **fett** gesetzt.

► Tab. 2.1.3.4-1

Fließgewässertypen im Bearbeitungsgebiet Obere Ems, Leit- und Begleitarten (prägende Gewässertypen fett gesetzt)

LAWA-Typen	NRW-Typen	Leitart	Begleitarten
Typ 19: Kleine Niederungs- fließgewässer in Fluss- und Strom-	Fließgewässer der Niederungen (Kleines Einzugsgebiet)	Bachforelle	Groppe, Schmerle, Bachneun- auge
tälern	Fließgewässer der Niederungen (Mittelgroßes Einzugsgebiet)	Hecht	Quappe, Bachneunauge, Stein- beißer Nebengerinne und Altwässer: Rotfeder, Bitterling, Karausche, Schlammpeitzger, Moderlieschen
Typ 14: Sandgeprägte Tieflandbäche	Sandgeprägtes Fließgewässer der Sander und sandigen Aufschüttungen	Bachforelle	Hasel, Groppe, Bachneunauge, Schmerle, Steinbeißer
Typ 15: Sand- und lehmgeprägte Tieflandflüsse	Sandgeprägter Fluss des Tieflands	Hecht, Barbe	Quappe, Brassen, Steinbeißer, Groppe, Schmerle, Zährte Nebengerinne und Altwässer: Rotfeder, Bitterling, Karausche, Schlammpeitzger, Moderlies- chen, Schleie, Zwergstichling
Typ 16: Kiesgeprägte Tieflandbäche	Kiesgeprägte Fließgewässer der Ver- witterungsgebiete, Flussterrassen und Moränengebiete	Bachforelle	Schmerle, Groppe, Bachneunauge, (Elritze)
Typ 18: Löss-lehmgeprägte Tieflandbäche	Löss-lehmgeprägtes Fließgewässer der Bördenlandschaft	Bachforelle	Hasel, Schmerle, Groppe, Zwerg- stichling, (Elritze)
Typ 6: Feinmaterialreiche, karbonatische Mittelgebirgsbäche	Kleiner Talauebach im Deckgebirge	Bachforelle	Groppe, Schmerle, Bachneun- auge, (Elritze)
Typ 7: Grobmaterialreiche, karbonatische Mittelgebirgsbäche	Kleiner Talauebach im Deckgebirge	Bachforelle	Groppe, Schmerle, Bachneun- auge, (Elritze,)
	Karstbach	Bachforelle	Groppe, Schmerle, (Elritze,)
	Muschelkalkbach	Bachforelle	Groppe, Schmerle, Bachneun- auge, (Elritze,)

Oberflächenwasserkörper

Abb. 2.1.3.4-1 Hecht und Steinbeißer zählen zum typspezifischen Artinventar weiter Gewässerstrecken im Bearbeitungsgebiet Obere Ems

► Tab. 2.1.3.4-2	Kriterien für die Beschreibung der Ausgangssituation für die Fische in NRW					
Symbol	Ausgangssituation	Abschätzungskriterien Fische				
	Qualitätskriterium eingehalten	Selbstreproduzierende typspezifische Wanderfischbestände (Langdistanzwanderfische einschließlich der Rundmäuler) sind vorhanden und selbstreproduzierende Bestände einer typ- bzw. fischregionspezifischen Leitart und einer wesentlichen Begleitart sind mengenmäßig prägend im Abschnitt anzutreffen				
	Nicht einstufbar	Keine ausreichende Einschätzungsgrundlage				
	Qualitätskriterium nicht eingehalten	Selbstreproduzierende typspezifische Wanderfischbestände fehlen oder selbstreproduzierende Bestände einer typ- bzw. fischregionspezifischen Leitart und einer wesentlichen Begleitart sind nicht mengenmäßig prägend im Abschnitt anzutreffen				

Zum Zeitpunkt der Analyse (2003) existieren in Deutschland keine eingeführten und interkalibrierten Verfahren zur Beschreibung oder Klassifizierung von Fischpopulationen in Fließgewässern im Sinne der WRRL. Zur Darstellung des Fischzustands in gewässerparallelen Bändern wurden in Nordrhein-Westfalen v. g. Qualitätskriterien angewandt (s. Tab. 2.1.3.4-2). Diese sind u. U. später an andere Konventionen anzupassen.

Die Beurteilung der Ausgangssituation erfolgte in Nordrhein-Westfalen im Wesentlichen zweistufig: Im ersten Schritt wurde ermittelt, welche Gewässer potenziell natürlich von wandernden Großsalmoniden besiedelt wurden und ob aktuelle Nachweise vorliegen (s. Kriteriendefinition). War Letzteres nicht der Fall, galt das Qualitätskriterium als nicht eingehalten und es wurden keine weitergehenden Betrachtungen zur Fischzönose angestellt.

Als hinreichend (Qualitätskriterium eingehalten) in Bezug auf die Fische wurde die heutige Situation für die Gewässer angesehen, in denen natürlicherweise keine Wanderfische vorkommen und in denen die Leit- und eine Begleitart in prägenden und sich selbst erhaltenden Beständen vorkommen.

In **Niedersachsen** wurden zur Beschreibung des Ist-Zustands der einzelnen Fischregionen die in Tab. 2.1.3.4-3 beschriebene Artenzusammensetzung zugrunde gelegt.

► Tab. 2.1.3.4-3 Fischregionen in Niedersachsen

Forellen- region/ Bergland	Forellen- region/ Flachland	Äschen- region/ Bergland	Äschen- region/ Flachland	Barbenregion	Hasel/ Gründling- Region	Brassen- region	Kaulbarsch/ Flunderregion	Schmerlen- region
Bachforelle Koppe Ggf. Elritze	Bachforelle Koppe Bachneunauge Ggf. Elritze Ggf. Schmerle	Äsche Bachforelle Koppe Bachneunauge Elritze Schmerle Hasel Döbel	Äsche Bachforelle Koppe Bachneunauge Elritze Schmerle Hasel Döbel Gründling	Barbe Döbel Hasel Gründling Hecht Quappe Flussbarsch Schmerle Steinbeißer Zährte Rotauge Rotfeder	Hasel Gründling Rotauge Quappe Flussbarsch Hecht Güster Döbel Steinbeißer Schmerle	Brassen Aland Quappe Güster Rotauge Rotfeder Ukelei Schleie Steinbeißer Schlamm- peitzger Hecht Flussbarsch Kaulbarsch Rapfen (Elbegeb.) Zander (Elbegeb.)	Kaulbarsch Flunder Aland Ukelei Brassen Stint Rotauge Quappe Dreist. Stich- ling Zander (Elbegeb.)	Schmerle Dreist. Stich- ling Neunst. Stich- ling

Ausgehend von diesen Fischregionen wurde zur vorläufigen Bewertung, die in Niedersachsen wesentlich auf Expertenurteil gründet, ein Schema erstellt, das numerische Bewertungen bestimmter Merkmale (Kriterien) der Fischlebensgemeinschaft beinhaltet, um die Transparenz und Reproduzierbarkeit des "Expertenurteils" sicherzustellen (s. Tab. 2.1.3.4-4). Die Bewertung der einzelnen Merkmale erfolgt klassifiziert in 3 Stufen (1 = Zielerreichung wahrscheinlich, 2 = Zielerreichung unwahrscheinlich).

Die Gesamtbewertung resultiert aus der Bildung des arithmetischen Mittelwerts der Einzelbewertungen. Einige Merkmale werden bewertet, indem Unterparameter entsprechend klassifiziert und gemittelt werden. Die Merkmale I-IV sind somit gleichgewichtet. Für das Gesamtmittel gelten folgende Festlegungen:

< 1,50 = Zielerreichung wahrscheinlich

1,50 - 2,49 = Zielerreichung unklar

≥ 2,50 = Zielerreichung unwahrscheinlich

Im Einzelnen basiert die vorläufige Bewertung auf folgenden Merkmalen:

► Tab. 2.1.3.4-4 Vorläufige Bewertung der Fischfauna in Niedersachsen

Merkm	al der vorläufigen Bewertung	Kriterium Anh. V	Bemerkung	Bewertungsklassen
I	Gesamtartenanzahl ¹⁾	Artenzusammen- setzung	Merkmale in der vorläufigen Gefährdungsabschätzung und Bewertung nach Anhang V entsprechen einander	1: ≥ 75 % 2: 50 bis < 75 % 3: < 50 % ²⁾
II a)	Abundanz der Leitfischart ³⁾ (N/100m Befischungsstrecke)	Abundanz (bisher nicht näher spezifiziert)	Vereinfacht durch Beschränkung auf Leitfischart (stellvertretend für das Referenzartenspektrum)	Maßstab: Verteilung der Dichteangaben für nieders. Gewässer
II b)	Reproduktion der Leitfischart	Fortpflanzung/ Abundanz/ Alterstruktur	Ergänzung aufgrund der "Besatzproblematik"	1: ja, regelmäßig 2: ja, unregelmäßig 3: nein oder keine Hin- weise
III	Vorhandensein der einzelnen Arten in den Altersgruppen AGO, subadult und adult in Prozent der Arten des per Defi- nition festgelegten typspezifi- schen für die Beurteilung der Altersstruktur relevanten Arten- spektrums ⁴⁾	Altersstruktur	Vereinfacht; Sofern Hinweise vorliegen, dass die Altersstruktur einer Art maß- geblich durch Besatz beeinflusst ist, wurde für diese Art die Kate- gorie "nicht erreicht" vergeben.	1: ≥ 75 % 2: 50 bis < 75 % 3: < 50 % ²⁾
IV a.1)	Wanderfischarten: Vorkommen anadromer Salmo- niden, sofern regelmäßig im Referenzzustand auftretend (nach hist. Angaben oder Expertenurteil	Störungsempfind- liche Arten	Beschränkung auf die Rückkehrer (Laichfische) von Lachs und Meerforelle	1: mindestens 1 Art vorhanden 2: – 3: keine Art vorhanden
IV a.2)	Reproduktion d. Wandersalmo- niden	Störungsempfind- liche Arten	Einschätzung aus vorliegenden Hinweisen auf Beobachtung von Laichvorgängen oder Jungfisch- fischaufkommen ohne Besatz	1: mindestens 1 Art reproduzierend 2: unbekannt 3: keine Art reproduzie- rend
IV b)	Vorkommen anadromer Neu- naugen, sofern regelmäßig im Referenzzustand auftretend	Störungsempfind- liche Arten	Beschränkung auf die Rückkeh- rer (Laichfische) von Meer- und Flussneunauge	1: mindestens 1 Art vor- handen 2: – 3: keine Art vorhanden

¹⁾ Das Vorkommen von allochthonen Arten und Irrgästen (nicht typspezifische Arten) bleibt unberücksichtigt. Dabei wird davon ausgegangen, dass diese Arten keinen signifikanten Einfluss auf die autochthone Fischfauna ausüben.

2) In Anlehnung an REFCOND guidance , CIS Working Group 2.3-REFCOND, third draft 22.10.2002.

³⁾ Definition der Leitarten: Namensgebende, charakteristische Arten der unterschiedenen Typen i.S. des Fischregionkonzeptes, die einen nennenswerten Anteil in der jeweiligen Fischzönose ausmachen.

4) Fischregionen

Datenlage und Beschreibung des Ist-Zustandes

In **Nordrhein-Westfalen** werden seit mehr als 20 Jahren Daten aus Befischungen in der Datenbank LAFKAT vorgehalten.

Hierbei handelt es sich nicht nur um Befischungen zu gewässerökologischen Untersuchungen. Trotz dieser systematischen Ungenauigkeit bietet LAFKAT eine Grundlage, um die derzeitige fischfaunistische Situation an einer Vielzahl von Gewässern einzuschätzen. In der Datenbank LAFKAT 2000 sind für das Bearbeitungsgebiet Obere Ems/NRW insgesamt 87 Probestrecken vorhanden, die mittels Elektrobefischung untersucht wurden.

Ergänzend wurde im Rahmen von Expertenrunden das lokale Fachwissen sowie Kenntnisse über die historische Verbreitung der Fische hinzugezogen.

Die Probestrecken in Nordrhein-Westfalen verteilen sich auf 14 von insgesamt 107 zu berücksichtigenden Bäche und Flüsse, d. h. dass nur für ca. 13 % der Gewässer im Bearbeitungsgebiet Daten vorhanden sind. Soweit die vorliegenden Ergebnisse zu weit zurücklagen, wurden sie nicht herangezogen.

Die Informationsdefizite beziehen sich vor allem auf kleinere Bäche und deren quellnahe Abschnitte.

► Abb. 2.1.3.4-2

Lage und Verteilung der Probestrecken, die für das Bearbeitungsgebiet Obere Ems in der Datenbank LAFKAT 2000 gespeichert sind

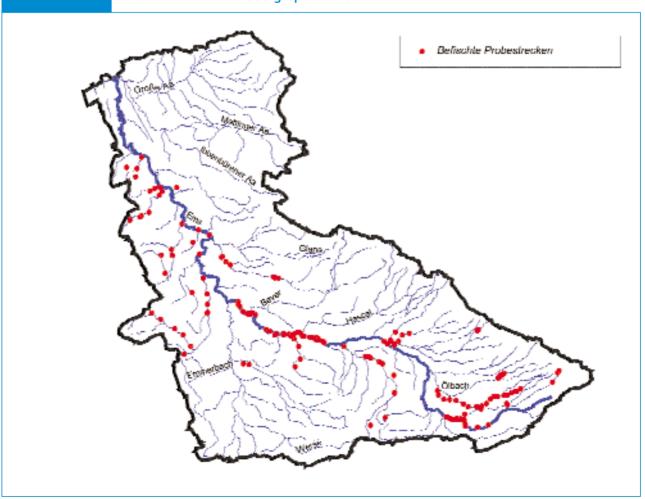
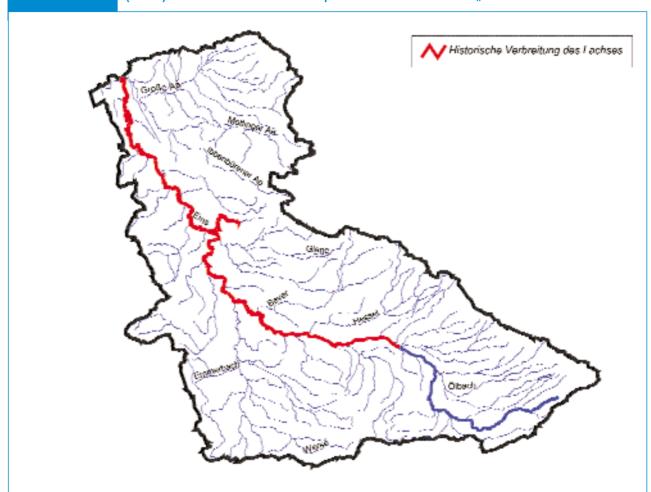



Abb. 2.1.3.4-3

Historische Verbreitung des Lachses im Bearbeitungsgebiet Obere Ems nach FRENZ (2000) und Informationen von Experten des Arbeitskreises "Fische"

Die Auswertung historischer Daten zur Verbreitung von Wanderfischen hat gezeigt, dass neben dem heute noch ubiquitär verbreiteten Aal mit Lachs, Flussneunauge und Flunder drei weitere Vertreter dieser Gruppe im Bearbeitungsgebiet Obere Ems/NRW unterschiedlich weit verbreitet waren. Es wurde deutlich, dass die drei zuletzt genannten Arten in der Vergangenheit schwerpunktmäßig in der Ems vorkamen. Während die Flunder die Ems nur bis in den Bereich der Mündung des Saerbecker Mühlenbaches besiedelte, ist vom Lachs bekannt, dass er in der Ems bis oberhalb von Warendorf aufstieg. Daneben

wird ein ehemaliges Lachsvorkommen für den Saerbecker Mühlenbach genannt. Nach derzeitigem Wissensstand ist davon auszugehen, dass die historisch verbürgten Lachsbestände im Bearbeitungsgebiet Obere Ems ihre Reproduktionshabitate in kiesgeprägten Fließgewässerstrecken des Bearbeitungsgebiets aufsuchten. Da in entsprechenden Bereichen eine nachhaltige, wahrscheinlich irreversible Veränderung der ursprünglichen Substratverhältnisse vorliegt, ist die Möglichkeit der Wiederbesiedlung des Gewässersystems der Oberen Ems durch den Lachs als unwahrscheinlich einzustufen.

In Niedersachsen liegen im Moment nur Einschätzungen für die Große Aa und für die Ems (ab Landesgrenze NRW) vor. Auf Grund von Querbauwerken ist die Durchgängigkeit des Gewässers für Wanderarten nicht gegeben. Daten sind nur für den Bereich von der Einmündung der Schaaler Aa (km 25) flussabwärts bis oberhalb Lünne (km 15) vorhanden. Dieser Bereich wird der Hasel-/Gründlingsregion zugeordnet und erreicht ebenso wie der Oberlauf (keine Zuordnung) und der Unterlauf (Brassenregion) im Hinblick auf die biologische Qualitätskomponente "Fischfauna" wahrscheinlich nicht das Ziel. Diese Bewertung ist vorläufig und erfolgte nach der vorhandenen Datenlage aus Befischungsergebnissen und Umfragen. Abundanzen bleiben zunächst weitgehend unberücksichtigt.

Die Situation der Fischfauna der einzelnen Gewässer ist in der Karte 2.1-4 dargestellt. Bezogen auf Wasserkörper ist die Situation in Tab. 2.1.3.4-5 aufgeführt.

▶ Beiblatt 2.1-4 Analyse der Ausgangssituation Fischfauna im Bearbeitungsgebiet Obere Ems (Stand 2004)

Gewasser (Finzugsgehiet > 10 km²)

Kanal

Steatsgrenze

Bundeslandgrenze

Flussgebietseinheit Ems

Bearbertungsgebiet Obere Ems

Bearbertungsgebiete Hase, Ems / Nordradde

Benachbarte Flussgebietseinheiten

Hussgebietseinheiten Rhein, Weser

Fischfauna

Qualitatskriterium eingehalten

nicht einstufbar

Ouslitätskriterium nicht eingehalten

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Novinghelf 22, 4814T Münster

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgehietseinheit Ems, Bearbeitungsgebiet Ohere Ems

Beiblatt zu K 2,1 - 4;

Analyse der Ausgangssituation Fischfauna im Bearbeitungsgebiet Obere Ems (Stand 2004)

► Tab. 2.1.3.4-5 Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 1)

Wasserkörper	ì.							Gewässergüte	ergüte					Gew	assers	Gewässerstrukturgüte	ırgüte				Fische	
							Ϋ́	Klassenanteile in %	teile in	%				Kla	ssenar	Klassenanteile in %	% u			Klasse	Klassenanteile in %	% ui ;
Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht klass.	Ξ –	=	≣	_ ≡	_ ≥ ≡	IV nicht klass.	tht 1	7	m	4	D.	9	7	+	۲.	1
Ems	175,792	206,483	30,743	Salzbergen bis Lingen	10010	0		100					0			10	19	29	0		100	
Ems	206,483	263,688	57,205	Rheine bis Münster	DE_NRW_3_206483			100								4	19	77				100
Ems	263,688 296,800	296,800	33,112	Münster bis Warendorf	DE_NRW_3_263688			100							2	10	14	99	2			100
Ems	296,800 316,800	316,800	20,000	Warendorf bis Gütersloh	DE_NRW_3_296800			54	46				0				0	66				100
Ems	316,800 336,486	336,486	19,686	Gütersloh bis Rietberg	DE_NRW_3_316800			12	88				0		_	15	32	52				100
Ems	336,486 358,886	358,886	22,400	Rietberg bis Hövelhof	DE_NRW_3_336486			85	15				0		_	9	18	74	-	2		86
Ems	358,886 362,409	362,409	3,523	Hövelhof bis Schloß Holte- Stukenbrock	DE_NRW_3_358886			100							1 44	1 33	17	9		100		
Schwarzwasser-	,l																					
bach	000'0	3,900	3,900	Hövelhof	DE_NRW_31112_0				100								c	52	46		100	
Schwarzwasser	,1																					
bach	3,990	6,228	2,238	Hövelhof	DE_NRW_31112_3990				100							2	13	29	53		100	
Furlbach	000'0	006'9	006'9	Delbrück bis Hövelhof	DE_NRW_3112_0			100							7	34	40	17	7		100	
Furlbach	006'9	14,586	2,686	Hövelhof bis Augustdorf	DE_NRW_3112_6900			100					1 22		5 34	1 22	12	2		99	34	
Sennebach	000'0	17,500	17,500	Rietberg bis Schloß Holte-																		
				Stukenbrock	DE_NRW_3114_0				100						2	2 17	22	49	7		15	82
Sennebach	17,500	25,526	8,026	Schloß Holte-Stukenbrock	DE_NRW_3114_17500				100						7 14	10	32	21	6	78	22	
Grubebach	000'0	22,235	22,235	Rheda-Wiedenbrück bis																		
				Delbrück	DE_NRW_3116_0			100					7					97	-		100	
Forthbach	000'0	5,400	5,400	Rheda-Wiedenbrück bis																		
				Langenberg	DE_NRW_31164_0			100					-					19	80		100	
Forthbach	5,400	2,600	2,200	Langenberg	DE_NRW_31164_5400			100										16	84		100	
Forthbach	2,600	19,212	11,612	Langenberg bis Oelde	DE_NRW_31164_7600			100					_			7	6	27	26		100	
Eusternbach	000'0	3,800	3,800	Rheda-Wiedenbrück bis																		
				Langenberg	DE_NRW_31172_0				100				3					27	70		100	
Eusternbach	3,800	15,898	12,098	Langenberg bis Oelde	DE_NRW_31172_3800			46	24					_	3	2	c	3	87		100	
Hamelbach	000'0	2,800	2,800	Rheda-Wiedenbrück	DE_NRW_3118_0					100			_					21	79		100	
Hamelbach	2,800	2,800	3,000	Rheda-Wiedenbrück	DE_NRW_3118_2800					100							29	43	29		100	
Hamelbach	2,800	14,403	8,603	Rheda-Wiedenbrück bis																		
				Oelde	DE_NRW_3118_5800					100			_	19 18	18	3 12	12	18	12		100	
Dalkebach	000'0	0,949	0,949	Herzebrock-Clarholz bis Gijfersloh	DF NRW 312 0				100										100		100	
						_	_	_) -	_	_	_	_	_	_	_)		2	

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 2) ► Tab. 2.1.3.4-5

Wasserkörper							હ	/ässel	Gewässergüte				G	ewäss	erstru	Gewässerstrukturgüte	üte			Ě	Fische	
							Klass	nante	Klassenanteile in %	%				Klasse	nante	Klassenanteile in %	,0		☲	assena	Klassenanteile in %	% ui
Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht I klass.	₹	=	<u>-</u> ≣	A-III II	≥ >	nicht Klass.	-	7	m	4	ر ب	2 9	+	_	~	1
Dalkebach	0,949	9,950	100'6	Bielefeld	DE_NRW_312_949				100							-	4	77	∞		100	
Dalkebach	9,950	21,762	11,812	Gütersloh	DE_NRW_312_9950				100						17	25	41	4	4		100	
Dalkebach	21,762	23,762	2,000	Gütersloh bis Bielefeld	DE_NRW_312_21762				100			48					10	9	36		100	
Hasselbach	000'0	2,192	2,192	Gütersloh bis Bielefeld	DE_NRW_3124_0			100						7	29	17	38	6			100	
Hasselbach	2,192	4,192	2,000	Bielefeld	DE_NRW_3124_2192			901						14	32	=	20	13	=		100	
Menkebach	000'0	12,000	12,000	Gütersloh bis Bielefeld	DE_NRW_3126_0			100							3	10	35	47	2	2	92	
Menkebach	12,000	20,074	8,074	Bielefeld bis Oerlinghausen	DE_NRW_3126_12000			77	23			2		2	16	27	22	20	- 8	100		
Wapelbach	000'0	4,900	4,900	Gütersloh bis Rheda-	O OCIC MGIN EN				5			-		7	7	5		23	Ú			001
docdloach.	7 000	טטנטנ	005 1/2		DE_NIW_3128_0			C	2 0					t c	, 10			5	>	۲	6	3 4
wapelbacii	4,900		24,500		DE_NNW_3120_4300			70	00					7	67		/7	>	_	7	70	2
Wapelbach	29,200	35,525	6,325	Rheda-Wiedenbrück bis Schloß Holte-Stukenbrock	DE_NRW_3128_29200				100			_	7	7	=	34	22	7	_	100		
Rodenbach	000'0	6,700	6,700	Verl bis Schloß Holte-																		
				Stukenbrock	DE_NRW_31282_0				100			0			14	49	24	12			100	
Rodenbach	6,700	12,545	5,845	Schloß Holte-Stukenbrock	DE_NRW_31282_6700				100			9/			10	7	2	7		62	38	
Ölbach	000'0	19,400	19,400			,																,
				Schloß Holte-Stukenbrock	DE_NRW_31284_0	-		66		_		_		m	8	53	48	7				9
Ölbach	19,400	29,618	10,218	Schloß Holte-Stukenbrock																		
				bis Oerlinghausen	DE_NRW_31284_19400			0	100			7	2	œ	30	8	20	10	7			100
Landerbach	000'0	8,300	8,300									,				!			,			,
				Stukenbrock	DE_NRW_312844_0			9	84			20		∞	30	5	6	∞	_			9
Landerbach	8,300	11,392	3,092	Schloß Holte-Stukenbrock	DE_NRW_312844_8300				100			21			Υ	25	14	7				100
Ruthenbach	000'0	9,235	9,235	Harsewinkel bis Rheda- Wiedenbrück	DE NRW 31312 0					100		9					7	10	82			100
Lutter	000'0	4,193	4,193	Harsewinkel	DE_NRW_3132_0				100			0					. 54	75				100
Lutter	4,193	20,093	15,900	Bielefeld	DE_NRW_3132_4193				100						7	10	27	22	4			100
Lutter	20,093	25,961	5,868	Harsewinkel bis Bielefeld	DE_NRW_3132_20093			23	77			12	3		6	23	31	17	4			100
Trüggelbach	000'0	5,529	5,529	Bielefeld	DE_NRW_31322_0				100			6	m	7	9	56	23	32			100	
Reiherbach	000'0	2,500	2,500	Gütersloh	DE_NRW_31324_0				_	100		0		9	39	4	00	9				100
Reiherbach	2,500	10,653	8,153	Gütersloh bis Bielefeld	DE_NRW_31324_2500				_	100		0		2	21	=	30	. 61	13			100
Welzplagebach	000'0	14,600	14,600	Harsewinkel bis Gütersloh	DE_NRW_31326_0				_	100					9	_∞	91	. 25	19		100	
Welzplagebach	14,600	16,885	2,285	Gütersloh	DE_NRW_31326_14600				_	100		_					4	99	67		100	

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

➤ Tab. 2.1.3.4-5 Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 3)

:								:	:													
Wasserkorper								Gewassergute	sergut	a)				Ş	Gewasserstrukturgute	strukt	urgut	به			Fische	
							☲	Klassenanteile in %	nteile ir	% ۱				⇉	Klassenanteile in %	ınteile	'n wi			Klas	Klassenanteile in %	e in %
Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht klass.	_	= <u>=</u>	₫	=	≥ :	≥ ₹	nicht klass.	1 2	m	4	ഥ	9	7	+	۲.	1
Lichtebach	000'0	14,500	14,500	Harsewinkel bis Bielefeld	DE_NRW_31328_0					100					7 7	4	5 27	2 56	9			100
Lichtebach	14,500	18,980	4,480	Bielefeld	DE_NRW_31328_14500					100			7			3	39	9 45	2			100
Abrocksbach	000'0	9,590	9,590	Harsewinkel bis Steinhagen	DE_NRW_3134_0			94	9							5 4	1 19	37	34		100	
Abrocksbach	065'6	15,290	5,700	Steinhagen	DE_NRW_3134_9590			100					7			2 13	3 36	5 29	19		100	
Abrocksbach	15,290	17,375	2,085	Steinhagen	DE_NRW_3134_15290			88	=				4			٠,	5 20	36	35		100	
Hovebach	000'0	3,300	3,300	Steinhagen	DE_NRW_31342_0			100					0		2	21 30) 15	34			100	
Hovebach	3,300	6,379	3,079	Steinhagen	DE_NRW_31342_3300			100					7			8 38	3 20	30	7		100	
Loddenbach	000'0	6,700	6,700	Steinhagen	DE_NRW_31344_0			100								3 4	1 10) 26	27		100	
Loddenbach	6,700	12,188	5,488	Steinhagen	DE_NRW_31344_6700			100								2	1 24	44	20		100	
Laibach	000'0	14,785	14,785	Harsewinkel bis Halle (Westf.)	DE_NRW_3136_0				100							1 11	1 26	9 9	m			100
Laibach	14,785	21,220	6,435	Halle (Westf.)	DE_NRW_3136_14785				100				21			2 11	1 24	18	25			100
Laibach	21,220	23,272	2,052	Halle (Westf.)	DE_NRW_3136_21220				100							26	37	91 /	21			100
Loddenbach	000'0	16,491	16,491	Harsewinkel bis Halle (Westf.)	DE_NRW_3138_0			28	3 72				0			2 11	12	2 47	27			100
Loddenbach	16,491	20,466	3,975	Halle (Westf.)	DE_NRW_3138_16491				100							5 19	32	34	=			100
Ruthenbach	000'0	5,100	5,100	Halle (Westf.)	DE_NRW_31382_0				100							98 9	5 47	11				100
Ruthenbach	5,100	10,330	5,230	Halle (Westf.)	DE_NRW_31382_5100				100					7	21 12	12 13	3 14	1 27	=			100
Axtbach	000'0	6,682	6,682	Warendorf bis Beelen	DE_NRW_314_0			100					0			m		1 95				100
Axtbach	6,682	20,982	14,300	Oelde	DE_NRW_314_6682			100								9		7 87				100
Axtbach	20,982	26,357	5,375	Oelde	DE_NRW_314_20982			100								12 32	2 50	9 (100
Axtbach	26,357	34,132	7,775	Beelen bis Oelde	DE_NRW_314_26357	7		86					Υ		14 28	28 28	3 21	- 2	_			100
Bergeler Bach	000'0	3,600	3,600	Oelde	DE_NRW_3142_0			100					0			9	5 20	11	63		100	
Bergeler Bach	3,600	8,151	4,551	Oelde	DE_NRW_3142_3600			100						29	7	9 13	~	6	7		100	
Maibach	000'0	1,500	1,500	Herzebrock-Clarholz	DE_NRW_3144_0			100										9 46	48		100	
Maibach	1,500	4,400	2,900	Herzebrock-Clarholz bis Oelde	DE_NRW_3144_1500			26	5 74									34	99		100	
Maibach	4,400	7,521	3,121	Oelde	DE_NRW_3144_4400				100				7					32	99		100	
Beilbach	000'0	9,200	9,200	Beelen bis Ennigerloh	DE_NRW_3146_0			100							4	49 15	31	4			100	
Beilbach	9,200	14,565	5,365	Oelde bis Ennigerloh	DE_NRW_3146_9200			100							17 83	3					100	
Beilbach	14,565	17,129	2,564	Ennigerloh bis Oelde	DE_NRW_3146_14565			100								2 15	93	~			100	
Flutbach	000'0	8,623	8,623	Beelen bis Herzebrock-																		
				Clarholz	DE_NRW_31472_0			47	, 53				9					∞	86		100	
Baarbach	000'0	8,500	8,500	Warendorf bis Ennigerloh	DE_NRW_3148_0			51					0		~	19 35	5 43	4			100	
Baarbach	8,500	12,718	4,218	Ennigerloh	DE_NRW_3148_8500				100				2		7 67	7 15		2	4		100	

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

► Tab. 2.1.3.4-5 Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 4)

							Ğ	Gewässergüte	rgüte				Gewä	Gewässerstrukturgüte	ruktu	rgüte			Ī	Fische	
							Klas	senante	Klassenanteile in %	9			Kla	Klassenanteile in %	teile ir	%			Klasseı	Klassenanteile in %	% ui
Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht Klass.	Ξ	=	=	<u>}</u>	N nic	nicht 1 klass.	7	m	4	Ω.	9	7	+	۲.	ı
Westkirchener B.	000'0	2,500	2,500	Beelen bis Ennigerloh	DE_NRW_31482_0			19	81									100		100	
Westkirchener B.	2,500	8,038	5,538	Ennigerloh	DE_NRW_31482_2500				100			-		4	7	2	18	65		100	
Südl. Talgraben	000'0	16,659	16,659	Warendorf bis Herzebrock-																	
				Clarholz	DE_NRW_31492_0			100				m				7	12	80			100
	000'0	8,144	8,144	Herzebrock-Clarholz	DE_NRW_314924_0				100			7			_	2	38	49		100	
Nördl. Talgraben	000'0	13,795	13,795	Warendorf bis Harsewinkel	DE_NRW_3152_0	0		100				-			2	18	64	=			100
Holtbach	000'0	8,583	8,583	Warendorf bis Ennigerloh	DE_NRW_3154_0				100						29	71				100	
Holtbach	8,583	11,113	2,530	Ennigerloh	DE_NRW_3154_8583	23			77			23			36	41				100	
Hessel	000'0	10,872	10,872	Warendorf bis Sassenberg	DE_NRW_316_0			100								14	39	47			100
Hessel	10,872	31,394	20,522	Sassenberg bis Borgholzhsn.	DE_NRW_316_10872			29	33					0	2	13	31	21			100
Hessel 3	31,394	36,387	4,993	Borgholzhausen bis Halle																	
				(Westf.)	DE_NRW_316_31394				100					7	14	28	30	71			100
Hessel 3	36,387	39,336	2,949	Halle (Westf.)	DE_NRW_316_36387			_	100					7	31	78	25	Ξ			100
Casumer Bach	000'0	4,517	4,517	Versmold bis Borgholzhsn.	DE_NRW_31612_0	6			29	24	=	100								100	
Casumer Bach	4,517	7,216	2,699	Borgholzhausen	DE_NRW_31612_4517				_	100		100								100	
Bruchbach	000'0	1,600	1,600	Versmold	DE_NRW_3162_0				100			7		13	13	36	21	15		100	
Bruchbach	1,600	5,100	3,500	Versmold	DE_NRW_3162_1600			_	100					3	9	30	37	74		100	
Bruchbach	2,100	8,300	3,200	Versmold bis Borgholzhsn.	DE_NRW_3162_5100				100						Υ	36	09			100	
Alte Hessel	000'0	9,482	9,482	Versmold bis Borgholzhsn.	DE_NRW_31632_0				100			7			_	_	19	77			100
Backhorster B.	000'0	7,800	7,800	Versmold	DE_NRW_3164_0			62	38			_		∞	4	21	45	71		100	
Backhorster B.	7,800	13,341	5,541	Borgholzhausen	DE_NRW_3164_7800			97	n						7	39	47	7		100	
Backhorster B. 1	13,341	15,341	2,000	Versmold bis Borgholzhsn.	DE_NRW_3164_13341			100								22	89	10		100	
Dissener Bach	000'0	1,063	1,063	Versmold	DE_NRW_31642_0				_	100		2				40	22			100	
Dissener Bach	1,063	11,509	10,676	Dissener Bach	01024	25			48			91		6	19	37	6	6		100	
Speckengraben	000'0	9,100	9,100	Sassenberg	DE_NRW_3168_0			100				0			28	72				100	
Speckengraben	9,100	12,403	3,303	Sassenberg	DE_NRW_3168_9100			001								88	12			100	
Mussenbach	000'0	7,884	7,884	Telgte bis Warendorf	DE_NRW_3172_0			26	42	2		0	0,	9 57	30	4					100
Mussenbach	7,884	24,367	16,483	Warendorf bis Ennigerloh	DE_NRW_3172_7884				_	100			8	8 11	=	26	42				100
Brüggenbach	000'0	2,200	2,200	Everswinkel bis Warendorf	DE_NRW_31722_0				100			0				100				100	
Brüggenbach	2,200	11,869	699'6	Warendorf bis Ennigerloh	DE_NRW_31722_2200				100					4	18	70	3	9		100	
Maarbecke	000'0	1,686	1,686	Telgte	DE_NRW_3174_0				39	19			2	40		16	24	7		100	
Maarbecke	1,686	5,750	4,064	Telgte bis Everswinkel	DE_NRW_3174_1686				6	91			ε	3 2	24	10	23	35		100	

graue Hinterlegung = künstlicher Wasserkörper / vorläufig als erheblich verändert ausgewiesener Wasserkörper

➤ Tab. 2.1.3.4-5 Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 5)

Controller Control									:												1	
State Market Ma	wasserkorpe							ر	ewass	ergute				S C C C	Sers	LINKI	rgure				Scne	
No. Control Line								Kla	ssenan	teile in	%			Kla	ssenan	teile ir	% ر			Klasser	nanteile	% ui
1,393, 12,686 3,941 3,942 3,944 3,94	Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht Klass.	Ξ	=				ht 1 šs.	2	m	4	ις.	9	7	+	~	1
1,1995 2,5966 3,371 3,384 3,381 3,385,485 3,471 3,471 3,771	Bever	000'0	21,995	21,995		DE_NRW_318_0			100					-,	-	35	48	10		93	7	
sighed, 75,966 3,40 1,41	Bever	21,995	25,966	3,971	Sassenberg bis Glandorf				100				_			∞	25	99			100	
OLOGO 7.373 7.174 Almander band, the manager band, and the manager band, and the manager band band band, and the manager band, a	Bever, Süßbach		39,407	13,441	Bever, Süßbach	01025	29		19		10		4			7	21	0	29		100	
the triang	Rankenbach,	0	17,173	17,174	Rankenbach,																	
House Color 1,244 House Linkseniger Flagradie Linkseniger Flagradi	Remseder Bach,				Remseder Bach,																	
upon 3382 34382 A3480 Ministerio Sublement by Watersdroff DE NWW 3284_0.0 1 09 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0	Linksseit. Talgr.				Linksseitiger Talgraben	01026	52		28	17			_			12	29	12	17		100	
43.489 43.489 A.3489 43.489 Manager list Additional per LNNW.32.2.0 1 99 0 1 6 9 22 4 5 7 1 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 4 5 4 5 4 5 4 7	Frankenbach	000'0	7,382	7,382	Ostbevern bis Warendorf	DE_NRW_3184_0			100									2	95		100	
43.48 g 43.26 d 47.11 Altern Attention Beachum DE_NRW_324_4880 7 100 7 4 4 5 4 5 4 5 4 1 4	Werse	000'0	43,489	43,489		DE_NRW_32_0			-	66			0		9	6	32	48	3			100
48.200 50.966 57.50 Altern is Beckum DE_NRW.322-48200 7 100 10 1 1 4 4 11 4 4 11 4 4 11 4 4 11 4 4 4 11 4 4 4 11 4 4 4 4 4 11 4 4 4 11 4 4 11 4 4 4 11 4 4 11 4 4 11 4 4 11 4 4 11 4 4 </td <td>Werse</td> <td>43,489</td> <td>48,200</td> <td>4,711</td> <td>Ahlen</td> <td>DE_NRW_32_43489</td> <td></td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>47</td> <td>53</td> <td></td> <td></td> <td></td> <td>100</td>	Werse	43,489	48,200	4,711	Ahlen	DE_NRW_32_43489				100							47	53				100
50,506 65,646 15,686 After his Beckum DE_NIRW_2322_50960 7 60 3 7 9 <th< td=""><td>Werse</td><td>48,200</td><td>20,960</td><td>2,760</td><td>Ahlen</td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td>14</td><td>74</td><td>=</td><td></td><td></td><td>100</td></th<>	Werse	48,200	20,960	2,760	Ahlen					100							14	74	=			100
back Allen bis Beckum DE-NRW-3212_0 100 1 1 3 2 1 3 3	Werse	20,960	66,646	15,686	Ahlen bis Beckum	DE_NRW_32_50960	7		7	20	36		7			2	40	38	10			100
thath 0,000 k3,93 k3,00	Olfe	000'0	7,765	7,765	Ahlen bis Beckum					100			_			_	3	31	28			100
th discrete the following 8,997 8,997 benestarinfut bis Ascheberg DE_NRW_3232_0 1000 13187 13187 Denstainfut this Ascheberg DE_NRW_3232_0 1000 5.207 5	Kälberbach	000'0	7,203	7,203	Ahlen bis Drensteinfurt				100				_					-	86		100	
fébach 0,000 6,148 6,148 0,188 1,187 1,187 0,188 0,188 1,187 1,188 0,188 1,188 <t< td=""><td>Erlebach</td><td>000'0</td><td>8,997</td><td>8,997</td><td>Drensteinfurt</td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>7</td><td>93</td><td></td><td></td><td>100</td></t<>	Erlebach	000'0	8,997	8,997	Drensteinfurt					100			0					7	93			100
nback 0,000 6,749 6,749 6,749 6,749 6,749 6,749 1 9 46 34 8 3 100 subach 0,000 5,207 5,207 5,207 5,207 5,207 5,207 5,207 5,207 1,884 6,677 Denstrainfurt bis Ascribebrag DE_NRW_3232_5207 6 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0	Umlaufsbach	000'0	13,187	13,187	Drensteinfurt bis Ascheberg	DE_NRW_322_0			100				_	. 4		20	45	91	-		100	
subported 5,000 5,207 5,207 5,207 5,207 1,884 6,673 Demistratified that bis Sachaberg DE-NRW_3232_5207 6 94 6 7 38 52 4 9 100 norster B 1,900 1,900 1,900 1,900 1,900 5-00 5-00 1,900	Mühlenbach	000'0	6,749	6,749	Drensteinfurt bis Ascheberg				100				_		6	46	34	∞	3		100	
subplication 5,207 11,884 6,672 Denystation Denys 222-5207 6 94 6 33 67 4 9 100 norster B 0,000 1,9	Flaggenbach	000'0	5,207	5,207	Sendenhorst bis Drensteinfurt					100						30	70				100	
noster B 0,000 1,900 6,000 1,900 6,000 1,900 1,900 1,900 6,000 1,900	Flaggenbach	5,207	11,884	229'9			9			94			9			38	52	4			100	
noster B 1,900 1,500 9,600 4,900 5,600 6,600 6,600 4,900 1,1 6,1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 7 1 6 7 1 6 7 1 9 1 1 6 7 1 9 1 1 6 7 1 6 7 1 0 1 0 1 1 6 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td>Ahrenhorster B.</td> <td>000'0</td> <td>1,900</td> <td>1,900</td> <td>- '</td> <td>DE_NRW_324_0</td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>33</td> <td>29</td> <td></td> <td></td> <td></td> <td>100</td> <td></td>	Ahrenhorster B.	000'0	1,900	1,900	- '	DE_NRW_324_0			100				0			33	29				100	
noster B. 11,50d 15,141 3,641 Sendenhorst DE_NRW_3242_11500 and horster B. 11,50d 4,900 4,900 4,900 Sendenhorst DE_NRW_3242_0.00 and horster B. 11,50d 4,900 7,30d 2,400 Sendenhorst DE_NRW_3242_24900 and horster B. 100 and horster B. 2400 8,000 2,400 2,400 Sendenhorst bis Minster DE_NRW_3252_2400 and horster B. 2400 8,000 2,400 3,000 3	Ahrenhorster B.	1,900	11,500	009'6		DE_NRW_324_1900			100				0		=	63	15	10			100	
pach 0,000 4,900 4,900 24,900 24,900 24,900 24,900 24,900 24,900 24,000	Ahrenhorster B.	11,500	15,141	3,641	Sendenhorst				100						9	2	10	82			100	
back 4,900 7,300 2,400 Sendenhorst DE_NRW_3242_4900 100	Alsterbach	000'0	4,900	4,900					09	40			_			9	75	18			100	
back 7,300 10,101 2,801 Sendenhorst DE_NRW_3242_7300 100 <th< td=""><td>Alsterbach</td><td>4,900</td><td>7,300</td><td>2,400</td><td></td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td>34</td><td>99</td><td></td><td></td><td>100</td><td></td></th<>	Alsterbach	4,900	7,300	2,400						100							34	99			100	
thach 0,000 2,400 9,803 7,408 6,400 2,400 9,803 7,408 6,803 7,408 6,803 7,408 6,803 7,408 6,803 7,408 9,803 7,408 8,803 7,408 8,803 7,008 7,008 7,008 7,008 7,008 7,008 7,008 7,008 7,008 7,009 <th< td=""><td>Alsterbach</td><td>7,300</td><td>10,101</td><td>2,801</td><td>Sendenhorst</td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td></td><td></td><td>100</td><td></td></th<>	Alsterbach	7,300	10,101	2,801	Sendenhorst					100								100			100	
rbach 2,400 9,803 7,408 Sendenhorst bis Münster DE_NRW_325_2400 100 100 1 5 5 5 5 5 5 100 100 rbach 0,000 7,086 35,688 28,582 Münster bis Ascheberg DE_NRW_326_08 4 57 39 2 1 0 1 0 1 0 2 1 8 1 0 2 1 8 1 0 1 1 8 3 3 3 4 8 1 0 1 1 0 1 1 1 2 1 0 1 1 2 1 0 1 1 2 1 0 1 1 1 2 1 0 1 1 1 2 1 0 2 1 2 1 0 2 1 2 1 0 2 1 2 1 1	Westerbach	000'0	2,400	2,400		DE_NRW_3252_0			100						26		6				100	
rbach 0,000 7,086 2,5668 2,568 <t< td=""><td>Westerbach</td><td>2,400</td><td>6,803</td><td>7,403</td><td>- '</td><td>DE_NRW_3252_2400</td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td>20</td><td>20</td><td></td><td></td><td></td><td>100</td><td></td></t<>	Westerbach	2,400	6,803	7,403	- '	DE_NRW_3252_2400			100							20	20				100	
rbach 7,086 35,668 28,582 Münster bis Ascheberg DE_NRW_326_7086 4 100 10 1 6 1 6 1 84 2 94 6 bach 0,000 7,222 7,222 7,222 Münster DE_NRW_32692_0 4 100 1 2 1 5 1 5 1 7 1 7 1 7 1 8 1 1 1 8 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 4 4 3 3 3 4 4	Emmerbach	000'0	2,086	980'/		DE_NRW_326_0			86	2			_			7	37	46	8		100	
back 0,000 7,222 7,222 Münster DE_NRW_3268_0 4 67 39 3 3 3 3 3 3 3 3 3 100 sinbach 0,000 7,372 7,372 Münster DE_NRW_328_0 3 1	Emmerbach	980'2	35,668	28,582	Münster bis Ascheberg					100			0		0		10	84	7	94	9	
inbach 0,000 7,372 7,372 Münster DE_NRW_3269922_0 1 12,791 18,391 5,600 Everswinkel bis Sendenhorst DE_NRW_328_12791 18,391 5,600 Everswinkel bis Sendenhorst DE_NRW_328_12791 18,391 5,600 Everswinkel bis Sendenhorst DE_NRW_328_12791 100 100 100 100 100 100 100 100 100 1	Getterbach	000'0	7,222	7,222	Münster		4		27	39			3		2		28	23	3		100	
0,000 12,791 18,391 5,600 Everswinkel bis Sendenhorst DE_NRW_328_12791 0 99 1 0 0 19 46 35 12,791 18,391 5,600 Everswinkel bis Sendenhorst DE_NRW_328_12791 100 99 1 5 95 95 95	Kannenbach	000'0	7,372	7,372	Münster	_3269922				100			_					21	78			100
12,791 18,391 5,600 Everswinkel bis Sendenhorst DE_NRW_328_12791 5,000 Everswinkel bis Sendenhorst DE_NRW_328_12791 5,000	Angel	000'0	12,791	12,791	Münster bis Everswinkel	DE_NRW_328_0			66	-			0			19	46	35			100	
	Angel	12,791	18,391	2,600		DE_NRW				100							2	95			100	

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

➤ Tab. 2.1.3.4-5 Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 6)

Wasserkörper							Se	Gewässergüte	güte				Ğ	wäss	erstru	Gewässerstrukturgüte	ite			Fische	e e	
							Klass	nante	Klassenanteile in %	,0				Klasse	nantei	Klassenanteile in %			Kla	ssenan	Klassenanteile in %	%
Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht I klass.	₹	=	= <u>=</u>	<u>}-</u>	≥ .	nicht Klass.	-	7	m	4 5	9	7	+	<u>~</u>		
Angel	18,391	27,436	9,045	Sendenhorst bis Ennigerloh	DE_NRW_328_18391			31	69			-			4	9	8	98		_	00	
Angel	27,436	38,180	10,744	Ennigerloh bis Beckum	DE_NRW_328_27436	7		7	06			7				9	15 6	. 69	_	_	00	
Hellbach	000'0	2,700	2,700	Ahlen	DE_NRW_3282_0			100				4		7	34	26 2	29			_	00	
Hellbach	2,700	12,215	9,515	Ahlen bis Beckum	DE_NRW_3282_2700			12	88			2			9	25 4	40	11 17		_	00	
Nienholtbach	000'0	3,040	3,040	Sendenhorst	DE_NRW_3284_0	70		30								13 8	84	3		_	00	
Nienholtbach	3,040	5,200	2,160	Sendenhorst bis Ahlen	DE_NRW_3284_3040	100									25	9 6	65			_	001	
Nienholtbach	5,200	8,357	3,157	Ahlen	DE_NRW_3284_5200	100									8	19	41	19	3	_	001	
Voßbach	000'0	15,716	15,716	Everswinkel bis Ennigerloh	DE_NRW_3286_0	27			73			0					16 8	. 83	_	_	001	
Wieninger Bach	000'0	3,400	3,400	Everswinkel	DE_NRW_3288_0			100				0					14 8	85			100	
Wieninger Bach	3,400	8,500	5,100	Everswinkel bis Warendorf	DE_NRW_3288_3400			86	2								4	96		_	001	
Wieninger Bach	8,500	15,029	6,529	Warendorf bis Ennigerloh	DE_NRW_3288_8500				100							2 3	34 6	64		_	100	
Piepenbach	000'0	7,300	7,300	Münster bis Everswinkel	DE_NRW_32892_0				100			-				4	47 5	52		_	001	
Piepenbach	7,300	6'836	2,539	Everswinkel	DE_NRW_32892_7300				100			2				- 10	58 4	40 (0	_	100	
Kreuzbach	0,000	14,460	14,460	Münster bis Telgte	DE_NRW_3294_0	91			84			=	-	-	7	21 1	18	41			_	100
Gellenbach	000'0	10,915	10,915	Greven bis Ostbevern	DE_NRW_3312_0			100						3	91	15	13 4	49	4	_	001	
Münstersche Aa	000'0	11,785	11,785	Greven bis Münster	DE_NRW_332_0			92	2						m	58 2	21 1	17			_	100
Münstersche Aa	11,785	15,857	4,072	Münster	DE_NRW_332_11785				100							2	88	3	4			001
Münstersche Aa	15,857	20,800	4,943	Münster	DE_NRW_332_15857	43			22						6		∞	83	~		_	100
Münstersche Aa	20,800	34,729	13,929	Münster bis Altenberge	DE_NRW_332_20800	_		66							7	32 3	34 2	28			_	100
Münstersche Aa	34,729	38,829	4,100	Altenberge bis Havixbeck	DE_NRW_332_34729			100								m	34 6	63			_	100
Münstersche Aa	38,829	42,959	4,130	Havixbeck	DE_NRW_332_38829	62		21				79					9	12			_	100
Schlautbach	000'0	5,400	5,400	Havixbeck	DE_NRW_3322_0			100					7	33	8	18	33 2	56		_	00	
Schlautbach	5,400	8,903	3,503	Havixbeck	DE_NRW_3322_5400			100							12	31 4	40	17		_	00	
Meckelbach	000'0	5,100	5,100	Münster	DE_NRW_3324_0				100							32 6	62	9			001	
Meckelbach	5,100	8,128	3,028	Münster	DE_NRW_3324_5100	25			75			27				20 2	25 2	28		_	001	
Kinderbach	000'0	3,200	3,200	Münster	DE_NRW_3328_0			22	78			0			09	25 1	15				001	
Kinderbach	3,200	7,700	4,500	Münster	DE_NRW_3328_3200	_			66			2			32	52		=	2	_	001	
Kinderbach	2,700	10,507	2,807	Münster	DE_NRW_3328_7700	100						100								_	100	
Mühlenbach	0000'0	13,594	13,594	Greven bis Altenberge	DE_NRW_3332_0	23		69	_∞						2	14	37 4	43		_	001	
Mühlenbach	13,594	17,064	3,470	Altenberge	DE_NRW_3332_13594	100						=			_∞	13 2	28 4	40		_	001	
Flothbach	0,000	8,802	8,802	Greven bis Münster	DE_NRW_33324_0	c			26			Μ					0)	97		_	001	
Glane	000'0	15,784	15,784	Saerbeck bis Lengerich	DE_NRW_334_0			100				0			01	27 1	13 4	. 48	_	_	001	

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

► Tab. 2.1.3.4-5 Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 7)

:														,									
wasserkorper								rewas	Cewassergute	a)				9	cewasserstrukturgute	Struk	turgu	<u> </u>			FISCHE	e E	
							Σ̈́	ssenan	Klassenanteile in %	% 1				⇉	Klassenanteile in %	anteile	% ui &			Κİ	Klassenanteile in %	teile in	%
Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht Klass.	Ξ		≣ =	=	≥	≥ ≥	nicht klass.	7	m	4	ιΩ	9	_	+		~	1
Glane	15,784	32,348	16,564	Lengerich bis Lienen	DE_NRW_334_15784	0		100					0		_	17 2.	23 2	24 30	36		_	100	
Recktebach	32,502	35,117	2,797	Recktebach	01028	100							29						7	71		100	
Bullerbach	000'0	9,152	9,152	Lengerich bis Lienen	DE_NRW_3342_0			100					0		3 2	22 4	48 2	26			_	100	
Kattenvenner B.	000'0	8,732	8,732	Ladbergen	DE_NRW_33432_0	3			97				m		9	6	6 2	25 5	21			100	
Mühlenbach	000'0	4,000	4,000	Ladbergen	DE_NRW_3344_0			100					0				2 4	41 5	26			100	
Mühlenbach	4,000	18,200	14,200	Lienen	DE_NRW_3344_4000			72	28									4	91	4		100	
Mühlenbach	18,200	20,353	2,153	Ladbergen bis Lienen	DE_NRW_3344_18200	16	15	5 68					12			14	10	8	26			001	
Aldruper Mühlenbach	0.000	8.060	8.060	Ladbergen bis Lengerich	DE NRW 33442 0			100					7			ന്	34	45 10	10	_		100	
Eltings	0		·		O 3000 MIDIN 3046 O			00					-	,	000	, c		-	-	-	9		
Mullelibacii	0,000				DE_INNV3340_U			2					-	•			17	_	_	=	3		
Eltings Mühlenbach	15,537	18,317	2,780	Ostbevern	DE_NRW_3346_15537			100								15 8	85				100		
Eltings																							
Mühlenbach	18,317	27,556	9,239	Ostbevern bis Glandorf	DE_NRW_3346_18317	0		100					7			12 4	40	41		=	100		
Glaner Bach,	27,569	51,337	23,850	Glaner Bach, Oedingberger																			
Oedingberger B.,				Bach, Wispenbach, Kolb	01027	23		53	24				20				17	2	22 4	42		100	
Wispenb., Kolb																							
Bockhorner B.	000'0	1,760	1,760	Ostbevern bis Glandorf	DE_NRW_33462_0	2		98					0						6 9	94	_	100	
Dümmer Bach	1,757	9,912	8,324	Dümmer Bach	01029	100							4					2	24 7	72		100	
Bockhorner B.	9,912	11,707	1,795	Glandorf bis Lienen	DE_NRW_33462_9912	100							100								_	100	
Lütkebecke	000'0	2,500	2,500	Greven	DE_NRW_33468_0			100					0		4	45 3	30 1	91		4		100	
Lütkebecke	2,500	11,018	8,518	Greven bis Ladbergen	DE_NRW_33468_2500			100					0			_	5 4	40 5.	53		_	100	
Saerbecker Mühlenbach	000'0	1,088	1,088	Emsdetten bis Saerbeck	DE NRW 3352 0			100							m	36	64					100	
Saerbecker	1.088				DE NRW 3352 1088			100								1 2	25 5	57 18	8			001	
Saerbecker																							
Mühlenbach	4,688	15,188	10,500	Tecklenburg bis Lengerich	DE_NRW_3352_4688			100							7		9	55 30	36	_		100	
Saerbecker Mühlenbach	15,188	18,048	2,860	Saerbeck bis Tecklenburg	DE_NRW_3352_15188	=		89	_				Ξ				2	28 6.	62			100	
Walgenbach	000'0	8,041	8,041	Saerbeck bis Greven	DE_NRW_3354_0			100					0	•	1 72	11 2	25 2	24 1.	13			100	

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

► Tab. 2.1.3.4-5 Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 8)

Wasserkörper							Ğ	wäss	Gewässergüte				Gew	Gewässerstrukturgüte	trukt	urgüte				Fische	
							Klas	senant	Klassenanteile in %	%			Kla	Klassenanteile in %	nteile	% ui			Klasse	Klassenanteile in %	% ui
Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht Klass.	Ξ	=	=	<u>\</u>	N = ic	nicht 1 klass.	2	m	4	D.	9	7	+	<i>د</i> .	1
Emsdettener Mühlenbach	000'0	8,081	8,081	Emsdetten bis Nordwalde	DE_NRW_336_0			100						7	4 19	35	39	π		100	
Emsdettener	8 081	16.081	000 8	Nordwalde bis Altenberge	DF NRW 336 8081			75	43			-		10	α	7	61			100	
Emsdettener Mühlenbach	16,081	19,585			DE NRW 336 16081				100					4	C		17			100	
Landwehr- graben	000'0	2,900			DE_NRW_3364_0				100			0					42			100	
Landwehr-	000	276		4	000c 13cc Waln 3d				5					C	20	CI				Ç	
Rösingbach	0000'0	7,695			DE_NRW_3366_0				001			-		7			51			100	
Aabach	000'0	9,000	000'9	Nordwalde bis Steinfurt	DE_NRW_3368_0			100						17	2 15	78	2	Г		100	
Aabach	000'9	8,580	2,580	Steinfurt	DE_NRW_3368_6000			100							7	54	39			100	
Hummertsbach	000'0	6,880	088'9	Rheine bis Emsdetten	DE_NRW_3372_0				100				2	6 15	31	44	-	Г		100	
Hummertsbach	088'9	668'6	3,019	Emsdetten	DE_NRW_3372_6880				100					4	1 26	10				100	
Mühlenbach	000'0	2,009	2,009	Rheine	DE_NRW_3374_0	6		16				7	4	48 15	6		20			100	
Frischhofsbach	000'0	10,674	10,674	Rheine bis Neuenkirchen	DE_NRW_3376_0			100					2 22	2 30) 28	17	2			100	
Frischhofsbach	10,674	18,645	7,971	Neuenkirchen bis Steinfurt	DE_NRW_3376_10674			100				ω			2	28	29			100	
Wambach	000'0	4,077	4,077	Rheine	DE_NRW_3378_0			100						3 71	91 1	9				100	
Wambach	4,077	6,777	2,700	Rheine bis Neuenkirchen	DE_NRW_3378_4077			100					_	11 14	1 16	29				100	
Wambach	6,777	009'6	2,823	Neuenkirchen	DE_NRW_3378_6777			100				7			2	20	10	28		100	
Bevergerner Aa	000'0	11,476	11,476	Rheine bis Hörstel	DE_NRW_338_0			100						9	5 15	63	16	-		100	
Bevergerner Aa	11,476	31,676	20,200	Hörstel bis Tecklenburg	DE_NRW_338_11476			65	35						4	. 43	53	-		100	
Bevergerner Aa	31,676	33,891	2,215	Tecklenburg	DE_NRW_338_31676				100					10	2		72	6		100	
Mühlenbach	000'0	9,300	9,300	Hörstel bis Tecklenburg	DE_NRW_3382_0			100					_	13 35	5 44	_	2	7		100	
Mühlenbach	9,300	11,495	2,195	Tecklenburg	DE_NRW_3382_9300			100				7		13 5	5 32	6		34		100	
Randelbach	000'0	1,385	1,385	Rheine	DE_NRW_3392_0			100					_	15 67	7 19					100	
Randelbach	1,385	7,707	6,322	Rheine bis Neuenkirchen	DE_NRW_3392_1385			100					_	10 10) 29	∞	33	6		100	
Elsbach	0	7,647	7,649	Elsbach	01013	16		84				0	2	26 66	9					100	
Elsbach	7,647	10,527	2,880	Salzbergen bis Wettringen	DE_NRW_3394_7647	0			100									100		100	
Listruper Bach	0	7,679	7,700		01012			100				13			13	39	35			100	
Fleckenbach	0	6'839	098'9	Fleckenbach	01011	36			64			0		15	5 15	44	12	15		100	

graue Hinterlegung = künstlicher Wasserkörper / vorläufig als erheblich verändert ausgewiesener Wasserkörper

► Tab. 2.1.3.4-5 Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 9)

								:	11.0					:			4			100	
Wasserkurper							200	Vewassergute	ann				,	Vewasserstrukturgute		i i	ב ב				
							Klass	enante	Klassenanteile in %	0				Klassenanteile in %	nanteil	e in %	_		Klas	Klassenanteile in %	le in %
Gewässer	von (km)	bis (km)	Länge (km)	Bezeichnung	Wasserkörper-Nummer	nicht I Klass.	Ξ	=	=	<u>N-III</u>	≥ >	nicht Klass.	-	7	٣	4	9	7	+	۲.	1
Elberger Grab., Kanalgraben, Verbundgraben	0	7,193	7,211	Elberger Graben	01010	100						100								100	
Grosse Aa	000'0	7,271	7,301	Einmündung Speller Aa bis Ems	01002	0			100			4					00	83 14		100	
Grosse Aa	7,271	24,267	16,996	bis Einmündung Speller Aa	01003	,		100	0			0					00			100	
Deeper Aa,																					
Fürstenauer																					
Mühlenbach,																					
Andervenner Gr.	24,267	35,018	19,404	Deeper Aa	01006	21		35	4			69					_	10 20	_		100
Fürstenauer Mühlenbach	4,491	12,921	8,430	Oberlauf	01007			63	37			m			13	46	14	12 12		100	
Reetbach	0	12,242	12,242	Reetbach	01008			54	46			0				∞	35 1	16 41		100	
Ahe. Wolfsberg-																H	_				
bach, Meme-																					
dingsbach	0	15,172	28,986	Ahe	01009	1		12	77			3			m	3	7	21 62		100	
Schaler Aa	0	2,556	2,582	Schaler Aa	01005			100				0					9	61 39	_	100	
Halverder Aa	2,556	14,596	12,040	Freren bis Voltlage	DE_NRW_342_2556			22	45								18 8	82		100	_
Weeser Aa,																					
Vord. Kölzenk.	14,597	31,006	19,111	Weeser Aa	01031				100			_					9	68 31		100	
Voltlager Aa	000'0	6,049	6,049	Hopsten	DE_NRW_3424_0			100				2				7		7 90		100	
Voltlager Aa	6,049	18,109	12,056	Voltlager Aa	01030	37		6	54			17				00	17 3	33 25		100	_
Bardelgraben	0	4,736	4,736	Bardelgraben	01020			100				16					∞	84		100	_
Bardelgraben	4,736	23,581	18,845	Hopsten bis Mettingen	DE_NRW_3432_4736				100			∞				_	6	82		100	
Moosbeeke	0	8,343	8,327	Moosbeeke	01019				9	35		0				36	52 1	12		100	_
Moosbeeke	8,343	17,463	9,120	Hopsten bis Recke	DE_NRW_3434_8343	00			95			2						95		100	_
Reitbach, Thui-																					
ner Mühlenb.	0	6,845	12,929	Reitbach	01016	41			29			0			∞	31	53	∞		100	
Giegel Aa	0	10,089	10,083	Giegel Aa	01018			100				0				7 09	40			100	
Giegel Aa	10,089	11,884	1,795	Schapen bis Hopsten	DE_NRW_3438_10089	-		64	35			-					∞	84 16		100	
Schinkenkanal	0	10,472	10,472	Schinkenkanal	01015	71		29				0			4	19	1 29	9		100	
Lünner Graben	0	7,022	7,023	Lünner Graben	01017	100						100								100	

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

Ausgangssituation Gewässergüte, Gewässerstrukturgüte und Fische (Teil 10) ► Tab. 2.1.3.4-5

Wasserkörper							3	ewäss	Gewässergüte				క	wässe	rstruk	Gewässerstrukturgüte	ā			Fische	
							Kla	ssenant	Klassenanteile in %	%				Klassenanteile in %	anteile	% ui a			Klas	senantei	Klassenanteile in %
Gewässer	von	bis	Länge	Bezeichnung	Wasserkörper-Nummer	nicht	Ξ	=	≣	Al-III	≥ >	nicht	-	2	3 4		9	7	+	~	1
	(km)	(km)	(km)			klass.						klass.									
Speller Aa,																					
Dreierwalder Aa	0	12,482	13,963	Speller Aa	01004	100						0					100	0			100
Hopstener Aa	12,482	14,915	2,443	Hopstener Aa	01021				100			100								100	
Mettinger Aa	14,915	20,304	5,389	Spelle bis Hopsten	DE_NRW_344_14915	26		44							7	25 73		2		100	
Mettinger Aa	20,304	29,104	8,800	Hopsten bis Recke	DE_NRW_344_20304			100							_	2 54	4 42	7		100	
Mettinger Aa	29,104	43,304	14,200	Recke bis Westerkappeln	DE_NRW_344_29104			100								42	2 56	5		100	
Mettinger Aa	43,304	49,317	6,013	Westerkappeln	DE_NRW_344_43304			100							23 2	22 45		8 2		100	
Hauptgraben	000'0	108'6	108'6	Mettingen bis Westerkappeln	DE_NRW_3442_0			100				-					6	0		100	
Strootbach	000'0	2,600	2,600	Recke	DE_NRW_3444_0			22	78						_	13 85	2	2		100	
Strootbach	2,600	6,500	3,900	Recke bis Ibbenbüren	DE_NRW_3444_2600				100						3	63 21	1 13	~		100	
Strootbach	6,500	9,336	2,836	Ibbenbüren	DE_NRW_3444_6500	48			52			7			31	3 60	0	4		100	
Meerbecke	000'0	5,221	5,221	Hopsten bis Ibbenbüren	DE_NRW_34454_0			100							9	37	15 42	2		100	
Breischener																					
Bruchgraben	000'0	2,160	7,160	Hopsten	DE_NRW_3446_0				100			_					3 96	0		100	
Dreierwalder Aa	1,494	15,075	13,581	Spelle bis Hörstel	DE_NRW_3448_1494	-					66						71	1 29		100	
Dreierwalder Aa	15,075	31,200	16,125	Hörstel bis Tecklenburg	DE_NRW_3448_15075	9		6	99		20			-	6	2	6 75	4		100	
Dreierwalder Aa	31,200	36,104	4,904	Tecklenburg	DE_NRW_3448_31200			100				2			7	33 22	2 30	7		100	
Altenrheiner																					
Bruchgraben	0	1,839	1,813	Altenrheiner Bruchgraben	01022				100			0					100	0		100	
Altenrheiner																					
Bruchgraben	1,839	8,012	6,173	Hörstel bis Rheine	DE_NRW_34486_1839	3			6			7					4 93	ω.		100	
Bramscher																					
Mühlenbach	0	10,115	10,141	Bramscher Mühlenbach	01014	41		29				0				9	0 30	01 10		100	
DEK	0	16,4	16,585	Grenze NRW bis Gleesen	01023				100			100								100	

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

2.1.3.5

Chemisch-physikalische Parameter

Neben den biologischen und strukturellen Komponenten lassen chemische und physikalische Untersuchungsdaten Rückschlüsse auf die Wasserbeschaffenheit zu. Hierbei wird zwischen den allgemeinen chemisch-physikalischen Komponenten und spezifischen Schadstoffen unterschieden. Letztere werden in Kap. 2.1.3.6 behandelt.

Die allgemeinen chemisch-physikalischen Komponenten

- Stickstoff (N_{ges})
- Phosphor (P)
- Ammonium (NH₄-N)
- Temperatur (T)
- pH-Wert
- Sauerstoff (O₂)
- Chlorid (Cl)

sind im Rahmen bestehender Klassifizierungsverfahren eng an die Gewässergüte geknüpft. Sie haben einen unmittelbaren Einfluss auf den ökologischen Zustand der Gewässer, da sie die Habitatqualität mitbestimmen. Die Temperatur hat zum Beispiel direkten Einfluss auf die Fischfauna sowie auf chemische Prozesse im Gewässer. Nährstoffüberschüsse bewirken Eutrophierungseffekte im Gewässer.

Die Beschreibung und Klassifizierung der Ausgangssituation der Gewässer mit Blick auf die allgemeinen chemisch-physikalischen Komponenten wird in Deutschland anhand der LAWA-Zielvorgaben (QK = Qualitätskriterien / QZ =

Qualitätsziele) vorgenommen. In Analogie zur Biologischen Gewässergüte ist ein 7-stufiges Klassifizierungssystem von der LAWA verabschiedet worden.

In **Nordrhein-Westfalen** werden die LAWA-Zielvorgaben für die einzelnen Komponenten mit statistischen Kenndaten verglichen. In der Regel wird zum Vergleich das 90-Perzentil der Messwerte eines Jahres herangezogen.

Im Rahmen der Bestandsaufnahme werden zur Beschreibung der Ausgangssituation aus den sieben LAWA-Klassen drei Gruppen gebildet (s. Tab. 2.1.3.5-1). Eine weitere Differenzierung wird nicht vorgenommen, da dies eine scheinbare Genauigkeit suggerieren würde, die tatsächlich nicht gegeben ist.

Falls für eine solche statistische Auswertung an einer Messstelle nicht genügend Daten vorliegen, werden in folgender Reihenfolge

- bis zu drei Messjahre zu einer Datenreihe zusammengezogen,
- die doppelten Mittelwerte, höchstens jedoch der gemessene Maximalwert mit der Zielvorgabe verglichen und
- ein Einzelmesswert mit der Zielvorgabe verglichen.

Bei Einhaltung der Güteklasse II gilt das Qualitätskriterium bezogen auf die betrachtete Komponente als erreicht.

Zur Darstellung der Ausgangssituation für die Parameter wird in **Nordrhein-Westfalen** die in Kapitel 2.1.3.1 beschriebene Vorgehensweise der Banddarstellung genutzt.

► Tab. 2.1.3.5-1

Einteilung zur Beschreibung der Ausgangssituation für die chemischphysikalischen Parameter in NRW

Güteklasse nach LAWA	Ausgangssituation	Bandfarbe
1, 1 – 11, 11	QK eingehalten	
II – III	Halbes QK nicht eingehalten	
III, III - IV, IV und schlechter	QK nicht eingehalten	
Datenlage nicht ausreichend, Belastungen aufgrund emissionsseitiger Informationen zu vermuten, Auswirkungsbereich auch nicht grob lokalisierbar	Datenlage nicht ausreichend	

Werden die Qualitätskriterien nicht erreicht, ist in jedem Fall eine weitere Beobachtung angezeigt. Eine weitergehende Beschreibung ist zudem in den Fällen erforderlich, in denen das halbe QK nicht eingehalten wird (gelb). Bereiche, für die Datenlage nicht ausreichend ist, um die Gewässersituation abschließend einzuschätzen, werden mit der Farbe grau gekennzeichnet.

In Nordrhein-Westfalen gehen die o.g. chemischphysikalischen Parameter als eigenständige Bewertungskomponente in die Bewertung des ökologischen Zustandes ein.

In Niedersachsen werden für die o.g. chemischphysikalischen Komponenten Überschreitungen der LAWA- Güteklasse II als Zusatzinformation zur Beschreibung und Bewertung des biologischen Zustandes in die Bestandsaufnahme aufgenommen. In den folgenden Ausführungen zur Beschreibung der Ausgangssituation hinsichtlich der chemisch-physikalischen Parameter werden die vorhandenen niedersächsischen Messdaten als Punktinformation für die jeweilige Messstelle aufgenommen.

Datenlage und Beschreibung des Ist-Zustandes

Für alle allgemeinen chemisch-physikalischen Komponenten liegen aus der Gewässergüteüberwachung probestellenbezogene Daten vor. An den Basismessstellen, die in großer räumlicher Dichte vorliegen, sind dabei häufig nur Einzelbefunde herangezogen worden, die aber durch langjährige Datenreihen validiert sind.

An den Trendmessstellen ist in der Regel eine Kennzahlberechnung möglich, wodurch die in der Fläche getroffenen Aussagen weiter abgesichert werden.

Die Messstellen, an denen die allgemeinen chemisch-physikalischen Komponenten überwacht werden, sind in der Regel an "repräsentativen" Gewässerpunkten gewählt worden. Die Ergebnisse an den Messstellen wurden auf das durch die Messstelle repräsentierte Gewässernetz übertragen. Diese Übertragung, d. h. die Festlegung der längszonalen Ausdehnung eines Befunds, wurde unter Berücksichtigung von Daten zur Belastungssituation und unter Hinzuziehung von Expertenwissen durchgeführt.

Die gewässerabschnittsbezogene Betrachtung wurde in einem folgenden Schritt auf die festgelegten Wasserkörper projiziert. Die Ausgangssituation für die relevantesten chemisch-physikalischen Bewertungskomponenten wird in Tab 2.1.3.6-9 am Ende von Kapitel 2.1.3.6 wasserkörperbezogen dargestellt.

Datenbasis für die Bewertung der allgemeinen chemisch-physikalischen Komponenten ist das Jahr 2002, oder – falls in 2002 nicht genügend Daten vorlagen – die Jahre 1999 – 2002. Niedersachsen hat zusätzlich Daten aus dem Jahr 2003 einbezogen.

Nährstoffe

Stickstoff und Phosphor tragen zur Eutrophierung der Fließ- und Stillgewässer und Meere bei. Für die Binnengewässer ist der N_{ges}-Gehalt von nachrangiger Bedeutung, soweit der Trinkwassergrenzwert eingehalten wird. Eine schärfere Begrenzung der N-Konzentrationen im Binnenland ist durch den nicht zuletzt von der Wasserrahmenrichtlinie geforderten Meeresschutz begründet, der nur durch Reduzierung der Nährstoffeinträge im Binnenland erreicht werden kann.

Phosphor (P) ist der limitierende Faktor für die Eutrophierung der Gewässer. Insbesondere langsam fließende bzw. staugeregelte Gewässerabschnitte sowie von Fließgewässern gespeiste Stillgewässer weisen bei erhöhten P-Konzentrationen Eutrophierungseffekte auf. Nährstoffsensible Fließgewässer des Mittelgebirges reagieren über starkes Algenwachstum und daran gekoppelte pH-Wert-Schwankungen ebenfalls empfindlich auf P-Einträge.

Die Stickstoffverbindung **Ammonium** (NH₄-N) wird unter aeroben Bedingungen im Gewässer oxidiert, d.h. dieser Prozess ist sauerstoffzehrend. Darüber hinaus kann bei entsprechenden pH-Werten aus Ammonium das akut fischtoxische Ammoniak gebildet werden.

Die genannten Nährstoffe werden überwiegend aus den gleichen Quellen in die Gewässer emittiert. Vorrangig sind hier die Einträge aus kommunalen und industriellen Einleitungen sowie Abschwemmungen von landwirtschaftlichen Flächen zu nennen, wobei bei letzteren Phosphor vorrangig durch erosive Vorgänge des Oberbo-

dens mit nachfolgender Einschwemmung in die Gewässer eingetragen wird, Stickstoff dagegen überwiegend über Auswaschungseffekte und Transport über Boden- und Grundwasser in die Gewässer gelangt.

Für Stickstoff und Phosphor liegen im Bearbeitungsgebiet Obere Ems Messdaten von den in Karte 2.1-5 dargestellten Messstellen vor.

Die Klassifizierung der Gewässersituation erfolgte in **Nordrhein-Westfalen** anhand folgender Qualitätskriterien (Tab. 2.1.3.5-2):

In **Niedersachsen** wurde als Qualitätskriterium die LAWA-Güteklasse II (3 mg N_{ges}/l , 0,15 mg P/l, 0,3 mg NH_4 -N/l) angesetzt.

► Tab. 2.1.3.5-2 Qualitätskriterien für die Parameter N, P, NH₄-N in NRW

Chemische Güteklassen	N _{ges} (mg/l)	Gesamt-P (mg/l)	NH ₄ -N (mg/l)	Ausgangssituation	Bandfarbe
≤II	≤ 3	≤ 0,15	≤ 0,3	QK eingehalten	
11 – 111	> 3 bis ≤ 6	> 0,15 bis ≤ 0,3	> 0,3 bis ≤ 0,6	Halbes QK nicht eingehalten	
≥III	> 6	> 0,3	> 0,6	QK nicht eingehalten	

▶ Beiblatt 2.1-5

Immissionskonzentrationen für Stickstoff und Phosphor im Bearbeitungsgebiet Obere Ems

K Nr	Messstellen Name	ΛΟΧ μg/l	AOX P90	TOC mg/l	TOC P90
NRW					
1	AD WESTERL MÜHLE	×	×	8,07	10,98
2	SÜDLICH WESTERWIEHE	×	×	8,07	×
3	BROKER MUHLE	X	×	9,16	12,04
4	ÖLBAÇHQUELLE	7,20	14,00	1,50	2,22
5	V MDG IN DIF VWPFI	Х	×	8,70	12,43
E	UH MDG REIHERBACH	х	X	8,33	X
1	VOR MDG IN EMS	X	X	11,55	15,44
- 6	UH WINDEI SBI FICHE	31,11	42,00	10,65	12,31
9	WEGEBR HÖRSTE CASUM	×	×	5,55	х
10	UH, KA" IM RECKE"	х	×	6,29	×
11	E 1 OH KAIRHEINE IJ/SCHLOSS BENTLAGE	Х	X	8,10	X
12	E 7 ULL HEMBERGEN/TM	14,33	23,99	8,61	11,09
13	E 7A UH KA GREVEN-RECKENFELD	×	X	7,56	9,70
14	E 9 IN GREVEN	Х	X	8,43	X
15	F 18 UH KA WARENDORE	X	×	8,99	×
16	E 19 OH WARENDORF	×	×	6,54	×
17	E 14 UH KA TELGTE III/IM	18,58	29,99	9,27	13,96
18	W2 UH KAMS-HANDORF-MARIENDORF/TM	15,00	30,14	6,70	7,60

- x keine Probenahme / keine Wertangabe
- (*) Werte für Nitrat-Stickstoff (1245)
- (**) Worte für Phosphor, gesamt (1269)
- 1 N-Werte aus 1/2 BG berechnet

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Neurophili 27, 48141 Milaster

Umsetzung der Fürepärsehen Wasserrahmennehtlinne, Phase 1. Beständsaufriahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Eins

Beiblatt zu K 2.1 - 5:

Immissionskonzentrationen für Stickstoff und Phosphor im Bearbeitungsgebiet Obere Ems

► Beiblatt 2.1-5

Immissionskonzentrationen für Stickstoff und Phosphor im Bearbeitungsgebiet **Obere Ems**

K-Nr	Messstellen-Name	N r	nga	BUILDING ITEVA		P mg/l	1º mg/l	
19	W6 ULLKA ALBERSLOLL		3,90	×	(T	0,41	×	
20	W10 UH KA AHLEN		7,25	11,42		0,45	×	
21	W12 BEIZECHE WESTFALEN		1,80	×	C)	0,62	×	
22	W17 IN BECKUM		2,03	X	6)	0,13	X	
23	A7 ULLKA NEUBECKUM		2,58		Ü	0,52	×	
24	AB1 UTLKA ENNIGERLOTT	1	7,48	11,37	Г	0,34	0,84	177
25	A3 OH WOLBECK	1 :	2,59	×	C)	0,29	×	
26	E M2 BEI MÜHLE SCHULZE ZIMUSSEN		7,91	12,71		0,25	0,61	Θ.
27	F RE1 VOR EMS/UH ZKAMÜNSTER		1,94	×	Ü	0,33	×	(7)
28	E 20 NEUE MÜHLE/TM	1	5,28	6,17	Г	0,13	0,23	
29	MSHE2 UH KA HAVIXBECK	1	7,05	12,21		0,45	0.80	5
30	MSHE1 OH KA HAVIXBECK		1,52	11,37		0.29	0.75	0
	FLA1 VOR EMS/TM		5,97	7,74	Г	0,10	0,14	
32	ELAVA ULLIKA LENGERICH	1	3,50	×	(T	0,35	×	6.5
33	EHM2 UH WWK RHEINE/TM	1	1,92	6,20		0.05	0.08	
34	E F2 OH RB HAUENHORS I/IM	1 .	5.28	9.44		0.08	0.11	
35	E 1A UH KARHEINE-NÜRD/IM	1	5,05	8,33		0.19	X	
	I1 OLLSPELLE/TM	1	5,88	7,07	\vdash	0,09	0,13	
37	19 VOR AASEE	1	4.41	×	PT	0.10	×	
38	MAUH WIBARCO/ECI		1.43	×	les.	0.11	×	
39	E /B OH KA CREVEN		4,68	9.02		0.16	0,23	Ю
	E 19A OH KA WARENDORE		5,12	×	CT.	0.15	×	6.3
41	EAS OH KA OELDE	1	7.58	12.15	\vdash	0.13	×	
42	EA7A UH KA OELDE	1	5.33	10.69	\vdash	0.29	0.58	1-7
43	IS UH AASEE/OH FAICRESPEL I DEITERS		3,64	×	Œ.	0.11	×	
	FLAA4 OH KAT ENGERICH		3,00	×	(.)	0.20	×	
	ELACTE OTTELUGITAEEN MS OS	1	8.86	10.34	-	0.10	0.14	
46	ETNG1 UH KANIENBERGE-HAGER	+	9.70		PT	0.40	×	17
47	WI1A OH OLFE II		1.68	10.99		0.38	0.58	
48	WOIII UH KA AHLEN	1	9,51	12,70	\vdash	0,56	0.83	57
	W5A OH EMMERBACH/TM		3.20	12.19	\vdash	0.27	0.47	6.5
51	W2B OH KAMÜNSTER HANDORF	+	8,13	10.92	\vdash	0.17	0.24	175
	WEH2 UH KA ASCHEBERG-HERBERN		5.42	12.88		0.58	0.86	
	WEH3 OH KA ASCHEBERG-HERBERN		3.12	×		0,08	x	
	WE1 BW VOR WERSE		1,68		r)	0.25	×	-
	AB2 OH KA ENNIGERLOH	1	8,76	×	_	0.19	×	250
	A5 OH VOSSBACH		3,24		127	0.31	× ×	
	A9A QUELLBACH		1.95		n.	0.14	×	
	I9A OH LAGGENBECKER MHI B		3.90	×	(°)	0.11	×	
	WOUNG! BELLIOF SCHEMWAN		4 44	14.85	-	0.22	0.37	(*1)
	E M2A OH HAGENBACH		8,69		_	0,22		(-)

x keine Probenahme / keine Wertangabe

Flussgehietseinheit Ems, Bearheitungsgehiet Obere Ems

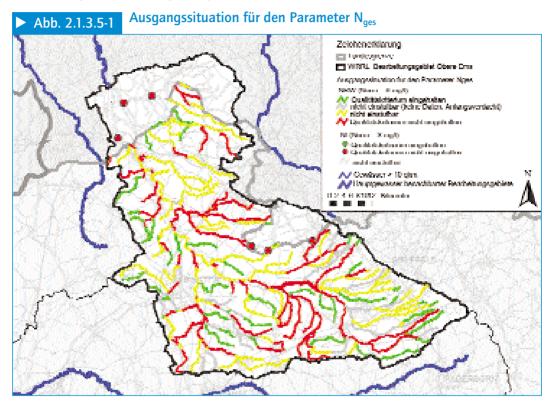
Beiblatt zu K 2.1 - 5:

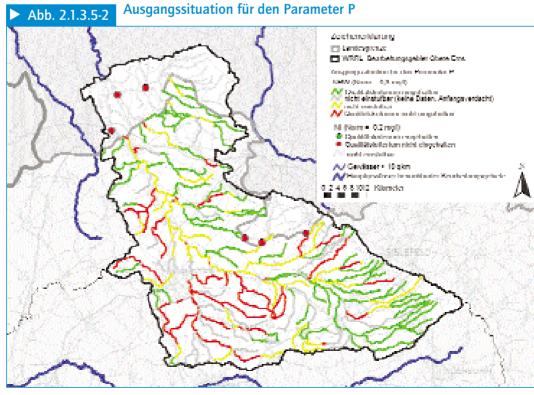
Immissionskonzentrationen für Stickstoff und Phosphor im Bearbeitungsgebiet Obere Ems

^{(*) -} Werte für Nitrat-Stickstoff (1245) (**) - Werte für Pheepher, gesamt (1269) 1 - N-Werte aus 1/2 BC berechnet

► Beiblatt 2.1-5

Immissionskonzentrationen für Stickstoff und Phosphor im Bearbeitungsgebiet Obere Ems


K Nr.	Messetellen Name	Nmg/l	N P90	Pmg/	P P90
NI.					
61	Heesten	6,69	9,26	0,13	0,17
62	Hengelage	9,22	11,10	0,31	0,45
63	Hesselle	5,74	6,78	0,15	0,17
64	Salzbergen	6,56	8,84	0,16	0,24
65	Schwege	8,26	9,79	0,11	0,13
66	Sudendorf	7,52	9,38	0,14	0,17


Flussgehietseinheit Ems, Bearheitungsgehiet Obere Ems

Beiblatt zu K 2.1 - 5:

Immissionskonzentrationen für Stickstoff und Phosphor im Bearbeitungsgebiet Obere Ems

Die Nährstoffbelastung der einzelnen Gewässer ist in den folgenden Abbildungen dargestellt:

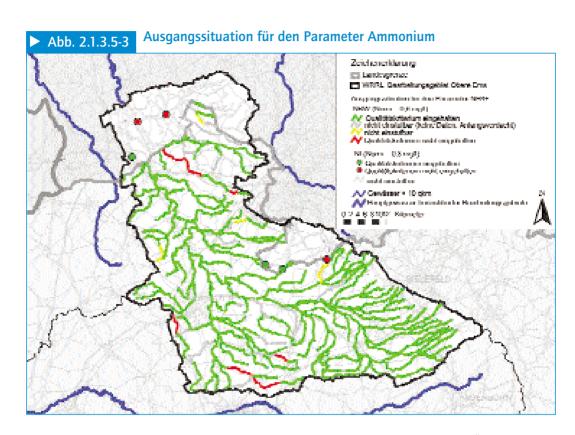
Der Gesamteindruck aus Abb 2.1.3.5-1 zeigt für den Parameter Stickstoff (Nges), dass ein großer Teil des Bearbeitungsgebiets Überschreitungen des Qualitätskriteriums aufweist. Hohe Viehdichten sind laut der Landwirtschaftskammer Nordrhein-Westfalen (LK-NRW) vor allem bei den Gewässern Emmerbach, Emsdettener Mühlenbach, Frischebach (Wambach), Ibbenbürener Aa (Dreierwalder Aa) und Voltlager Aa als Ursache für die Überschreitungen zu nennen. Generell kann nach Auffassung der LK-NRW ein direkter Zusammenhang zwischen hohen Stickstoff-Konzentrationen und zu geringen Gülle-Lagerkapazitäten auf den Höfen hergestellt werden. Es gibt aber Beispiele erfolgreicher Kooperation zwischen Landwirtschaft und Wasserwirtschaft: Am Frischhofsbach ist trotz hoher Viehdichten (> 2 Großvieheinheiten pro Hektar) keine übermäßige Stickstoffbelastung festzustellen.

Die Belastung für den Parameter Stickstoff $(N_{\rm ges})$ ist wasserkörperspezifisch in Tabelle 2.1.3.6-9 am Ende des Kapitels 2.1.3.6 aufgeführt.

Phosphor gelangt im Gegensatz zu Stickstoff überwiegend in gebundener Form in die Gewässer. Als Haupteintragspfad für Phosphor wird deshalb der partikulär gebundene Transport an Bodenpartikeln angesehen. Eine Überlagerung mit der Karte der Gewässerlandschaften zeigt, dass vornehmlich die Gewässer der Verwitterungsgebiete, Flussterrassen und Moränengebiete mit Phosphor belastet sind. Diese Landschaft, vor allem am Oberlauf der Werse gelegen, wird auch als Kleimünsterland bezeichnet. Diese schwereren Böden weisen eine erhöhte Erosionsgefahr und höhere pH-Werte auf. Die erhöhten pH-Werte führen zu einer stärkeren Verfügbarkeit des Phosphors. Bei niedrigen pH-Werten ist der Phosphor dagegen schwerer löslich als Phosphor-Aluminium- oder Phosphor-Eisenkomplex festgelegt.

Neben diffusen Stickstoff- und Phosphorquellen gibt es einige auffällige punktuelle Quellen durch einzelne kommunale und industrielle Abwasserbehandlungsanlagen sowie durch Mischwassereinleitungen. Insbesondere im eher industriell geprägten Oberlauf der Ems scheinen hierin die Hauptursachen für die Stickstoff- und Phosphorbelastungen zu liegen. Grundsätzlich ist anzumerken, dass die kleineren Kläranlagen im Vergleich höhere Phosphorkonzentrationen emittie-

ren und vor allem an den kleineren Gewässern in den Oberläufen zur Überschreitung des Qualitätszieles führen. Obwohl alle Kläranlagen die gesetzlichen Überwachungswerte einhalten, können ihre Einleitungen damit standortbedingt zu Überschreitungen im Gewässer führen. Wie Abb. 2.1.3.5-2 zeigt, wurden auch an allen sechs niedersächsischen Messstellen Überschreitungen des Qualitätskriteriums gemessen.


Für viele Gewässer bzw. Gewässerabschnitte konnte aufgrund fehlender Daten bisher keine Einstufung vorgenommen werden. Eine abschließende Bewertung ist nach Durchführung WRRL-konformer Monitoringprogramme zu erwarten.

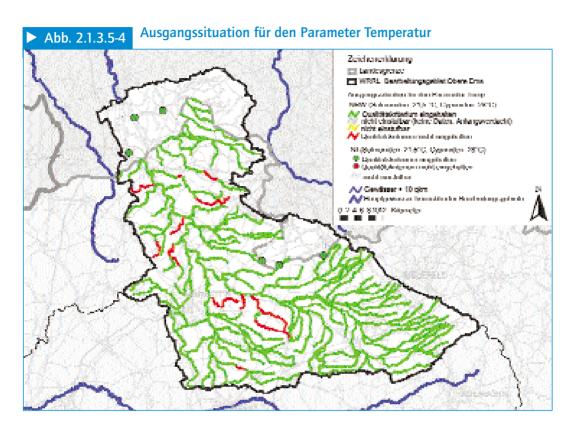
Die Belastung für den Parameter Phosphor (P) ist wasserkörperspezifisch in Tabelle 2.1.3.6-9 am Ende des Kapitels 2.1.3.6 aufgeführt.

Der überwiegende Teil des Bearbeitungsgebiets weist keine Belastungen durch Ammonium auf. Nur abschnittsweise treten erhöhte Ammoniumkonzentrationen auf. Zu nennen sind im Süden des Bearbeitungsgebiets insbesondere die Werse, die Angel und der Kannenbach. Im Norden treten Ammoniumbelastungen in der Ibbenbürener Aa (Dreierwalder Aa, Speller Aa) sowie an der Messstelle Beesten in der Großen Aa auf. Im Westen des Bearbeitungsgebiets weist die niedersächsische Messstelle Hengelage im Dissener Bach Überschreitungen des Qualitätskriteriums auf. Die Hauptursachen hierfür werden, obwohl die gesetzlichen Anforderungen bei allen Anlagen eingehalten werden, in den an den betroffenen Gewässerabschnitten gelegenen Kläranlagen gesehen. Lediglich für den Kannenbach konnte noch keine Belastungsquelle lokalisiert werden.

Bei der Ibbenbürener Aa (Dreierwalder Aa, Speller Aa) führt zusätzlich die Einleitung salzbelasteter Grubenwässer zu einer Behinderung der Nitrifizierung im Gewässer. Hierdurch bleibt die Ammoniumbelastung durch die Einleitung unzureichend gereinigter Abwässer in der Ibbenbürener Aa (Dreierwalder Aa) bestehen.

Vereinzelt gibt es auch Gewässerabschnitte die bisher nicht abschließend eingestuft werden konnten.

Temperatur


Ständige Temperaturabweichungen vom typspezifischen Wert bzw. punktuelle oder temporäre Temperaturschwankungen haben einen erheblichen Einfluss auf die Gewässerbiozönose. Die Fischgewässerrichtlinie der EG hat daher für Cypriniden- und Salmonidengewässer Grenzen festgelegt, die im Rahmen der Beschreibung der Ausgangssituation als Kenngrößen für die Beurteilung herangezogen wurden.

Wie Abb. 2.1.3.5-4 zeigt, gibt es Überschreitungen des Qualitätskriteriums in einem Gewässerabschnitt der Ibbenbürener Aa (Dreierwalder Aa) unterhalb des Ibbenbürener Aasees. Die Ursache liegt hier in der Stauhaltung und der mangelnden Beschattung des ausgebauten Gewässers.

Die Einleitung von erwärmtem, gereinigtem Abwasser aus Kläranlagen führt in einigen Fällen ebenfalls zu Überschreitungen. Betroffen sind die Gewässer Maarbecke und die Werse unterhalb von Beckum. Der Gewässerausbau und ins-

► Tab. 2.1.3.5-3 Qualitätskriterien für den Parameter Temperatur in NRW

Immissionsansatz Cypriniden- gewässer gewässer		Emissio	nsansatz	Ausgangs-	Band-
		Einleitung	Grenz- temperatur	situation	farbe
Maximale	Maximale	Q _{Einl.} > 10 % MNQ	T _{Einl.} > 25 °C	QK nicht eingehalten	
Jahrestemperatur	Jahrestemperatur				
> 28 °C	> 21,5 °C				
Maximale	Maximale	$Q_{Einl.} \le 10 \% MNQ$	T _{Einl.} > 27 °C	QK nicht eingehalten	
Wintertemperatur	Wintertemperatur		und Δ T > 1,5 K		
> 10 °C	> 10 °C				
Maximale	Maximale			QK nicht eingehalten	
Aufwärmung durch	Aufwärmung durch				
Einleitung > 3 K	Einleitung > 1,5 K				

besondere die fehlende Beschattung sind Ursache für die zeitweise erhöhten Temperaturen in den Gewässern Brüggenbach, Kreuzbach, Flothbach, Walgenbach, Wambach, Mussenbach und Hemelter Bach.

pH-Wert

Der pH-Wert kann – wie die Temperatur – die Biozönose deutlich beeinflussen. Dabei ist aber zu berücksichtigen, dass natürlicherweise in Abhängigkeit von den geologischen und pedologischen Verhältnissen höhere oder niedrigere pH-Werte vorkommen können. Der pH-Wert wird zukünftig typspezifisch festzulegen sein.

Mit Blick auf die Versauerungsproblematik der Gewässer kommt dem pH-Wert ein besonderer Stellenwert zu.

Zudem können auch alkalische pH-Werte in Kombination mit erhöhten Ammoniumgehalten zur Bildung des fischtoxischen Ammoniaks führen.

Im Rahmen der Bestandsaufnahme wird aufgrund der natürlichen Spannbreite gegenüber den von der LAWA vorgeschlagenen Zielvorgaben in Nordrhein-Westfalen eine Aufweitung des zulässigen Wertebereichs vorgenommen. Er wird dem Grenzbereich für die Existenz von Mikroorganismen, Kleinlebewesen und Fischen von fünf bis neun (UBA Texte 15/03: Leitbildorientierte physikalisch-chemische Gewässerbewertung) angepasst (Tab. 2.1.3.5-4).

In Niedersachsen gilt für pH-Werte pH < 6 und pH > 9 das Qualitätskriterium als nicht eingehalten.

► Tab. 2.1.3.5-4 Qualitätskriterien für den Parameter pH-Wert in NRW

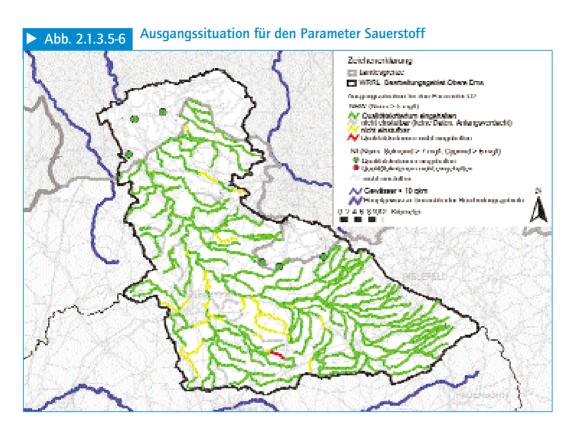
Chemische Güteklassen	pH-Wert	Ausgangssituation	Bandfarbe
≤II	MIN < 5	QK nicht eingehalten	
11 – 111	alle Werte: 5 bis 9	QK eingehalten	
≥III	MAX > 9	QK nicht eingehalten	

Ist-Situation

Häufig treten pH-Wert-Verschiebungen in den alkalischen Bereich als Sekundäreffekt von Eutrophierungen auf. Massive Phytobenthosentwicklung führt zu starken Schwankungen der Sauerstoffkonzentrationen im Tagesverlauf. Einen ähnlichen Tagesgang zeigen auch die pH-Werte, wobei Spitzenwerte regelmäßig in der Mittagszeit gemessen werden.

Wie Abb. 2.1.3.5-5 zeigt, wird in allen Gewässern bzw. an allen niedersächsischen Messtellen im Bearbeitungsgebiet das Qualitätskriterium für den pH-Wert eingehalten.

Sauerstoff


Für viele Wasserorganismen ist eine ausreichende Versorgung mit Sauerstoff lebensnotwendig. Speziell im Sommer können starke Schwankungen des Sauerstoffgehalts zu Fischsterben führen. Um anspruchsvollen Fischarten wie auch anderen anspruchsvollen Wasserorganismen das Leben zu sichern, sollte der Sauerstoffgehalt nicht unter 6 mg/l abfallen (Tab. 2.1.3.5-5).

Der Sauerstoffgehalt wird primär durch die Belastung mit sauerstoffzehrenden Stoffen beeinflusst. Hierbei können Abwässer genauso wie eine erhöhte Algenproduktion Ursache sein. Bei Temperaturen über 15 °C ist, sofern erhöhte Ammoniumkonzentrationen vorliegen, die dann stattfindende Oxidation von Bedeutung.

In **Nordrhein-Westfalen** wurden die folgenden Qualitätskriterien angesetzt.

► Tab. 2.1.3.5-5 Qualitätskriterien für den Parameter Sauerstoff in NRW

Chemische Güteklassen	Wert (O ₂ mg/l)	Ausgangssituation	Bandfarbe
≤II	>6	QK eingehalten	
11 - 111	≤6 bis > 5		
≥Ⅲ	≤5	QK nicht eingehalten	

In Niedersachsen wurde als Qualitätskriterium die LAWA-Güteklasse II (6 mg/l) angesetzt.

Belastungen des Sauerstoff-Haushalts wurden ausschließlich an Nebengewässern der Ems festgestellt.

Die Einleitung von Abwasser führt in Verbindung mit den standortgegebenen Bedingungen (Dominanz der Einleitung aus der Kläranlage bei gleichzeitig geringer Wasserführung während der Vegetationsperiode) zur Nicht-Einhaltung des Qualitätskriteriums in der Angel unterhalb der Kläranlage Beckum-Neubeckum. Auch in der Maarbecke in Everswinkel besteht aufgrund der Kläranlageneinleitung Monitoringbedarf. In beiden Fällen wird zu prüfen sein, ob durch Verlegung der Einleitungsstelle das Qualitätskriterium für die Sauerstoffbelastung eingehalten werden kann.

Bei den Gewässern Werse, Emmerbach, Mussenbach und in Abschnitten des Axtbaches wird die Ursache für die geringeren Sauerstoffkonzentrationen in der Belastung des Sauerstoffhaushalts durch erhöhtes Algen- und Makrophyten-Wachstum gesehen. Die Ursache dafür wird in der fehlenden Beschattung zusammen mit der Verringerung der Fließgeschwindigkeit der ausgebauten Gewässer (Sekundärverschmutzung durch Autosaprobie) gesehen. Diese Sekundärbelastung wird auch als Ursache für die zeitweilige Belastung des Sauerstoffhaushalts in der Ibbenbürener Aa (Dreierwalder Aa) sowie der Münsterschen Aa unterhalb des dortigen Aasees gesehen.

In vielen weiteren Gewässerabschnitten kann die Kombination aller genannten Belastungen dazu führen, dass das Qualitätskriterium für den Parameter Sauerstoff nicht eingehalten werden kann.

Chlorid

Erhöhte Chloridkonzentrationen können zu Veränderungen der Gewässerbiozönose führen. Außerdem können Chloridkonzentrationen > 100 mg/l korrosive Wirkungen haben, weshalb aus Gründen des Trinkwasserschutzes eine Begrenzung erfolgt.

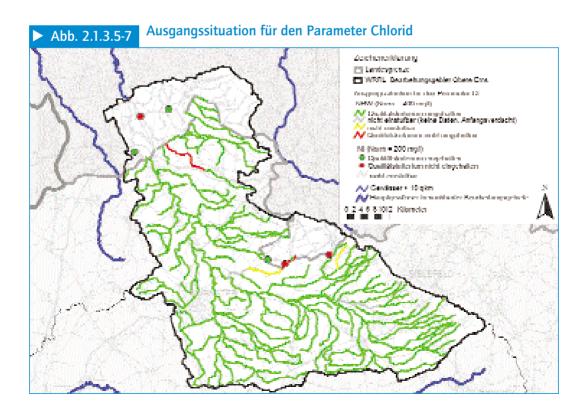
Haupteintragspfad für Chlorid ist der Steinkohle- und Kalibergbau. Daneben sind industrielle Eintragspfade (z. B. Sodaindustrie) von Bedeutung. Die Chlorid-Situation der einzelnen Gewässer ist in Abbildung 2.1.3.5-7 dargestellt.

► Tab. 2.1.3.5-6 Kriterien für Ist-Zustandsbeschreibung des Parameters Chlorid in NRW

Chemische Güteklassen	Wert (Chlorid mg/I)	Ausgangssituation	Bandfarbe
≤II - III	≤200	QK eingehalten	
III	> 200 bis ≤ 400	Halbes QK nicht eingehalten	
≥III - IV	> 400	QK nicht eingehalten	

In **Niedersachsen** wurde als Qualitätskriterium die LAWA – Güteklasse II (≤100 mg/l Cl) angesetzt.

Im Bearbeitungsgebiet Obere Ems gibt es drei Nebengewässer, die hinsichtlich des Parameters Chlorid auffällig sind.


In der Bever wurden Überschreitungen des ganzen Qualitätskriteriums festgestellt, die als geogen bedingt anzusehen sind.

Die Ibbenbürener Aa (Dreierwalder Aa) wird durch extrem salzhaltige Grubenwassereinleitungen aus dem Steinkohlebergbau bei Ibbenbüren massiv beeinträchtigt, die über den Pfad Ibbenbürener Aa, Dreierwalder Aa, Speller Aa und Große Aa auch in die Ems gelangen.

Überschreitungen wurden auch bei der niedersächsischen Messstelle Hengelage im Dissener Bach festgestellt.

Die Chloridbelastung des Bruchbaches (halbes QK) rührt aus der Einleitung des Solebades Ravensberg. Es liegen dort salzhaltige natürliche Quellen vor.

In der Lutter wurden ebenfalls Überschreitungen des halben Qualitätskriteriums im Betrachtungszeitraum festgestellt. Möglicher Verursacher ist die Kläranlage Obere Lutter, in deren Ablauf im Jahr 2000 und vorher Konzentrationen bis zu 800 mg/l gemessen wurden. Aktuelle Messungen liegen nicht vor. Der Industrieanteil der Kläranlage liegt bei etwa 70 %. Die bedeutendsten Indirekteinleiter lassen keine Vermutung auf eine Chlorid-Belastung zu, da im Anhang zur AbwVO für diese Branchen keine Beschränkung der Chlorid-Konzentration besteht. Andere Verursacher sind nicht bekannt.

2.1.3.6

Spezifische synthetische und nicht-synthetische Schadstoffe (Anhänge VIII – X)

Neben den biologischen, den hydromorphologischen und den allgemeinen chemisch-physikalischen Qualitätskomponenten ist nach Anhang V Ziffer 1.1.1 der Wasserrahmenrichtlinie die Verschmutzung durch spezifische synthetische und nicht-synthetische Schadstoffe zu berücksichti-

gen, bei denen festgestellt wurde, dass sie in signifikanten Mengen in den Wasserkörper eingeleitet werden.

Anhang VIII der WRRL listet ein breites Spektrum der spezifischen synthetischen und nichtsynthetischen Schadstoffe auf, wobei dieser Anhang bereits als "nicht erschöpfend" bezeichnet ist und zahlreiche Stoffgruppen enthält, die selbst wiederum Hunderte von Substanzen umfassen können.

► Tab. 2.1.3.6-1

Zu betrachtende spezifische synthetische und nicht-synthetische Schadstoffe

Gruppe	Erläuterung
А	Stoffe der Anhänge IX und X der WRRL: Gemäß Art. 16 werden für einzelne Schadstoffe bzw. Schadstoffgruppen spezifische Maßnahmen verabschiedet, die auf die Beendigung oder schrittweise Einstellung von Emissionen abzielen. Für die prioritären Stoffe ist von der EU-Kommission eine erste Liste von 33 Stoffen oder Stoffgruppen vorgelegt worden (s. Tabelle Gruppe A).
В	Stoffe bzw. Stoffgruppen der Liste I der Richtlinie des Rates vom 4. Mai 1976 betreffend die Verschmutzung infolge der Ableitung bestimmter gefährlicher Stoffe in die Gewässer der Gemeinschaft (Richtlinie 76/464 (Gefährliche Stoffe), ABI. EG Nr. L 129/23), für die gemäß Urteil des EuGH vom 11.11.1999 durch die "Gewässerprogramm- und Qualitätsziel-Verordnungen" der Länder aus dem Jahr 2001 Qualitätsziele festgelegt sind (NRW: Verordnung über Qualitätsziele für bestimmte gefährliche Stoffe und zur Verringerung der Gewässerverschmutzung durch Programme; Gewässerqualitätsverordnung (GewQV) vom 1. Juni 2001; GV. NRW. 2001, S. 227).
С	Stoffe bzw. Stoffgruppen der Liste I der Richtlinie 76/464/EWG (Stoffnummern), für die durch die GewQV NRW aus dem Jahr 2001 keine Qualitätsziele festgelegt worden sind. Dabei handelt es sich um 33 zusätzliche Stoffe bzw. Stoffgruppen (Liste I-Stoffe: insgesamt 132, abzüglich der oben unter B genannten 99 durch die Qualitätsziel-Verordnungen bereits erfassten Stoffe), von denen für 23 bereits EU-weit geltende Umweltqualitätsnormen bestehen oder die in die Liste der prioritären Stoffe nach Anhang X WRRL aufgenommen worden sind. Diese Stoffe sind zwingend bei der Umsetzung der WRRL zu berücksichtigen, da für sie bereits zur Umsetzung der Richtlinie 76/464/EWG Qualitätsziele festzulegen gewesen wären. Da diese verbleibenden Stoffe der Liste I aber nicht von der Verurteilung der Bundesrepublik Deutschland durch das Urteil des EuGH vom 11.11.1999 erfasst waren, ist eine Aufnahme in die Gewässerqualitätsverordnung unterblieben.
D	Stoffe bzw. Stoffgruppen der Liste II der Richtlinie 76/464/EWG (32 Stoffe inklusive Cyanid), soweit sie in Flusseinzugsgebiete der Bundesrepublik Deutschland in signifikanten Mengen eingeleitet werden. Deren Berücksichtigung ist ebenfalls erforderlich, da auch hier die Festlegung von Umweltqualitätsnormen noch der vollständigen Umsetzung der Richtlinie 76/464/EWG dient.
E	Zusätzlich zu den Stoffen der Anhänge VIII bis X werden auch die Summenkenngrößen TOC und AOX sowie der Sulfat-Gehalt betrachtet, die ergänzende Aussagen über die stoffliche Belastung der Oberflächengewässer zulassen.
F	Zuletzt sind noch die Stoffe zu berücksichtigen, die in die Flussgebietseinheiten in signifikanten Mengen einge- leitet werden und in den Gruppen A bis E nicht erfasst sind.

► Tab. Gruppe A Stoffe der Anhänge IX und X der WRRL (prioritäre und prioritär gefährliche Stoffe)

	Verwendung/	Summenformel	Molmasse	CAS-Nr. *	log P _{ow} *
	Einsatz		g/mol		- ow
Alachlor	PBSM (Herbizid)	C ₁₄ H ₂₀ CINO ₂	269,8	15972-60-8	3,5
Atrazin	PBSM (Herbizid)	C ₈ H ₁₄ CIN ₅	215,7	1912-24-9	2,61
Bromierte Diphenylether	Flammschutz-			nicht	>6,0
	mittel			anwendbar	
C10-13 Chloralkane				85535-84-8	>4,8
Chlorfenvinphos	PBSM (Insektizid)	C ₁₂ H ₁₄ Cl ₃ O ₄ P	359,6	470-90-6	3,81
Chlorpyrifos	PBSM (Insektizid,	C ₉ H ₁₁ Cl ₃ NO ₃ PS	350,6	2921-88-2	4,96
	Ameisen)				
DEHP	Weichmacher	C ₂₄ H ₃₈ O ₄	390,6	117-81-7	9,64
Diuron	PBSM (Herbizid)	$C_9H_{10}CI_2N_2O$	233,1	330-54-1	2,68
Endosulfan	PBSM (Insektizid)	C ₉ H ₆ Cl ₆ O ₃ S	406,9	115-29-7	3,55 - 3,62
Hexachlorbenzol	Fungizid	C ₆ Cl ₆	284,8	118-74-1	5,73
Hexachlorbutadien	Nebenprodukt	C ₄ Cl ₆	260,8	87-68-3	4,78
	der Industrie				
Isoproturon	PBSM (Herbizid)	C ₁₂ H ₁₈ N ₂ O	206,3	34123-59-6	2,87
Lindan, gamma-HCH	PBSM (Insektizid)	C ₆ H ₆ Cl ₆	290,8	58-89-9	3,72
(4-(para)-Nonylphenol)	Metabolit von anion. Tensiden	C ₁₅ H ₂₄ O	220,4	104-40-5	5,76
(4-(tert)-Octylphenol)	Metabolit von anion. Tensiden	C ₁₄ H ₂₂ O	206,3	140-66-9	5,28
Pentachlorbenzol	Abbauprod. von HCH, HCB	C ₆ HCl ₅	250,3	608-93-5	5,17
Pentachlorphenol	Holzschutzmittel	C ₆ HCl ₅ O	266,3	87-86-5	5,12
PAK	Verbrennung unter O ₂ -Mangel				
Naphthalin	2 3	C ₁₀ H ₈	128,2	91-20-3	3,33
Anthracen		C ₁₄ H ₁₀	178,3	120-12-7	4,45
Fluoranthen		C ₁₆ H ₁₀	202,3	206-44-0	4,97
Benzo(b)fluoranthen		C ₂₀ H ₁₂	252,3	205-99-2	6,04
Benzo(k)fluoranthen		C ₂₀ H ₁₂	252,3	207-08-9	6,57
Benzo(a)pyren		C ₂₀ H ₁₂	252,3	50-32-8	6,04 - 6,15
Benzo(ghi)perylen		C ₂₂ H ₁₂	276,3	191-24-2	7,23
Indeno(1,2,3-cd)pyren		C ₂₂ H ₁₂	276,3	193-39-5	4,19
Schwermetalle	Industrie	22 12	,		,
Blei		Pb	207,2	7439-92-1	
Cadmium		Cd	112,4	7440-43-9	
Nickel		Ni	58,7	7440-02-0	
Quecksilber		Hg	200,6	7439-97-6	
Simazin	PBSM (Herbizid)	C ₇ H ₁₂ CIN ₅	201,7	122-34-9	2,18
Tributylzinnhydrid (TBT)	Biozid	C ₁₂ H ₂₈ Sn	291,0	688-73-3	,
Trichlorbenzole	Abbauprodukt von HCH	C ₆ H ₃ Cl ₃	181,5	12002-48-1	
1,2,4-Trichlorbenzol		C ₆ H ₃ Cl ₃	181,5	120-82-1	4,02
Trifluralin	PBSM (Herbizid)	C ₁₃ H ₁₆ F ₃ N ₃ O ₄	335,3	1582-09-8	5,07

^{*} siehe Abkürzungsverzeichnis

Weitere Stoffe sind gemäß Anhang IX WRRL zu betrachten. Anhang IX nimmt Bezug auf die Tochterrichtlinien der Richtlinie 76/464/EWG, in denen bereits Emissionsgrenzwerte und Qualitätsziele festgelegt wurden. Anhang X der WRRL enthält eine erste Liste der 33 sogenannten prioritären und prioritär gefährlichen Stoffe, für die gemäß Artikel 16 spezifische Maßnahmen zur schrittweisen Verringerung bzw. Einstellung von Einleitungen, Emissionen und Verlusten verabschiedet werden sollen.

Im Rahmen der Bestandsaufnahme werden alle Stoffe betrachtet, für die im Bearbeitungsgebiet Obere Ems aus bisherigen Messprogrammen eine belastbare Datenbasis vorliegt. Die Festlegung von Messprogrammen hat sich dabei an regionalen Besonderheiten, an vorhandenen Richtlinien und Verordnungen und nicht zuletzt an Expertenwissen orientiert.

Folgende Stoffe sind demnach im Bearbeitungsgebiet Obere Ems näher betrachtet worden:

► Tab. 2.1.3.6-2

Im Bearbeitungsgebiet Obere Ems betrachtete spezifische synthetische und nicht-synthetische Schadstoffe

Stoffgruppe	Stoff	Gruppe gem. Tab. 2.1.3.6-1	Stoffgruppe	Stoff	Gruppe gem. Tab. 2.1.3.6-1
Summenparameter	AOX	E	Pflanzen-	AMPA	F
	TOC	E	schutzmittel	Diuron *	А
Salze	Sulfat	Е		Isoproturon *	А
	Chlorid	F		Metamitron	F
Metalle	Arsen	D		Metazachlor	D
	Zinn	D		Metolachlor	D
	Blei *	Α		Mecoprop	D
	Bor	D		Simazin *	Α
	Cadmium *	Α		Desethylterbutylazin	F
	Nickel *	А		Atrazin	Α
	Zink	D	Sonstige	Benzo(a)pyren (PAK) *	А
	Chrom	D		Fluoranthen (PAK)*	Α
	Kupfer	D		Carbamazepin	F
	Selen	D		Nitrilotriessigsäure (NTA)	F
	Tellur	D		Bisphenol A (BPA)	F
	Quecksilber*	Α		Nitrit	F
	Barium	D		EDTA	F
	Antimon	D		Ethofumesat	F
				Chloridazon	F
				Gamma-Hexachlor-	Α
				cyclohexan	
				PCB (Kongenere 101, 138, 153, 180, 52)	D

^{*} prioritärer Stoff

Der Ist-Zustand der Gewässer mit Blick auf die spezifischen synthetischen und nicht-synthetischen Schadstoffe wird anhand der von der LAWA in der Musterverordnung zur Umsetzung der Anhänge II und V1 der WRRL vereinbarten Umweltqualitätsnormen eingeschätzt. Die in der Musterverordnung genannten Qualitätsnormen orientieren sich zum Teil an den Qualitätszielen der Länderverordnungen zur Umsetzung der Richtlinie 76/464/EWG (Gewässerqualitätszielverordnungen: GewQV), zum Teil an ökotoxikologischen Kriterien. Für Stoffe, für die weder in der GewQV noch in der Musterverordnung der LAWA Qualitätskriterien genannt sind, werden pauschal 0,1 µg/l für Pflanzenschutzmittel und 10 μg/l für sonstige organische Mikroverunreinigungen festgelegt.

Die GewQV in Nordrhein-Westfalen sieht vor, dass Stoffe, bei denen das halbe Qualitätsziel überschritten wird, weiter überwacht werden. Demnach besteht auch nach WRRL in solchen Fällen Monitoringbedarf. Überschreitungen des halben Qualitätsziels wurden in Nordrhein-Westfalen gesondert gekennzeichnet.

Die generellen Darstellungsmodi sind in Kapitel 2.1.3.1 wiedergegeben.

Für die spezifischen synthetischen und nichtsynthetischen Schadstoffe liegen aus der Intensiv- und Trendüberwachung der Fließgewässer (Gewässergüteüberwachung) Daten vor. Hierbei wurde nicht an jeder Trendmessstelle jeder Schadstoff gemessen, vielmehr sind die Messprogramme unter Berücksichtigung der jeweiligen regionalen Situation festgelegt worden.

Die Messstellen, an denen die spezifischen synthetischen und nicht-synthetischen Schadstoffe überwacht werden, sind in der Regel an "repräsentativen" Gewässerpunkten gewählt worden.

In Nordrhein-Westfalen wurden die punktuellen Daten an der Messstelle unter Berücksichtigung von Daten zur Belastungssituation und unter Hinzuziehung von Expertenwissen auf das durch die Messstelle repräsentierte Gewässernetz übertragen. Die Methodik hierzu ist wie in Kap. 2.1.3.1 beschrieben.

In **Niedersachsen** sind Ergebnisse an den Messstellen im Folgenden als Punktdaten mit der Unterscheidung "Qualitätskriterium nicht eingehalten" oder "Qualitätskriterium eingehalten" dargestellt.

Datenbasis für die Beschreibung der Ausgangssituation hinsichtlich der spezifischen synthetischen und nicht-synthetischen Schadstoffe war das Jahr 2002 oder, falls in 2002 nicht genügend Daten vorlagen, die Jahre 1999 – 2002. In Niedersachsen wurden auch Daten aus dem Jahr 2003 einbezogen.

Zur Prüfung auf Einhaltung der Qualitätsziele/ Qualitätskriterien wurde entsprechend der in der LAWA-Musterverordnung getroffenen Vereinbarung der Mittelwert der Messwerte eines Jahres herangezogen (für TOC, AOX und Sulfat 90-Perzentil). Waren weniger als drei Messwerte pro Jahr vorhanden, wurde das Datenkollektiv gemäß LAWA-Vorgabe (s. o.) erweitert.

Summenparameter (TOC, AOX)

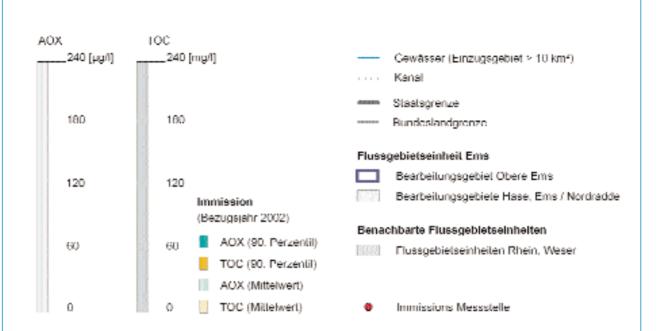
Der Summenparameter TOC gibt einen Hinweis auf die Belastung der Gewässer mit organischen Stoffen. Der Summenparameter AOX erfasst die im Gewässer vorhandenen adsorbierbaren organischen Halogenverbindungen und lässt damit einen Rückschluss auf entsprechende Schadstoffe, deren Einzelanalytik sehr aufwändig ist, zu. Einige der über den Parameter AOX erfassten Einzelstoffe sind aufgrund ihrer ökotoxikologischen Bedeutung oder Persistenz bereits in sehr geringen Konzentrationen relevant.

Für TOC und AOX wurden in **Nordrhein-Westfalen** gemäß chemischer Güteklassifizierung der LAWA die nachfolgend aufgeführten Qualitätskriterien verwendet.

 $^{^{1}\,}$ LAWA: Musterverordnung zur Umsetzung der Anhänge II und V der WRRL, www.wasserblick.net

► Tab. 2.1.3.6-3 Qualitätskriterien für die Parameter TOC und AOX in NRW

Güteklassen	TOC (mg/l)	AOX (μg/l)	Ausgangssituation	Bandfarbe
≤II	≤5	≤ 25	QK eingehalten	
11 - 111	> 5 bis 10	>25 bis 50	Halbes QK nicht eingehalten	
≥	> 10	> 50	QK nicht eingehalten	


In **Niedersachsen** wurde als Qualitätskriterium die LAWA-Güteklasse II (≤ 5 mg TOC/l, ≤ 25 μ g AOX/l) angesetzt.

TOC wird über kommunale und industrielle Kläranlagen, über Misch- und Regenwassereinleitungen aber auch natürlich (z.B. Falllaub) in die Gewässer eingetragen. Abgestorbene Algen sowie Abschwemmungen von landwirtschaftlichen Flächen tragen ebenfalls zur TOC-Belastung der Gewässer bei.

Adsorbierbare organische Halogenverbindungen (AOX) werden über industrielle und kommunale Einleitungen, zum Teil aber auch geogen bedingt, in die Gewässer eingetragen. Ihr Einsatz erstreckt sich auf Löse- und Verdünnungsmittel, Extraktionsmittel, Chemische Reinigung, Kälte- und Feuerlöschmittel, Treibgase, Desinfektions- und Konservierungsmittel, Kunststoffe, Weichmacher, Holzschutzmittel, Medikamente u.v.m.

▶ Beiblatt 2.1-6 Immissionskonzentrationen für TOC und AOX im Bearbeitungsgebiet Obere Ems

K-Nr	Messstellen-Name	AOX µg/l	AOX P90	TOC mg/l	TOC POD
NRW					
1	AD WESTERLMUHLE	X	X	8,07	10,98
2	SUDLICH WESTERWIEHE	×	×	8,07	X
3	BROKER MÜHLE	Х	×	9,16	12,04
4	ÓLBACHQUELLE	7,20	14,00	1,50	2.22
5	V MDG IN DIE WAPEL	X	X	8,70	12,43
6	UH MDG REIHERBACH	x	×	8,33	×
/	VOR MDC IN EMS	х	×	11,55	15,44
8	UH WINDEI SBI EICHE	31,11	42,00	10,65	12,31
9	WEGEBR HÖRSTE CASUM	X	X	5,55	х
10	UH. KA "IM RECKE "	×	X	6,29	
- 11	E 1 OH KAIRHEINE IVSCHLOSS BENTLAGE	X	×	8,10	×
12	F 7 UH HEMBERGEN/TM	14,33	23,99	8,61	11,09
13	E 7A UH KA GREVEN RECKENFELD	×	X	7,58	9,70
14	E 9 IN GREVEN	X	X	8,43	
15	E 18 UH KA WARENDORF	X	×	8,99	×
16	F 19 OH WARENDORF	×	×	6,54	×
17	E 14 UH KATELGTE IIVTM	18,58	29,99	9,27	13,96
18	W/ ULLKAMS HANDORF MARIENDORF/TM	15,00	30,14	6,70	7,60

x keine Probenahme / keine Wertangabe

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Neringhoff 22, 48147 Montes

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Plussgebietseinheit Ems, Bearheitungsgebiet Obere Ems

Beiblatt zu K 2.1 - 6:

Immissionskonzentrationen für TOC und AOX im Bearbeitungsgebiet Obere Ems

▶ Beiblatt 2.1-6 Immissionskonzentrationen für TOC und AOX im Bearbeitungsgebiet Obere Ems

K-Nr	Messstellen-Name	AUX µg/l	AOX P90	TOC mg/l	TOC P90
19	WS ULLKA ALBERSLOTE	×	×	6,08	×
20	W10 UH KA AHLEN	×	X	6,70	8,24
21	W12 BEIZECHE WESTFALEN	X	×	6,36	×
22	WI / IN BECKUM	X	X	4,08	X
23	AZ ULI KA NEUBECKUM	Х	×	6,34	х
24	AB1 UH KA ENNIGERLOH	×	X	11,51	15,43
25	A3 OH WOLBECK	X	×	7,12	×
26	E M2 BEI MUHLE SCHULZE ZIMUSSEN	×	×	7,54	9,29
28	E 20 NEUE MÜHLE/TM	18,92	28,24	10,32	14,41
29	MSHE2 UH KAHAWXBECK	×	X	6,44	8,04
30	MSHE1 OH KA HAVIXBECK	×	x	5,92	8,17
31	ELA1 VOR EM\$/TM	17,31	31,95	8,75	12,02
33	EHM2 UH WWK RHEINE/TM	17,15	29,48	9,00	13,72
34	E F2 OH RB HAJENHORST/TM	35.85	55.24	12.09	17,31
	E 1A UH KARHEINE-NORD/TM	17.33	29.14	8,68	11.24
36	IT OH SPELLE/IM	36.77	63.81	7.19	9,63
	19 VOR AASEF	×	×	6.67	2
	I4A ULL WIBARCO/FCI	×	×	6,51	7.81
	E 7B OH KA GREVEN	×	, , , , , , , , , , , , , , , , , , ,	8.09	11,72
	E 19A OH KA WARENDORF	×	×	8,87	
	EAR OH KA OELDE	X	×	5,85	9,10
	EAZA ULI KA OFI DE	×	×	7.54	9 40
	IR UH AASEE/OH FA CRESPEL+DEITERS	×	- X	8,79	11,00
	ELAE1E OH FLUCHAFEN MS-OS	×	×	9.25	11.14
	E ING1 UH KANIENBERGE-HÄGER	×	×	11,03	, , , , ,
	W11A OH OFFE II	×	×	5,61	7,51
	WOIT UITKA VILEN	×		8.65	10,31
	W5A OH EMMERBACH/TM	17,17	24.33	7.34	9.82
	W2B OH KAMUNSTER-HANDORF		,	, , , ,	
	WEH2 UH KA ASCHEBERG-HERBERN	X	×	6,62 7,39	7,42 14.87
	WFH3 OH KA ASCHEBERG-HERBERN	×		5.90	11,01
	WE1 BW VOR WERSE	×	X	6.62	
		×	X.		
	AB2 OH KA ENNIGERLOH A5 OH VOSSBACH	X	X	6,14	×
		×	×		×
	A9A QUELL BACCII	×	×	5,08 6,18	x
	I9A OH LAGGENBECKER MHLB.	×			
	WOIING1 BEITHOF SCHEMMANN F M2A OH HAGENBACH	X	X	5,06	9,34
650)	E MZA (JH HAGENBA) H	×	×	7,61	10,14
NE					
61	Recesten	49,75	×	12,78	15,80
62	Hengelage	×	X	11,23	16,00
63	Hesselte	61,60	×	9,02	11,80
64	Şalzbergen	45,67	×	8,78	10,00
65	Schwege	×	×	8,43	9,91

x - keine Probenahme / keine Wertangabe

Flussgehietseinheit Ems, Bearheitungsgehiet Obere Ems

Beiblatt zu K 2.1 - 6:

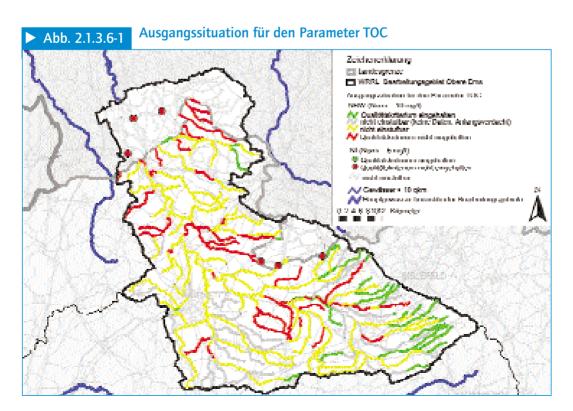
Immissionskonzentrationen für TOC und AOX im Bearbeitungsgebiet Obere Ems

TOC

Die Ausgangssituation für TOC in den einzelnen Gewässern im Bearbeitungsgebiet ist in Abbildung 2.1.3.6-1 dargestellt. Bezogen auf Wasserkörper ist die Situation in Tabelle 2.1.3.6-9 am Ende dieses Kapitels aufgeführt.

Der weitaus größte Teil des Bearbeitungsgebiets weist Überschreitungen des halben Qualitätskriteriums sowie in einigen Gewässerabschnitten eine Überschreitung des ganzen Qualitätskriteriums auf.

Im eher industriell geprägten Oberlauf der Ems sind die Ursachen hauptsächlich in punktuellen Belastungsquellen zu sehen. Zu nennen sind hier die Gewässer Ölbach, Laibach, Lutter und die Ems nach Einmündung der Lutter.


Die Lutter wird durch die Einmündung ihrer Zuflüsse Trüggelbach, Reiherbach, Welplagebach und Lichtebach sowie die Abwassereinleitung aus der Kläranlage Obere Lutter stark belastet. In den Einzugsgebieten der genannten Zuflüsse befinden sich viele Gewerbe- bzw. Industriebetriebe wie die Firma Mannesmann und die Textilfirma Windel.

Der Ölbach ist hauptsächlich durch den Zufluss des Alten Ölbaches, der durch Regenwassereinleitungen, Einleitungen aus Gewerbegebieten und der Kläranlage Verl West belastet wird, beeinträchtigt.

Überschreitungen finden sich auch an allen drei niedersächsischen Messstellen im Bereich der Oberen Bever (Bever, Dissener Bach, Glaner

Im landwirtschaftlich geprägten Unterlauf der Ems im Bearbeitungsgebiet sind nur in wenigen Fällen Punktquellen als Ursache der TOC-Belastung auszumachen. Überwiegend ist von einer flächenhaften Belastung auszugehen. Teilweise spielt dabei die landwirtschaftliche Nutzung ehemaliger (Nieder-)Moorstandorte die Hauptrolle. Hier werden in hohen Konzentrationen organische Stoffverbindungen (Humin- und Fulvostoffe) ausgetragen, die dann bei der TOC-Bestimmung für erhöhte Messwerte sorgen. Die drei niedersächsischen Messstellen in der Großen Aa, der Speller Aa und der Ems weisen ebenfalls eine TOC-Belastung auf.

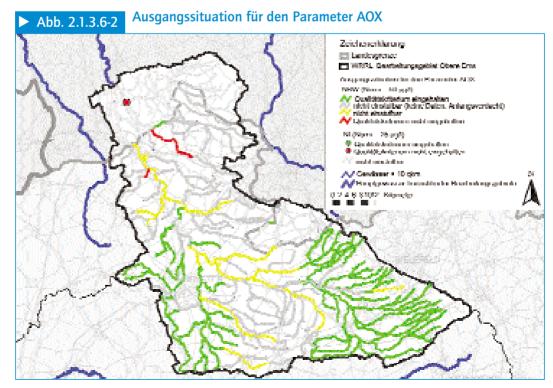
Neben den oben angesprochenen TOC-Quellen ist auch die Regenwasserkanalisation von Bedeu-

tung. Da Messdaten methodisch bedingt weitestgehend fehlen, ist man bei der Abschätzung des Frachtanteils der Regenwasserkanalisation auf die Auswertung von Literaturdaten angewiesen (siehe Kap. 3.1.1.3).

AOX

Die Ausgangssituation für AOX in den einzelnen Gewässern des Bearbeitungsgebiets ist in Abbildung 2.1.3.6-2 dargestellt. Bezogen auf Wasserkörper ist die Situation in Tabelle 2.1.3.6-9 am Ende dieses Kapitels aufgeführt.

Ein deutlicher Belastungsschwerpunkt ist die Ibbenbürener Aa (Dreierwalder Aa) ab dem Zulauf der Püsselbürener Klärteiche bei Ibbenbüren. Diese Belastung findet sich ebenfalls an der niedersächsischen Messstelle Hesselte (Speller Aa). Als zweiter Belastungsschwerpunkt ist der Unterlauf des Frischhofsbaches lokalisiert worden. Hier treten regelmäßig in den Wintermonaten erhöhte AOX-Werte auf, deren möglicherweise natürliche Herkunft bisher noch nicht geklärt werden konnte.


An vereinzelten Nebengewässern der Ems wie dem Reiherbach, dem Axtbach, der Hessel, der

Bever, dem Aabach, dem Emsdettener Mühlenbach, der Glane und der Angel sowie im Oberlauf der Werse als auch in Abschnitten der Ems sind Überschreitungen des halben Qualitätskriteriums gemessen worden. Hier ist davon auszugehen, dass die Punktquellen, d. h. die industrielle und kommunale Abwasserbeseitigung, neben den Einleitungen aus der Regenwasserkanalisation, die Hauptquellen der Belastung darstellen.

Durch die Abwasserbehandlungsanlage der Firma Baxter (Asta Medica) werden Konzentrationen zwischen 60 und 90 mg/l als Jahresmittel in den Künsebecker Bach eingeleitet. Aufgrund der Belastung des Künsebecker Baches (< 10 km²) kann eine Belastung des Mündungsgewässers Laibach (Rhedaer Bach) zum jetzigen Zeitpunkt nicht ausgeschlossen werden.

Auch die Kläranlage Obere Lutter hat in ihrem Ablauf hohe AOX-Konzentrationen. Im Jahresmittel werden hier etwa 30 – 50 mg/l gemessen. Hier besteht ein Anfangsverdacht einer Belastung der Lutter.

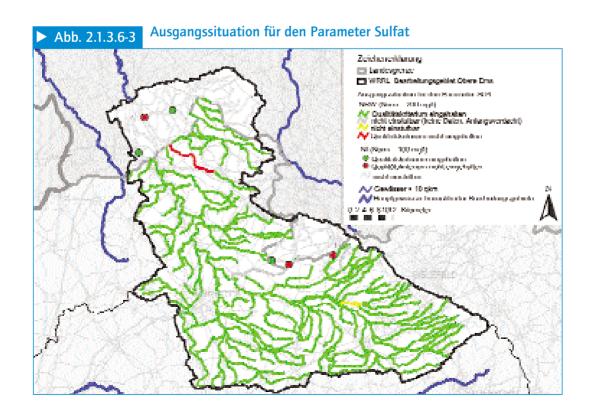
Durch Zufluss von Lutter und Laibach kann damit eine Belastung der Ems auf Höhe der Talgräben nicht ausgeschlossen werden. Messungen, die dies bestätigen, liegen jedoch noch nicht vor.

Salze

Sulfat

In neutralem Wasser ist Sulfat neben Chlorid (s. Kap. 2.1.3.5) und Hydrogencarbonat das vorherrschende Anion. Erhöhte Sulfatgehalte in Gewässern (oberhalb von 100 mg/l) deuten auf Industrie (Metallindustrie, Gerbereien, Chemiebetriebe) oder bergbauliche Einflüsse hin. Sulfat in hohen Konzentrationen greift Beton von Brückenpfeilern, Becken und Kanälen an.

Für den Parameter Sulfat sind die Qualitätskriterien gemäß der Chemischen Gewässergüteklassifikation der LAWA wie folgt zu beurteilen (in Anlehnung an die Gewässergüteklassen):


Qualitätskriterien für den Parameter SO₄ in NRW Tab. 2.1.3.6-4

Güteklassen	Sulfat (mg/l)	Ausgangssituation	Bandfarbe
≤II	≤100	QK eingehalten	
II – III	>100 bis ≤200	Halbes QK nicht eingehalten	
≥III	> 200	QK nicht eingehalten	

In Niedersachsen wurde als Qualitätskriterium die LAWA-Güteklasse II (100 mg SO₄/l) angesetzt.

Die Ausgangssituation für Sulfat in den einzelnen Gewässern im Bearbeitungsgebiet Obere Ems ist in Abbildung 2.1.3.6-3 dargestellt.

Die Ibbenbürener Aa (Dreierwalder Aa, Speller Aa) wird durch extrem salzhaltige Grubenwassereinleitungen aus dem Steinkohlebergbau massiv belastet. Dies wird auch durch eine Überschreitung des Qualitätskriteriums an der niedersächsischen Messstelle Hesselte deutlich.

Oberflächenwasserkörper

Signifikante Sulfatkonzentrationen sind auch in der Lutter vorhanden. Die Hauptursache liegt hier in der Kläranlage Obere Lutter, die als Indirekteinleitung Abwässer aus der Firma Möller (Lederverarbeitung) erhält. Außerdem befinden sich in der Stadt Harsewinkel viele fleischverarbeitende Betriebe (Pökelung).

Außerdem weisen die niedersächsischen Messstellen in der Bever und im Dissener Bach Überschreitungen des Qualitätskriteriums auf.

Metalle

Schwermetalle (Kupfer, Zink, Blei, Chrom, Cadmium, Quecksilber, Nickel) haben eine spezifische toxische Schadwirkung. Sie sind aufgrund ihres Einsatzes in vielfältigen Anwendungsund Produktionsbereichen ubiquitär verteilt. Da sie prinzipiell nicht abbaubar sind, reichern sie sich in Böden. Sedimenten und Biomasse an. Von dort können sie in Abhängigkeit von den Milieubedingungen remobilisiert werden.

Die Belastung der Gewässer mit Schwermetallen wird durch geogene Vorbelastung der Quellwässer, durch Auslaugungen aus erzbergbaulich genutzten Regionen, durch Einträge aus häuslichen und gewerblichen/industriellen, aus bergbaulichen Abwässern, aus Regenwasserbehandlungsanlagen sowie durch diffuse Einträge bestimmt. Untersuchungen zur Herkunft der Schwermetallfrachten in Abwässern ergaben eine unmittelbare Abhängigkeit der Belastung vom zugehörigen Einzugsgebiet.

Die im Abwasser enthaltenen Schwermetalle werden insbesondere an der Feststoffphase (Sielhaut, Klärschlamm, Sediment) angereichert.

Für die meisten Metalle sind anstelle von Konzentrationen, die in der Gesamtwasserprobe einzuhalten sind, Schwebstoffkonzentrationen als Qualitätskriterium von der LAWA empfohlen worden. Daher erfolgt die Angabe in der Einheit mg/kg. Dies unter anderem, weil die Qualitätskriterien in der Wasserprobe relativ niedrig sind und mit den in der Routine bislang einsetzbaren Analyseverfahren nicht bestimmt werden können. Konnte in einer Wasserprobe der jeweilige Parameter nicht gemessen werden, wurde die halbe Bestimmungsgrenze (BG) als Messwert angenommen.

Bisher ist die Bestimmung von Metallkonzentrationen soweit möglich in Nordrhein-Westfalen aus der Schwebstoffprobe erfolgt. Die Probenahme ist jedoch sehr aufwändig, und bei unter-

Qualitätskriterien für Metalle in NRW Tab. 2.1.3.6-5

Metall	Qualitätskriterium eingehalten	Halbes Qualitätskriterium nicht eingehalten	Qualitätskriterium nicht eingehalten
Arsen	≤ 20 mg/kg	> 20 bis ≤ 40 mg/kg	> 40 mg/kg
Antimon	≤ 3 mg/kg	> 3 bis ≤ 6 mg/kg	> 6 mg/kg
Barium	≤ 500 mg/kg	> 500 bis ≤ 1.000 mg/kg	> 1.000 mg/kg
Bor	≤ 250 µg/l	> 250 bis ≤ 500 μg/l	> 500 μg/l
Chrom	≤ 320 mg/kg	> 320 bis ≤ 640 mg/kg	> 640 mg/kg
Kupfer	≤ 80 mg/kg	> 80 bis ≤ 160 mg/kg	> 160 mg/kg
Selen	≤ 2 mg/kg	$> 2,0 \text{ bis } \le 4,0 \text{ mg/kg}$	> 4,0 mg/kg
Silber	≤ 1 mg/kg	> 1,0 bis ≤ 2,0 mg/kg	> 2,0 mg/kg
Tellur	≤ 0,1 mg/kg	$> 0.1 \text{ bis} \le 0.2 \text{ mg/kg}$	> 0,2 mg/kg
Zinn	≤ 10 mg/kg	> 10 bis ≤ 20 mg/kg	> 20 mg/kg
Zink	≤ 400 mg/kg	> 400 bis ≤ 800 mg/kg	> 800 mg/kg
Blei *	≤ 50 mg/kg	> 50 bis ≤ 100 mg/kg	> 100 mg/kg
Cadmium *	≤ 0,5 μg/l	> 0,5 bis ≤ 1,0 µg/l	> 1,0 µg/l
Nickel *	≤ 60 mg/kg	> 60 bis ≤ 120 mg/kg	> 120 mg/kg
Qecksilber*	≤ 0,5 µg/l	> 0,5 bis ≤ 1,0 µg/l	> 1,0 μg/l
Bandfarbe			

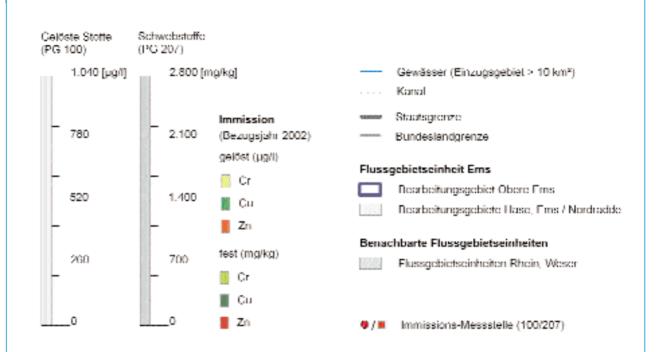
prioritärer Stoff

schiedlichen Abflüssen im Gewässer sowie unterschiedlichen Schwebstoffkonzentrationen ergeben sich Unplausibilitäten. Im Einzelnen ist zu prüfen, wie sich das aktuelle Abflussverhalten (Mittelwasser, auf- oder ablaufendes Hochwasser), die Art der Probenahme, die Korngrößenverteilung sowie der Anteil an mineralischen und organischen Bestandteilen im Schwebstoff und die mögliche Aufwirbelung von Sediment zum Zeitpunkt der Messung auf die Ergebnisse auswirken.

Für viele kleinere Gewässer liegen aus probenahmetechnischen Gründen keine Untersuchungen des Schwebstoffs vor. In diesen Fällen erfolgte hilfsweise eine Abschätzung auf der Basis der Messungen in der Wasserphase.

In Niedersachsen ist die Bewertung der Schwermetalle immer auf das Gesamtsediment bezogen.

Insgesamt sind die Metalluntersuchungen im Monitoring zu verifizieren, auch vor dem Hintergrund, dass für die Metalle des Anhangs X der WRRL (prioritäre Stoffe) von der EU zukünftig eine Bestimmung aus der Wasserprobe gefordert wird.


Chrom, Kupfer und Zink

Karte 2.1-7 gibt die Immissionskonzentrationen für die Metalle **Chrom**, **Kupfer** und **Zink** für das Bezugsjahr 2002 wieder.

▶ Beiblatt 2.1-7

Immissionskonzentrationen für Chrom, Kupfer und Zink im Bearbeitungsgebiet Obere Ems

Gelöste Stotte (Probengut 100)				
K-Nr	Messatellen-Name	Crµg/l	Си рал	Zn jig/l
NRW.				
1	A D WESTERL MÜHLE	5,00	13,69	5,77
3	BROKER MUHLE	5,00	16,69	5,77
4	QFRACHÖNETTE	5,00	17,38	15,38
- 5	VMDG IN DIF WAPFI	5,00	16,23	5,00
7	VOR MDG IN FMS	5,00	17,48	10,38
8	UH WINDELSBLEICHE	5,00	21,15	6,54
12	E / UH HEMBERGEN/IM	2,44	5,21	20,42
17	F 14 UH KATELGTE III/TM	1,75	5,71	30,00
18	WZ ULLKAMS HANDORE MARIENDORE/TM	2,08	5,24	20,77
28	E 20 NEUE MUHLE/TM	1,68	5,97	27,31
31	ELA1 VOR EMS/IM	1,41	4,37	27,31
33	FHMD UH WWK RHFINE/TM	1,34	3,57	26,54
34	F F2 OH RB HAUFNHORST/TM	1,79	4,82	18,48
35	E 1A UH KARHEINE-NORD/TM	2,23	5,34	27,92
36	II OH SPELLE/IM	3,27	6,53	62,31
49	W5A OH EMMERBACH/TM	1,46	6,92	26,25

- 1 Cr-Werte aus 1/2 BG berechnet
- 3. Zn Werte aus 1/2 BG berechnet

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Umsetzung der Europärschen Wasserrahmennehthme, Phase 1. Bestandsaufriahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Fins

Beiblatt zu K 2.1 - 7: Immissionskonzentrationen für Chrom, Kupfer und Zink im Bearbeitungsgebiet Obere Ems

► Beiblatt 2.1-7

Immissionskonzentrationen für Chrom, Kupfer und Zink im Bearbeitungsgebiet Obere Ems

188	Geloste Staff	e (Probengut 100)		
KNi	Messstellen Name	Crimg/kg	Cu mg/kg	Zrimyky
NL		•		
61	Beesten	1,2	2,25	15,85
62	Hengelage		× ×	>
63	Hesselte	1,3	7 2,77	46,00
64	Salzbergen	1.20	3,07	14,00
65	Schwege		x x	×
66	Sudendorf		x x	×

93	Schwebstoffe (Probengut 207)				
K Nr	Messstellen Name	Cringling	Cu mg/kg	7n mg/kg	
NRW:					
12	E / UH HEMBERĞEN/IM	43,49	62,33	796,38	
28	E 20 NEUE MUHLE/TM	59,28	102,34	953,/5	
33	EHM2 UH WWK RHEINE/TM	45,76	72,03	1100,11	
35	E 1A UH KARHEINE NORD/TM	42,88	58,78	592,63	
36	II OH SPELLE/TM	54,08	82,14	1730,00	
50	W3 AM WHS NOBISKRUG	92,58	75,95	554,82	
NE					
61	Beesten	59,00	45,00	656,67	
62	Hengelage	X	×	Х	
63	Hesselle	39,00	117,00	1640,00	
64	Saldergen	59,00	75,33	755,87	
65	Schwege	х	×	×	
66	Sudendorf	×	×	х	

x - keine Probenahme / keine Wertangabe

Flussgehietseinheit Ems, Bearbeitungsgebiet Ohere Ems

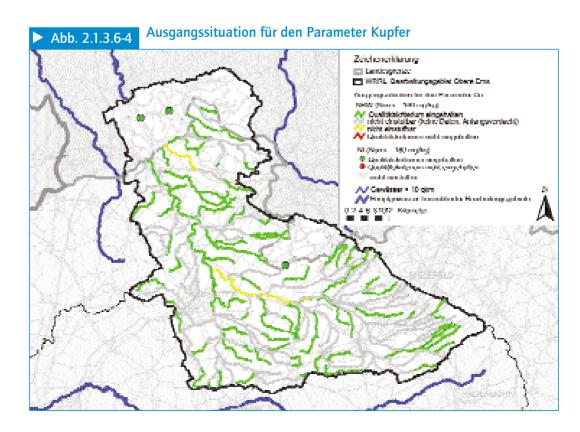
Beiblatt zu K 2.1 - 7:

Immissionskonzentrationen für Chrom, Kupfer und Zink im Bearbeitungsgebiet Obere Ems

Chrom gelangt vor allem durch die Abwässer der Lederindustrie und aus Galvanisierungsbetrieben in unsere Gewässer, daneben kommt es in Holzimprägnierungen und Pigmenten vor. Im Gewässer ist es vor allem für Bakterien, Algen und Fischnährtiere toxisch. Es kommt in zwei unterschiedlichen chemischen Formen in der drei- und sechswertigen Oxidationsstufe vor. Das sechswertige Chrom (Cr(VI)) tritt in der natürlichen Umwelt als starkes Oxidationsmittel in geringerem Umfang auf, ist aber auch bedeutend toxischer; Chrom(VI)-Verbindungen sind als krebserzeugend eingestuft.

Für den Parameter Chrom wurde im gesamten Bearbeitungsgebiet Obere Ems keine Belastung festgestellt.

Kupfer ist für alle Wasserorganismen schon in geringen Konzentrationen toxisch. Es wirkt sich dementsprechend nachteilig auf die Besiedlung und das Selbstreinigungspotenzial des Gewässers aus. Die Giftigkeit des Kupfers steigt mit sinkendem Härtegrad des Wassers an, Cadmium, Zink und Quecksilber verstärken die toxische Wirkung.

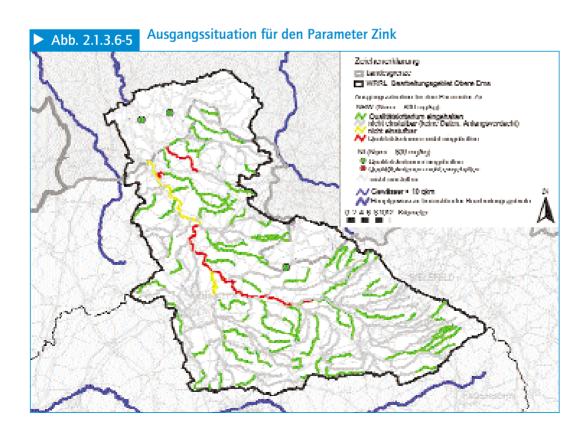

Quelle der Kupferbelastung der Fließgewässer sind vor allem industrielle Einleitungen; aber auch der Abtrag aus den häufig in Kupfer ausgelegten Hauswasserinstallationen sowie aus Regenrinnen ("Wohlstandsmetall") spielt eine Rolle.

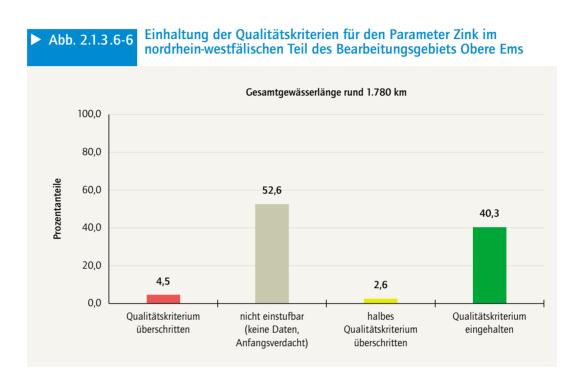
Die Belastungssituation der einzelnen Gewässer mit Kupfer ist in Abbildung 2.1.3.6-4 dargestellt.

In einem Abschnitt der Ems und in der Ibbenbürener Aa (Dreierwalder Aa) finden Überschreitungen des halben Qualitätskriteriums, so dass diese Abschnitte nicht abschließend eingestuft werden konnten.

Bei vielen Gewässerabschnitten ist die Datenlage zurzeit noch nicht ausreichend, so dass hier insbesondere unterhalb von Einleitungen aus der Niederschlags- und Mischwasserbeseitigung sowie von Kläranlagen eine Belastung durch Kupfer nicht ausgeschlossen werden kann. Diese Einschätzung muss im folgenden Monitoring verifiziert werden.

Die Belastung für den Parameter Kupfer ist wasserkörperspezifisch in Tabelle 2.1.3.6-9 am Ende des Kapitels aufgeführt.


Zink gilt als toxisch für Wasserorganismen; besonders gefährlich ist es für die für die Selbstreinigung der Gewässer wichtigen Mikroorganismen. In Oberflächengewässer gelangt dieses Schwermetall durch die Abwässer metallverarbeitender Betriebe und durch die Allgegenwart von verzinkten Oberflächen (Hausentwässerung) sowie durch bergbauliche Aktivitäten. Wasserpflanzen und Mollusken reichern Zink aus dem Sediment an.

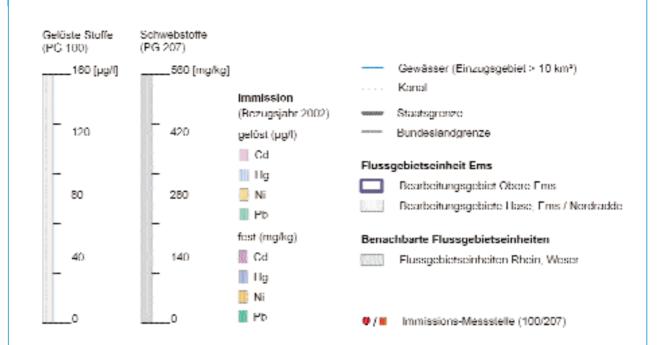

Die Belastungssituation der einzelnen Gewässer mit Zink ist in Abbildung 2.1.3.6-5 dargestellt.

Für Zink wird der Austrag mit der Regenwasserkanalisation allein für den nordrhein-westfälischen Teil der Oberen Ems auf ca. 75 t/a geschätzt (siehe Kapitel 3.1.1.3). Die Zink-Einträge aus den nordrhein-westfälischen kommunalen Kläranlagen lassen sich mit rund 3 t/a abschätzen. Bei beiden Zahlen handelt es sich um rechnerische Abschätzungen, da eine verlässliche Datenbasis nicht vorlag. Noch geringer zeigt sich der gemessene Austrag der industriellen Kläranlagen. Er beträgt lediglich 151 kg/a.

Wie sich in Abb. 2.1.3.6-5 zeigt, sind die Oberläufe der Gewässer noch weitestgehend unbelastet. Ab den ersten Ortslagen, die Anlagen zur Beseitigung von Niederschlags- und/oder Mischwasser sowie Kläranlagen besitzen, kann aus o. g. Gründen der Anfangsverdacht einer Belastung nicht ausgeschlossen werden. Überschreitungen des Qualitätskriteriums wurden vor allem in der Ems, dem Hemelter Bach und der Ibbenbürener Aa (Dreierwalder Aa) gemessen. Überschreitungen des halben Qualitätskriteriums wurden in der Ems sowie der Werse kurz vor Einmündung in die Ems gemessen.

Abbildung 2.1.3.6-6 zeigt exemplarisch für den Parameter Zink die Gewässerstreckenanteile mit den jeweiligen Einstufungen. Die Abbildung bezieht sich nur auf den nordrhein-westfälischen Teil des Bearbeitungsgebiets, da für den niedersächsischen Teil des Bearbeitungsgebiets keine Liniendarstellung der Belastungen vorliegt.

Für 40 % der betrachteten Gewässerstrecken ist nach derzeitigem Kenntnisstand das Qualitätskriterium eingehalten. Für rund 55 % kann erst im folgenden Monitoring eine abschließende Einstufung vorgenommen werden, 5 % halten das Qualitätskriterium nicht ein.


Die Belastung für den Parameter Zink ist wasserkörperspezifisch in Tabelle 2.1.3.6-9 am Ende des Kapitels aufgeführt.

Cadmium, Quecksilber, Nickel und Blei

Karte 2.1-8 zeigt die Darstellung für die zu den prioritären Stoffen gehörenden Metalle Cadmium, Quecksilber, Nickel und Blei.

▶ Beiblatt 2.1-8

Immissionskonzentrationen für Cadmium, Quecksilber, Nickel und Blei im Bearbeitungsgebiet Obere Ems

Celőste Stoffe (Probengut 100)					
K-Nr	Messstellen-Name	Cd µg/l	Нд µд/I	Ni pg/l	Рь идл
VRW					
1	A.D. WESTERL.MÜHLE	0,25	0,10	5,00	5,00
3	BROKER MUHLE	0,25	0,10	5,00	5,00
4	ÖLBACHQUELLE	0,25	0,10	5,00	5,00
- 5	VMDG IN DIE WAPEI	0,25	0,10	5,00	5,00
7	VOR MIDG IN EMS	0,25	0,10	5,00	5,00
8	UH WINDELSBLEICHE	0,25	0,10	5,38	5,00
12	E / UH HEMBERCEN/IM	0,25	0,10	3,17	1,92
17	E 14 ULL KATEL GTE III/TM	0,25	0,10	3,05	1,48
18	W/ UH KAMS-HANDORE-MARIENDORE/TM	0,25	0,10	2,55	1,12
28	E 20 NEUE MUHLE/IM	0,25	0,10	3,19	2,19
31	ELA1 VÜR EMS/TM	0,25	0,10	3,23	1,00
33	FHIME UTI WWK RHEINE/TM	0,25	0,10	4,60	1,54
34	E F2 OH RB HAUENHORSTAM	0,25	0,10	5,43	1,00
35	E 1A UH KARHEINE-NORD/IM	0,25	0,10	3,28	1,46
36	II OH SPELLE/IM	0,25	0,10	15,74	1,23
49	W5A OH EMMERBACH/TM	0,25	0,10	3,49	1,08

- 1 Cd Werte aus 1/2 BG berechnet
- 2 Hg-Werte aus 1/2 BG berechnet
- 3 Ni Worte aus 1/2 BG berechnet
- 4 Pb-Werte aus 1/2 BC berechnet

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Umsetzung der Europäischen Wassermhmenrichtlinie, Phase 1: Bestandsaufnahme

Flusspehietseinheit Ems, Bentheitungsgebiet Obere Ems

Novinghall 22, 48897 Marster

Beiblatt zu K 2.1 - 8: Immissionskonzentrationen für Cadmium, Quecksilber, Nickel und Blei im Bearbeitungsgebiet Obere Ems

▶ Beiblatt 2.1-8

Immissionskonzentrationen für Cadmium, Quecksilber, Nickel und Blei im Bearbeitungsgebiet Obere Ems

Schwebstoffe (Probengul 207)					
K-Nr	Messstellen-Name	Cd mg/kg	Hg mg/kg	Nimg/kg	Pb mg/kg
NE					
61	Beesten	1,29	0,03	8,50	1,00
62	Hengelage		×	X	,
63	Hesselte	0,30	0,03	14,67	1,93
64	Salzbergen	0,03	0,03	2,73	1,00
65	Schwege	×	×	×	,
66	Sudendorf		×	X	×

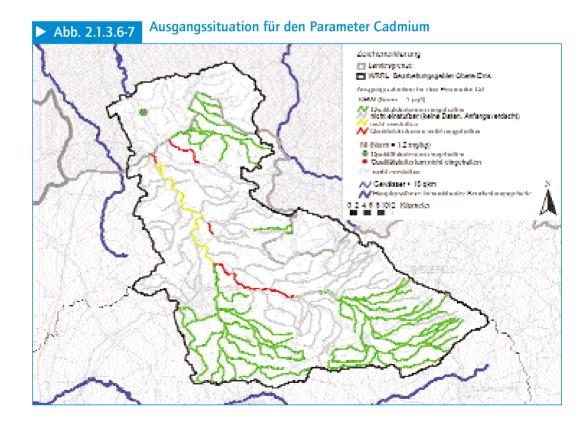
Schwebstoffe (Probengut 207)					
K-Nr	Messstellen-Name	Cdmg/kg	Hg mg/kg	Nimg/kg	Pb mg/kg
NRW					
12	E 7 UH HEMBERGEN/TM	33,33	0,37	0,34	65,22
28	E 20 NEUE MUHLE/TM	40,39	0,40	0,31	95,94
33	EHM2 UH WWK RHEINE/IM	56,92	0,27	0,33	86,87
35	E 1A ULLKARHEINE NORD/TM	28,14	0,30	0,31	60,78
38	I1 OH SPELLE/TM	61,02	3,11	2,50	88,20
50	W3 AM WHS.NOBISKRUG	27,49	0,27	0,61	75,63
NE:					
61	Reesten	1,29	0,23	96,00	55,67
62	Hengelage	×	×	×	×
63	Hesselle	1,69	11,11	120,33	164,67
64	Salzbergen	1,01	0,53	64,33	117,33
65	Schwege	×	×	×	×

x - keine Probenahme / keine Werlangabe 1 - Çd-Werte aus 1/2 BG berechnet

Phissgehietseinheit Ems, Bearheitungsgehiet Obere Ems

Beiblatt zu K 2.1 - 8: Immissionskonzentrationen für Cadmium, Quecksilber, Nickel und Blei im Bearbeitungsgebiet Obere Ems

Cadmium ist ein Begleitelement des Zink; es fällt bei der Gewinnung von Zink, Blei und Kupfer an. Es wird in Akkumulatoren (NiCd-Akkus), bei der Produktion von Pigmenten, als Kunststoff-Stabilisator und als Bestandteil von Legierungen sowie beim Galvanisieren eingesetzt (BRD 1989: ca. 900 t). Eine weitere Quelle sind cadmiumhaltige Phosphatdünger, deren Cadmiumfracht vor allem über Dränagewasser in die Gewässer gelangt. Schädliche Wirkungen auf Mikroorganismen treten bei Cadmium bereits ab 0,01 mg/l auf, gegenüber niederen Wasserorganismen ab 0,3 mg/l. Die akute letale Konzentration von Cadmium gegenüber Fischen liegt zwischen 0,1 und 20 mg/l.


Die Belastungssituation der einzelnen Gewässer mit Cadmium ist in Abbildung 2.1.3.6-7 dargestellt.

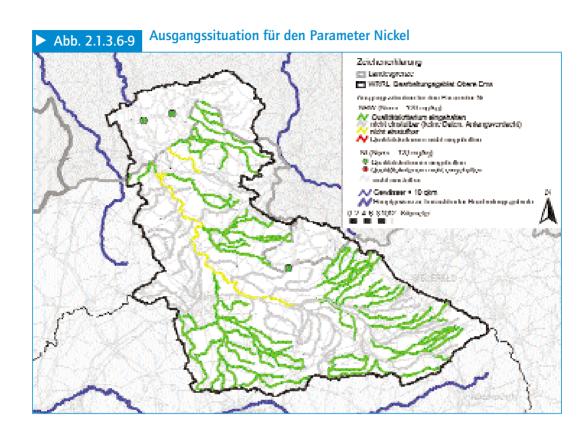
In der Ems bei Rheine und in einem Ems-Abschnitt zwischen der Kreisgrenze Gütersloh/ Warendorf und der Einmündung der Werse sowie im Eltingmühlenbach und der Ibbenbürener Aa (Dreierwalder Aa) wurden erhöhte Cadmium-Konzentrationen festgestellt, die zu einer Überschreitung des Qualitätskriteriums führen.

Weiterhin wurden in dem Abschnitt der Emszwischen den beiden o.g. belasteten Ems-Abschnitten Überschreitungen des halben Qualitätskriteriums gemessen.

In weiten Bereichen des Bearbeitungsgebiets kann aber noch keine Aussage zur Einstufung gemacht werden. Hier muss die Datenlage im Monitoring verbessert werden.

Die Belastung für den Parameter Cadmium ist wasserkörperspezifisch in Tabelle 2.1.3.6-9 am Ende des Kapitels aufgeführt.

Oberflächenwasserkörper 2.1


Quecksilber als einziges bei Raumtemperatur flüssiges Metall ist auf Grund seiner hohen Flüchtigkeit ubiquitär verbreitet. Es wird als Füllung für Thermometer, Barometer bzw. Hydrometer und in der Zahntechnik verwendet, großtechnisch bei der Chloralkali-Elektrolyse im Amalgamverfahren (Fa. Akzo Nobel, ehemals ECI) eingesetzt. Quecksilber ist für alle Wasserorganismen toxisch. Bereits bei einer Konzentration von 18 ug/l ist die Selbstreinigungskraft von Gewässern beeinträchtigt. Quecksilber wird im Gewässersediment zu Organoquecksilberverbindungen alkyliert; diese Verbindungen reichern sich über die Nahrungskette in Lebewesen - vorzugsweise im Fettgewebe – oft um mehrere Zehnerpotenzen an.

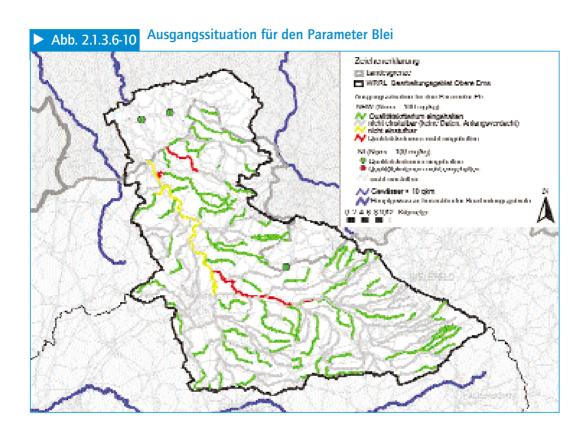
Eine abschnittsweise zu hohe Quecksilberbelastung weist neben der Ems die Ibbenbürener Aa (Dreierwalder Aa) und die Speller Aa (NI) an

der Messstelle Hesselte auf. Hier finden sich die größten industriellen Emittenten von Schwermetallen im Bearbeitungsgebiet. Obwohl das Produktionsverfahren der Chloralkali-Elektrolyse bei der Firma Akzo Nobel inzwischen erheblich verbessert wurde, stellt das Gewässersediment durch Rücklösung und feststoffgebundenen Transport bis heute eine diffuse Schwermetallquelle dar.

Auch an den meisten Trendmessstellen im Oberlauf der Ems liegt für den Parameter Quecksilber ein positiver Befund vor, so dass die Gewässerabschnitte oberhalb dieser Messstellen nicht abschließend eingestuft werden konnten, da hier ein Anfangsverdacht vorliegt.

Die Belastung für den Parameter Quecksilber ist wasserkörperspezifisch in Tabelle 2.1.3.6-9 am Ende des Kapitels aufgeführt.

Nickel ist in schon in geringen Konzentrationen für Bakterien und Protozoen giftig; die Humantoxizität ist dagegen gering. In die Gewässer gelangt Nickel vor allem aus den Abwässern nickelund stahlverarbeitender Betriebe, zudem wird es in Antifouling-Farben eingesetzt. Kohlekraftwerke emittieren ebenfalls Nickel, das dann über Depositionsprozesse ins Gewässer gelangen kann.


Bundesweit stammte im Jahre 2000 46 % des Nickel-Eintrags in Oberflächengewässer aus dem Grundwasser.

Die Belastungssituation der einzelnen Gewässer im Bearbeitungsgebiet Obere Ems mit Nickel ist in Abbildung 2.1.3.6-9 dargestellt.

Im gesamten Bearbeitungsgebiet wurden keine Überschreitungen des Qualitätskriteriums für Nickel festgestellt. Lediglich in der Ems zwischen Warendorf und Rheine sowie einem Abschnitt der Ibbenbürener Aa (Dreierwalder Aa) unterhalb von Ibbenbüren wurden Überschreitungen des halben Qualitätskriteriums gemessen.

Insbesondere im industriell geprägten Oberlauf der Ems kann durch Industriebetriebe wie die Mannesmannröhrenwerke (Einleitung in den Trüggelbach) und die Wienerberger Ziegelindustrie (Einleitung in die Ems) eine Nickelbelastung des jeweiligen Gewässers nicht ausgeschlossen werden. Außerdem liegt im Quellbereich des Ölbachs der Verdacht einer geogenen Vorbelastung bzw. des Eintrags über das Grundwasser vor. Diese Vermutungen gilt es im Monitoring zu verifizieren.

Die Belastung für den Parameter Nickel ist wasserkörperspezifisch in Tabelle 2.1.3.6-9 am Ende des Kapitels aufgeführt.

Blei wird genutzt in Akkumulatoren, in der Bildschirmherstellung, beim Strahlenschutz und bei Korrosionsschutzmaßnahmen. Gegenüber Algen, Wasserflöhen und Fischen wirken lösliche Bleiverbindungen in Konzentrationen ab 0,2 mg/l akut letal. Der biochemische Abbau organischer Substanzen wird bei Blei-Konzentrationen über 0,1 mg/l gehemmt. Die humantoxische Bedeutung ist in den vom Blei ausgehenden Langzeitwirkungen begründet.

Die Belastungssituation der einzelnen Gewässer mit Blei ist in Abbildung 2.1.3.6-10 dargestellt.

Stark mit Blei belastete Gewässerabschnitte finden sich in der Ems, dem Hemelter Bach und der Ibbenbürener Aa (Dreierwalder Aa). Überschreitungen des halben Qualitätskriteriums wurden in Abschnitten der Ems und der Werse gemessen.

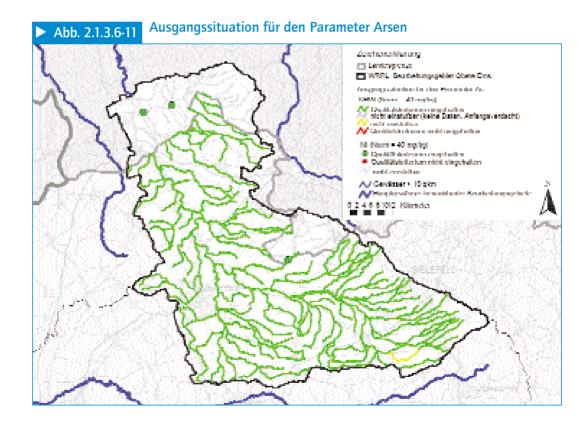
Wie sich in Abbildung 2.1.3.6-10 zeigt, sind die Oberläufe nahezu flächendeckend belastungsfrei. Auch die niedersächsischen Messstellen zeigen keine Belastung auf.

Da Blei aber z.T. noch in alten Hausinstallationen enthalten ist und zusätzlich über die Niederschlagsentwässerung erhebliche Einträge in die Gewässer erfolgen, können aber in weiten Bereichen des Bearbeitungsgebiets, insbesondere ab den ersten Ortslagen, Belastungen nicht ausgeschlossen werden.

Die Belastung für den Parameter Blei ist wasserkörperspezifisch in Tabelle 2.1.3.6-9 am Ende des Kapitels aufgeführt.

Arsen

Das Halbmetall Arsen wird als Legierungsbestandteil in der Glas- und der Halbleiterherstellung eingesetzt, Kupferarsenit als Insektizid und Fungizid verwendet. Weitere Arsenverbindungen finden als Rodentizide und Fungizide Verwendung. Daneben sind die Böden in der Nähe alter Bergwerke meist stark mit Arsen belastet.


Die leicht resorbierbaren Verbindungen insbesondere des dreiwertigen Arsens sind hoch toxisch, bekanntermaßen auch für den Menschen. Die Toxizität des Arsens ist sehr von der Oxidationsstufe der Substanz abhängig.

Bundesweit stammten im Jahre 2000 57 % des Arsen-Eintrags in Oberflächengewässer aus dem Grundwasser (geogene Hintergrundbelastung).

Die Belastungssituation der einzelnen Gewässer mit Arsen ist in Abb. 2.1.3.6-11 dargestellt.

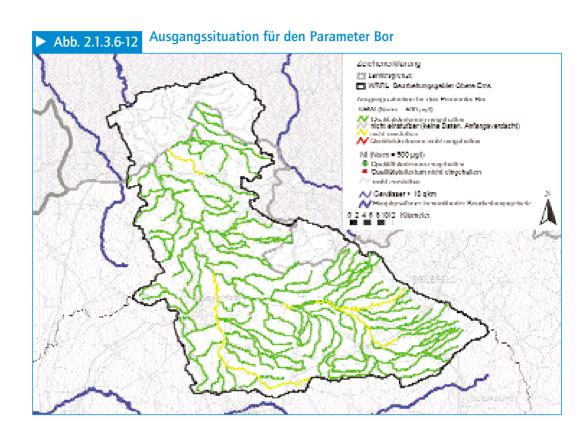
In der oberen Ems in Rietberg wurde eine Überschreitung des halben Qualitätskriteriums für Arsen gefunden, die offenbar aus der Einleitung der Wienerberger Ziegelindustrie stammt.

Abgesehen von dem o.g. Abschnitt der Ems bei Rietberg kann im gesamten Bearbeitungsgebiet von der Einhaltung des Qualitätskriteriums ausgegangen werden.

Barium, Antimon, Selen, Silber, Tellur und Zinn

Die Metalle Barium, Antimon, Selen, Silber, Tellur und Zinn treten als Begleiter anderer Metalle auf oder werden in Spezialanwendungen verwendet. Aus den Spezialanwendungen kann es zu regionalen Belastungsschwerpunkten kommen.

Die wasserlöslichen Verbindungen von **Barium** sind giftig und verursachen Muskelkrämpfe und Herzstörungen. Reines oder mit Aluminium und/oder Magnesium legiertes Barium dient als Gitter in Elektronenröhren und zur Aktivierung von Elektroden. Barium wird im Oberlauf der Ems in Rietberg gefunden und wird auf die Wienerberger Ziegelindustrie zurückgeführt. Da es sich hier aber nur um eine Vermutung handelt, ist diesem in der Monitoringphase nachzugehen.


Die Antimon-Verbindungen wirken – ins Blut gespritzt – fast ebenso giftig wie die verwandten Arsen-Verbindungen. Metallisches Antimon wird als Legierungs-Bestandteil zur Erhöhung der Härte von Metallen zugesetzt. Chemisch reines Antimon findet zur Thermometer-Fixpunktbestimmung, reinstes in der Halbleitertechnik Verwendung. Einige Antimon-Präparate haben medizinische Bedeutung. Antimon wird im Oberlauf der Ems in Rietberg gefunden und wird offenbar ebenfalls von der Wienerberger Ziegelindustrie emittiert. Der Gewässerabschnitt von der industriellen Einleitung des Betriebs bis zu dem Zufluss des Sennebaches ist deshalb hinsichtlich der Einhaltung des Qualitätskriteriums zunächst nicht einstufbar. Die erwähnte Überschreitung stammt aus dem Jahr 2003 und liegt somit außerhalb des eigentlichen Betrachtungszeitraums. Im Monitoring ist diese potenzielle Belastung der Ems durch Antimon zu verifizieren. Bezüglich Selen wird in einem kurzen Emsabschnitt bei Rheine das Qualitätskriterium nicht eingehalten. Selen ist oft mit Sulfiden geogen gebunden und gelangt vor allem aus der Erz-, Hütten- und Kohleindustrie über den Luft-Niederschlagsweg ins Wasser. Selen ist ein Spurenelement und wirkt in Überdosen toxisch. Selen kommt in Halbleiter- und Vulkanisierungsprodukten, Legierungen, Mischfuttermitteln in der Tierproduktion und in Tierarzneimitteln (Vitaminpräparate) vor. Im Fall der Selenbelastung in der Ems bei Rheine ist die Belastungsursache noch unbekannt.

Die Stoffe Silber, Tellur und Zinn spielen im Bearbeitungsgebiet Obere Ems weder emissionsseitig eine Rolle, noch wurden sie im Auswertezeitraum für die vorliegende Bestandsaufnahme (1999-2001) immissionsseitig nachgewiesen.

Bor

Das Nichtmetall Bor wird aus Mineralien gewonnen. Eingesetzt wird es zur Herstellung von hitzestabilen Metalllegierungen sowie besonders harten Stählen. Borverbindungen wie z.B. Borax und Borsäure finden Anwendung in der Glas-, Keramik- und Emailindustrie. Darüber hinaus werden sie in Waschmitteln, Seifen, Kosmetika, Pharmazeutika sowie als Pflanzenschutz- und Düngemittel eingesetzt. Elementares Bor zeigt keine toxischen Wirkungen, wohl aber einige seiner Verbindungen wie z.B. Borax und insbesondere die Hydride. Borverbindungen gelangen vor allem durch Waschmittelinhaltsstoffe (Borate und Perborate) in das Abwasser, wobei ein Überangebot von Bor den biologischen Abbau behindern kann.

Die Belastungssituation der einzelnen Gewässer mit Bor ist in Abbildung 2.1.3.6-12 dargestellt.

Wie die Abbildung 2.1.3.6-12 zeigt, wird im Bearbeitungsgebiet überwiegend das Qualitätskriterium eingehalten. Auch an den niedersächsischen Messstellen wurden bisher keine Überschreitungen gemessen.

Erhöhte Bor-Konzentrationen mit Überschreitungen des halben Qualitätskriteriums wurden im Ölbach unterhalb von Gütersloh sowie unterhalb der Kläranlage Verl im Dalkebach, dem Wapelbach und in der Ems nach Einmündung des Dalkebaches gefunden. Auch im Lichtebach und der Lutter wurden erhöhte Bor-Konzentrationen gemessen. Belastungsquellen sind wahrscheinlich innerörtliche Mischwasserentlastungen und die Kläranlage Verl.

Neben den o. g. Gewässern wurden Belastungen in der gesamten Werse festgestellt, die vermutlich geogen bedingt sind. Das Einzugsgebiet der Werse wird vom Emschermergel gebildet. Nach Einschätzung des geologischen Dienstes NRW ist entsprechend der geologisch-hydrogeologischen Verhältnisse davon auszugehen, dass Austauschwässer mit zum Teil hohen Fluor- und Borgehalten im gesamten Verbreitungsgebiet des

Emschermergels zu erwarten sind. Da die Werse vollständig in dieser geologischen Formation fließt, ist die geogene Hintergrundbelastung als ursächlich für die Überschreitung des halben Zielwerts anzusehen. Der Emsabschnitt bei Warendorf nimmt einige Nebengewässer aus dem Emschermergel auf, daher ist auch hier von einer möglichen Belastung auszugehen.

Im Norden des Bearbeitungsgebiets konnte die Ibbenbürener Aa (Dreierwalder Aa) unterhalb der Kläranlage Ibbenbüren bis zur Landesgrenze zu Niedersachsen aufgrund der Überschreitung des halben Qualitätskriteriums noch nicht abschließend eingestuft werden.

Gesamteinschätzung der Ausgangssituation im Bearbeitungsgebiet Obere Ems durch Metalle

Im Bearbeitungsgebiet Obere Ems spielen die Schwermetalle Kupfer, Zink und Blei nahezu flächendeckend eine große Rolle. Neben den Einträgen aus kommunalen Kläranlagen und regionsspezifischen Einleitungen aus industriellen Kläranlagen werden hier in erster Linie die Einleitungen aus Mischwasserbehandlungsanlagen und Regenwassereinleitungen aus Trennsystemen (mit und ohne Behandlung) sowie diffuse Einleitungen aus Straßenabflüssen für Überschreitungen des Qualitätskriteriums verantwortlich gemacht.

Die Ibbenbürener Aa ist das mit Schwermetallen am stärksten befrachtete Gewässer. Für Cadmium, Quecksilber, Nickel und Chrom sind alle industriellen Hauptemittenten an diesem Gewässer zu finden. Obwohl das Produktionsverfahren der Chloralkali-Elektrolyse bei der Firma Akzo-Nobel inzwischen erheblich verbessert wurde, stellt das Gewässersediment durch Rücklösung und feststoffgebundenen Transport bis heute eine diffuse Schwermetallquelle dar. Signifikante Nickelkonzentrationen im Trüggelbach und in der Ems bei Rietberg werden vermutlich von den Mannesmannröhrenwerken (Einleitung in den Trüggelbach) und der Wienerberger Ziegelindustrie (Einleitung in die Ems) hervorgerufen.

Die Wienerberger Ziegelindustrie wird auch als Verursacher sowohl für die Barium- und Antimon- als auch für Arsenbelastungen in der Ems bei Rietberg vermutet. Für den Parameter Chrom wurde im gesamten Bearbeitungsgebiet keine Belastung festgestellt. Auch die Stoffe Silber, Tellur und Zinn spielen weder emissionsseitig eine Rolle, noch wurden sie bisher immissionsseitig nachgewiesen.

Pflanzenbehandlungs-/Pflanzenschutzmittel und Totalherbizide (PBSM)

Pflanzenbehandlungs- und -schutzmittel wurden im Bearbeitungsgebiet Obere Ems bisher nicht systematisch untersucht.

In Tabelle 2.1.3.6-6 sind die Pflanzenbehandlungs-/-schutzmittel und Totalherbizide aufgeführt, die nach den vorliegenden Erkenntnissen im Bearbeitungsgebiet Obere Ems in signifikanten Mengen angewendet werden und diffus, insbesondere aber punktuell, über Regen- und Mischwassereinleitungen sowie Kläranlagen in die Gewässer gelangen.

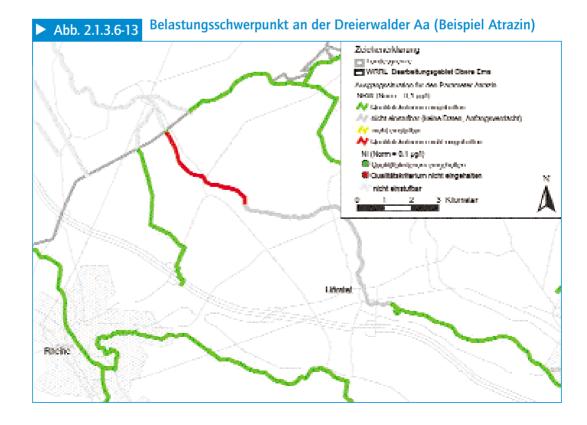
Die bisherigen Erfahrungen mit zu landwirtschaftlichen Zwecken eingesetzten PBSM weisen darauf hin, dass im Bearbeitungsgebiet Obere Ems weniger der Eintrag über Oberflächenab-

► Tab. 2.1.3.6-6 Qualitätskriterien für Pflanzenbehandlungs- und -schutzmittel

PBSM	Wert (μg/l)	Ausgangssituation	Bandfarbe	
Metolachlor, Ethofumesat, Meta-	≤ 0,05	QK eingehalten		
mitron, Atrazin, Desethylterbutylazin				
Meatazachlor	≤ 0,2			
Diuron, Isoproturon, Simazin*,	≤ 0,05			
Chloridazon, Mecoprop				
Gamma-Hexachlorcyclohexan	≤ 0,025			
Metolachlor, Ethofumesat, Meta-	0,05 bis ≤ 0,1	Halbes QK nicht eingehalten		
mitron, Atrazin, Desethylterbutylazin		3		
Metazachlor	$> 0.2 \text{ bis} \le 0.4$			
Diuron, Isoproturon, Simazin*,	> 0,05 bis ≤ 0,1			
Chloridazon, Mecoprop				
Gamma-Hexachlorcyclohexan	$> 0.025 \text{ bis} \le 0.05$			
Metolachlor, Ethofumesat, Meta-	> 0,1	QK nicht eingehalten		
mitron, Atrazin, Desethylterbutylazin	-,	3		
Metazachlor	> 0,4			
Diuron, Isoproturon, Simazin*,	> 0,1			
Chloridazon, Mecoprop				
Gamma-Hexachlorcyclohexan	> 0,05			

fluss, Interflow und den Luftpfad zu Überschreitungen der Qualitätskriterien im Gewässer führen als vielmehr punktuelle Einträge aus kommunalen Kläranlagen, über Dränagen oder Hofabläufe.

PBSM-Belastungen werden nutzungs- und eintragspfadbedingt häufig nur schwerpunktmäßig beobachtet. Sie sind daher im Folgenden für die aktuell bekannten Schwerpunkte dargestellt.

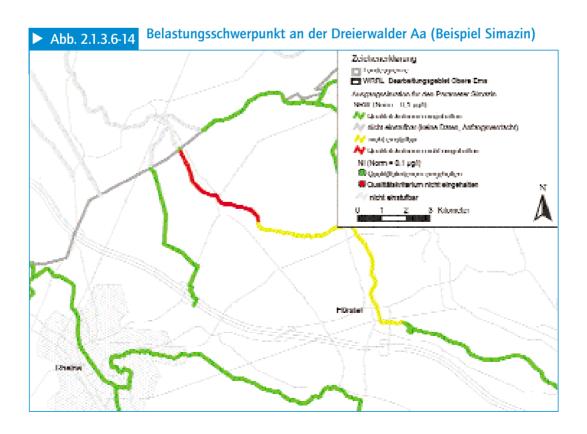

Belastungen durch Herbizide in der Dreierwalder Aa (Ibbenbürener Aa)

Als Belastungsschwerpunkte für eine Vielzahl von Herbiziden ist für das Bearbeitungsgebiet Obere Ems der Unterlauf der Dreierwalder Aa (Ibbenbürener Aa) in Nordrhein-Westfalen sowie die niedersächsische Speller Aa zu nennen.

Zu den in signifikanten Konzentrationen gemessenen Wirkstoffen gehören u. a. die Stoffe Ethofumesat, Chloridazon, Metobromuron und Metamitron.

Bei Ethofumesat und Chloridazon handelt es sich um selektive systemische Herbizide gegen Ungräser und Unkräuter im Zucker- und Futterrübenbau. Chloridazon hat ebenfalls eine Zulassung im Rote Beete- und Mangoldanbau, Ethofumesat hat ebenfalls eine Genehmigung im Rote Beeteanbau. Metobromuron ist ein von Ciba 1963 eingeführtes selektives Vorauflauf-Herbizid gegen Unkräuter und einige Ungräser im Kartoffel-, Tabak-, Buschbohnen-, Feldsalat-, Sojabohnen- und Sonnenblumenbau. Das Mittel hat für Kartoffeln seit Mitte 2003 ein Anwendungsverbot. Metamitron ist ein von Bayer 1975 eingeführtes selektives Herbizid gegen Unkräuter und Ungräser beim Anbau von Zucker- und Futterrüben, Gurken, Zucchini, Schnittlauch, Rote Beete, Erdbeeren und Beerenobst.

Oben genannte Kulturen sind im Einzugsgebiet der Dreierwalder A (Ibbenbürener Aa) allerdings nicht verbreitet, da die Böden hierfür nicht geeignet sind. Die Quelle für die Belastungen der oben aufgeführten Stoffe ist bisher nicht bekannt.


Atrazin ist ein weiteres Herbizid, welches ausschließlich in der Dreierwalder Aa und der Speller Aa gemessen wurde. Atrazin ist ein Stoff, der früher stark im Maisanbau eingesetzt wurde, seit mehr als zehn Jahren aber verboten ist. Im Bearbeitungsgebiet Obere Ems wurde in Nordrhein-Westfalen ein Belastungsschwerpunkt im Unterlauf der Dreierwalder Aa (Ibbenbürener Aa) nachgewiesen. In Abbildung 2.1.3.6-13 ist die Belastungssituation der Dreierwalder Aa für das Herbizid Atrazin dargestellt.

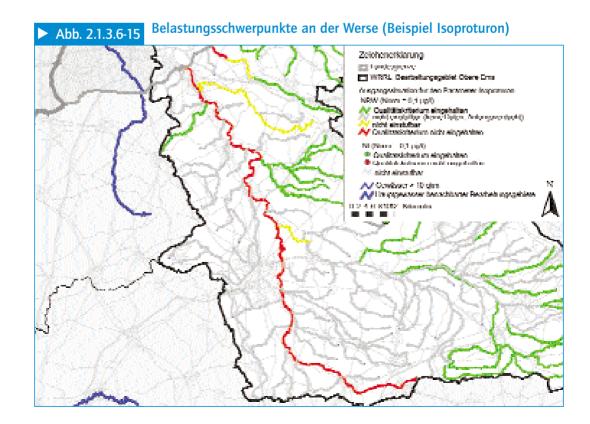
Simazin wird bevorzugt als Totalherbizid im Vorauflauf auf landwirtschaftlich nicht genutzten Flächen, häufig im Gemisch mit anderen Herbiziden eingesetzt. Zudem findet es selektiv gegen Gräser und breitblättrige Unkräuter in Mais-, Spargel-, Weinbau- und Ziergehölzkulturen sowie in Baumschulen Verwendung. In Deutschland kann der Stoff wegen der ausgelaufenen Zulassung nicht angewendet werden. Simazin zeigt besonders gegenüber Algen eine hohe Toxizität (EC50-Wert: 0,04 μg/l), erweist sich aber auch gegenüber Fischen und Kleinkrebsen als toxisch. Als wassergefährdender Stoff gehört Simazin der Wassergefährdungsklasse 2 an.

Belastungen durch Simazin wurden im Bearbeitungsgebiet Obere Ems ausschließlich in der Dreierwalder Aa (Ibbenbürener Aa) festgestellt (siehe Abb. 2.1.3.6-14).

Metolachlor ist ein gebräuchlicher herbizider Wirkstoff im Maisanbau, wobei er immer in Kombination mit Terbutylazin eingesetzt wird. Überschreitungen des Qualitätskriteriums für Metolachlor wurde ausschließlich in der Ibbenbürener Aa (Dreierwalder Aa) nachgewiesen. Die Belastung wurde hier weiter gewässeraufwärts innerhalb der Ortslage Ibbenbüren festge-

Bei Isoproturon (IPU) handelt es sich um ein weit verbreitetes Herbizid im Getreideanbau, das in der Liste der prioritären Stoffe (Anhang X der WRRL) aufgelistet ist. Im Bereich der Dreierwalder Aa wurden auch für dieses Herbizid Überschreitungen festgestellt.

Der Belastungsschwerpunkt für Isoproturon liegt aber in erster Linie in der Werse und der Ems (siehe Abb. 2.1.3.5-15).

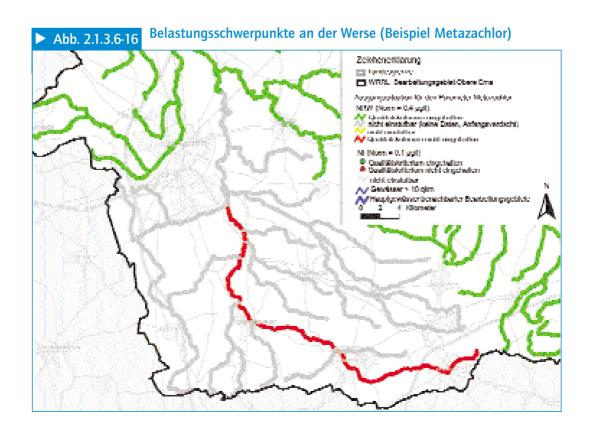

Bis auf Metobromuron und Metolachlor konnten alle benannten Stoffe im Ablauf der Kläranlage Ibbenbüren-Püsselbüren nachgewiesen werden. Obwohl die Quelle somit auf diesen Ortsteil eingegrenzt ist, konnten Verursacher bisher nicht ausfindig gemacht werden.

Belastungen durch Herbizide in der Werse

Als Belastungsschwerpunkt für das Herbizid **Isoproturon** (IPU) ist die Werse zu nennen die, wie Abb. 2.1.3.6-15 zeigt, in ihrem gesamten Verlauf Überschreitungen des Qualitätskriteriums aufweist. Ab Einmündung der Werse weist auch die Ems hohe Belastungen auf.

Dass intensive ackerbauliche Nutzung - wie sie im Einzugsgebiet der Werse vorherrscht - nicht unmittelbar zu Isoproturon-Belastungen der Gewässer führen muss, zeigt das Beispiel im nordrhein-westfälischen Einzugsgebiet des Frischhofsbaches. Hier wurde durch Ersatzwirkstoffe wie fufenacethaltige Produkte, Sulfonylharnstoffe und vorwiegend blattaktive Präparate wie Topik oder Ralon eine Überschreitung der Grenzwerte im Gewässer verhindert. Diese Pflanzenbehandlungsmittel werden in wesentlich geringeren Aufwandsmengen, bei vergleichbarer oder sogar verbesserter Wirksamkeit, eingesetzt. Die Tatsache, dass sie in Oberflächen- und Grundwasser in geringeren Konzentrationen gefunden werden, sagt noch nichts über ihre Unbedenklichkeit aus. Diese Frage gilt es, zukünftig zu klären.

Desethylterbutylazin ist ein Metabolit von Terbutylazin, das im Maisanbau zur Unkrautbekämpfung eingesetzt wird. Überschreitungen des halben Qualitätsziels gibt es im Bearbeitungsgebiet Obere Ems in der Werse. Dies ist bei der weiten Verbreitung des Mittels im Einzugsgebiet der Werse und der vorherrschenden Bodenstruktur nicht verwunderlich. Möglicherweise wird der Wirkstoff über die Erosion von Bodenpartikeln in das Gewässer transportiert, ähnlich wie dies beim Phosphor (siehe Kapitel 2.1.3.5) diskutiert wurde.



Metazachlor wird ackerbaulich als Herbizid im Rapsanbau eingesetzt, daneben hat es eine breite gartenbauliche Zulassung beim Kohlanbau sowie im Zierpflanzenbau. Als Belastungsschwerpunkt gilt auch hier die Werse oberhalb der Einmündung des Emmerbaches.

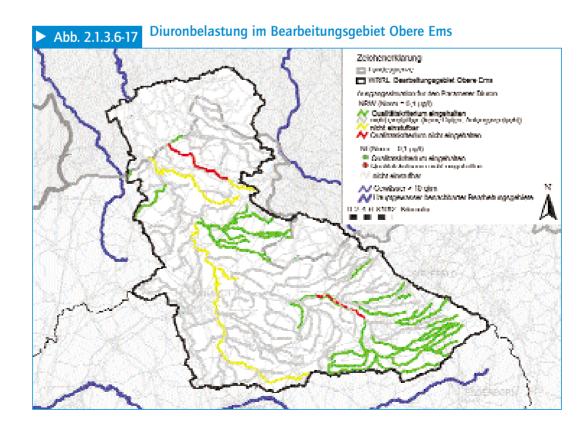
Die vorherrschende landwirtschaftliche Nutzung auf den besseren Böden des Klei-Münsterlandes lässt den Gebrauch des Mittels hier möglich erscheinen. Für den Austrag von landwirtschaftlichen oder gartenbaulichen Nutzflächen könnte dann wahrscheinlich der gleiche Pfad, der auch schon bei Desethylterbutylazin diskutiert wurde, als Austragsweg angenommen werden. Möglich wäre aber auch, dass Punktquellen (z. B. durch Befüllen oder Reinigung der Pflanzenschutzgeräte) als Eintragsursache verantwortlich sind.

Belastungen durch Insektizide in der Dreierwalder Aa (Ibbenbürener Aa)

γ-Hexachlorcyclohexan ist ein Isomer des als Insektizid eingesetzten Mittels Lindan. Lindan wurde früher bevorzugt gegen Bodenschädlinge (Saatgutbehandlung) und gegen rindenbewohnende Forstschädlinge eingesetzt. Früher war es weitverbreiteter Bestandteil von Holzschutzmitteln. y-HCH wurde in der Ibbenbürener Aa (Dreierwalder Aa) an der Landesgrenze Nordrhein-Westfalen/Niedersachsen nachgewiesen. Eine landwirtschaftliche Anwendung ist in diesem Einzugsgebiet auszuschließen.

Belastungen durch Totalherbizide im Bearbeitungsgebiet

Emissionsschwerpunkte der Totalherbizide sind vor allem die kommunalen Kläranlagen. Neben der Kläranlage Ibbenbüren-Püsselbüren (Einleitung in die Ibbenbürener Aa) sind die Kläranlagenabläufe von Drensteinfurt-Rinkerode, Ascheberg-Herbern, Ennigerloh-Westkirchen, Hopsten-Halverde, Hopsten-Schale, Ibbenbüren-Bockraden, Mettingen, Borghorst-Nord, Horstmar-Leer und Tecklenburg-Ledde als Belastungsschwerpunkte zu benennen. Spitzenreiter ist die KA Olfen-Vinnum mit 10,4 µg/l Diuron im Mai 2000. Gemeinsam ist diesen Anlagen, dass sie alle die Abwasserbehandlung kleinerer, ländlicher Gemeinden übernehmen.


Totalherbizide wie **Diuron** werden nicht gezielt von der Landwirtschaft eingesetzt. Einträge in die Gewässer stammen überwiegend aus der illegalen Anwendung. Diuron wird vielfach von Privathaushalten, Unternehmen und Kommunen zur Beseitigung unerwünschten Pflanzenwuchses auf befestigten Flächen eingesetzt.

Aufgrund seiner herbiziden Eigenschaften zeigt Diuron besonders gegenüber Algen und Wasserpflanzen eine hohe Toxizität. Als stark wassergefährdender Stoff gehört Diuron der Wassergefährdungsklasse 3 an.

Abbildung 2.1.3.6-17 zeigt die Belastungssituation im Bearbeitungsgebiet Obere Ems.

Das Qualitätskriterium wird in der Ibbenbürener Aa (Dreierwalder Aa) und in einem Abschnitt im Oberlauf der Ems überschritten, das halbe Qualitätsziel im Hemelter Bach und der Werse.

Die nachgewiesene Diuronbelastung im Oberlauf der Ems lässt vermuten, dass auch einige Emszuflüsse belastet sein könnten. Die vielseitige Anwendung von Diuron macht die Herkunft aus dichter besiedelten Gebieten wahrscheinlich. Einzelne Kläranlagen (s. o.) sind bereits seit Jahren auffällige Emittenten von Diuron (und anderen Herbiziden), ohne dass die Ursache bisher nachhaltig abgestellt werden konnte. Aufklärungskampagnen in der Bevölkerung führten bisher nicht zu einem spürbaren Erfolg.

Aminomethanphosphonsäure (AMPA) ist ein Metabolit des Herbizids Glyphosat. Glyphosat wird in der Landwirtschaft eingesetzt, um unerwünschten Aufwuchs zu verhindern (Kulturvorbereitung, bei Mulchsaaten, zur Ausfallgetreideund Queckenbekämpfung) oder zur Erntevorbereitung bzw. Abtötung von Zwischenfrüchten. Nach Auffassung der Landwirtschaftskammer NRW (LK-NRW) können Abbauprodukte des Glyphosats fast ausschließlich nach illegaler Anwendung auf befestigten Flächen in die Gewässer gelangen.

Befunde gibt es im Oberlauf der Ems und den dortigen Zuläufen. Insgesamt ist die Datenlage aber sehr schlecht, so dass nahezu flächendeckend noch keine Einstufung vorgenommen werden kann. Weitere Untersuchungen zur Herkunft und Verbreitung von AMPA sind im Monitoring durchzuführen.

Gesamteinschätzung der Ausgangssituation im Bearbeitungsgebiet Obere Ems durch Pflanzenbehandlungs-/-schutzmittel und Totalherbizide

Aufgrund der bisher überwiegend anlassbezogenen Untersuchungen von Pflanzenbehandlungs-/-schutzmitteln und Totalherbiziden in den Gewässern im Bearbeitungsgebiet Obere Ems reicht die Datenlage nicht aus, um abschließende Aussagen zur Ausgangssituation zu treffen.

Deutlich werden aber bereits zwei Belastungsschwerpunkte im Bereich der Ibbenbürener Aa (Dreierwalder Aa) im Norden des Bearbeitungsgebiets sowie im Südwesten im Einzugsgebiet der Werse.

Sonstige synthetische und nicht-synthetische Schadstoffe

Im Bearbeitungsgebiet Obere Ems wurden folgende Stoffe in signifikanter Menge nachgewiesen:

- Polychlorierte Biphenyle (PCB)
- Polyzyklische aromatische Kohlenwasserstoffe (PAK)
- Ethylendiamintetraessigsäure (EDTA)
- Bisphenol A (BPA)
- Carbamazepin
- Nitrilotriessigsäure (NTA)
- Nitrit

Als Basis für die Ist-Zustandsbetrachtung dienten in Nordrhein-Westfalen die Mittelwerte der Messreihen aus den Jahren 2000 – 2002. In Niedersachsen wurden Messungen für die Stoffe der RL 76/464/EWG, ergänzt um die dort nicht enthaltenen Stoffe der Liste prioritärer Stoffe, einmal im Jahr 2002 an den Übersichts- und den Referenzmessstellen vorgenommen.

PCB und PAK

PCB und PAK treten in industriellen Ballungsgebieten ubiquitär auf. Die Emission von PCB erfolgt aus Hausmüllverbrennungsanlagen, Mülldeponien, Industriemüll- und Altölverbrennungsanlagen und aus Altlasten (insbesondere im bergbaulich genutzten Bereich). Für das ubiquitäre Vorkommen der PAK sind im Wesentlichen zwei Ouellen verantwortlich: Natürlicherweise kommen die PAK im Erdöl und in der Kohle vor. Außerdem entstehen sie bei unvollständigen Verbrennungsprozessen aus praktisch allen organischen Stoffen. Infolgedessen werden PAK hauptsächlich über den Luftpfad in die Gewässer sowie diffus z. B. über Altlasten eingetragen. Aufgrund ihrer geringen Flüchtigkeit und Wasserlöslichkeit sind sie vorwiegend an Feststoffpartikel gebunden.

Für die stark hydrophoben Substanzen PCB und PAK wurden bevorzugt die Messergebnisse aus der Schwebstoffphase herangezogen.

Als Basis für die Ist-Zustandsbetrachtung dienten in Nordrhein-Westfalen die Mittelwerte der Messreihen aus den Jahren 2000 – 2002.

In Niedersachsen wurden die Stoffe der RL 76/464/EWG bei Überschreitung zur Unterstützung der Gesamtbewertung herangezogen. Anzumerken ist, dass im Jahr 2002 einmalig orientierende Untersuchungen zu den prioritären Stoffen und den Stoffen der RL 76/464/EWG durchgeführt wurden, so dass die Bewertung in der Regel als vorläufig angesehen werden muss.

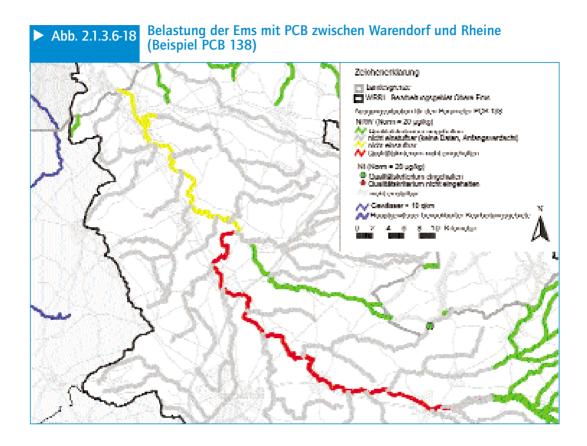
Tah 2136-7	Qualitätskriterien	für	PCB	und	PAK
IdU. Z.1.5.0-/					

РСВ	Wert	PAK*	Wert (μg/l)	Ausgangs- situation	Bandfarbe
PCB-101 PCB-138 PCB-153 PCB-180 PCB-28 PCB-52	jeweils $\leq 10 \ \mu g/kg$ ersatzweise $\leq 0.25 \ ng/l$	Benzo(a)pyren Fluoranthen	≤ 0,005 ≤ 0,0125	Halbes QK eingehalten	
PCB-101 PCB-138 PCB-153 PCB-180 PCB-28 PCB-52	jeweils > 10 bis ≤ 20 μg/kg ersatzweise > 0,25 bis ≤ 0,5 ng/l	Benzo(a)pyren Fluoranthen	> 0,005 bis ≤ 0,01 > 0,0125 bis ≤ 0,025	Halbes QK nicht einge- halten	
PCB-101 PCB-138 PCB-153 PCB-180 PCB-28 PCB-52	jeweils > 20 μg/kg ersatzweise > 0,5 ng/l	Benzo(a)pyren Fluoranthen	> 0,01 > 0,025	QK nicht eingehalten	

^{*} prioritärer Stoff

PCB 28/PCB 52/PCB101/PCB 138/PCB 153/ PCB 180

Zur Gruppe der polychlorierten Biphenyle (PCB) gehören 209 Einzelverbindungen (Kongenere).


Sie wurden als nicht brennbare Hydrauliköle u. a. im Steinkohlebergbau und als Kühl- und Isolierflüssigkeiten in Kondensatoren sowie Hochspannungstransformatoren eingesetzt. Seit 1989 besteht für PCB ein Anwendungsverbot. Die Verbindungen sind stark giftig und zeigen carzinogene Wirkung. Zudem sind PCB gut fettlöslich und reichern sich in der Nahrungskette an, wobei vor allem die giftigen hochchlorierten Verbindungen im Fettgewebe gespeichert werden.

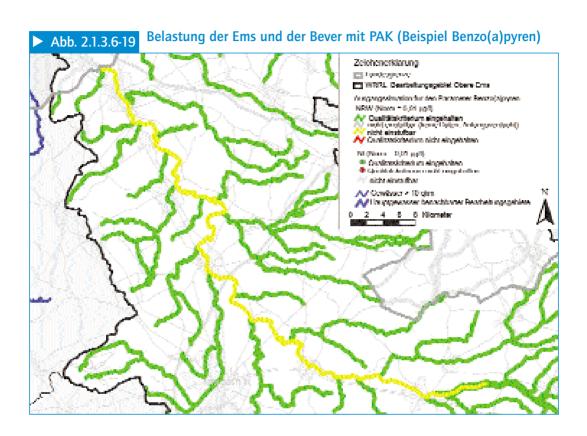
Im Bearbeitungsgebiet Obere Ems konnten verschiedene PCB nachgewiesen werden – am häufigsten und mit den höchsten Konzentrationen die Kongenere 138 und 153.

In einem Abschnitt der Ems zwischen den Talgräben oberhalb Warendorfs und der Einmündung der Glane wird für diese beiden Kongenere das Qualitätskriterium nicht eingehalten. Unterhalb dieses Abschnitts wurden Überschreitungen des halben Qualitätskriteriums gemessen. Abbildung 2.1.3.6-18 zeigt den Belastungsschwerpunkt in der Ems.

Anders dagegen das Belastungsbild bei PCB 101, das nur in Rheine, kurz bevor die Ems Nordrhein-Westfalen verlässt, gefunden wurde. Beim PCB 52 findet sich im Emsverlauf, bei der Untersuchungsstelle in Hembergen (Kreis Steinfurt), eine Überschreitung des halben Qualitätskriteriums, so dass hier die Ems hinsichtlich der Einhaltung des Qualitätskriteriums nicht abschließend einstufbar ist. Die Kongenere 28 und 180 waren nur in sehr geringen Konzentrationen nachweisbar, so dass kein Einstufung vorgenommen wurde.

Die Nebengewässer der belasteten Abschnitte sind ebenfalls hinsichtlich der Einhaltung des Qualitätskriteriums noch nicht einstufbar, da nicht klar ist, ob die Stoffe direkt in die Ems eingeleitet werden oder eines dieser Nebengewässer als bisher unerkannte Quelle fungiert.

PAK


Polyzyklische aromatische Kohlenwasserstoffe (PAK, PAH) stellen Kondensationsprodukte des Benzols dar. Die Stoffklasse umfasst eine Vielzahl von Einzelverbindungen, von denen ca. 40 öko- und humantoxikologisch relevant sind. Untersucht werden in der Regel 15 definierte Einzelstoffe.

Im Bearbeitungsgebiet Obere Ems sind Benzo-(a)pyren und Fluoranthen von Relevanz.

Benzo(a)pyren ist als carcinogen einzuschätzen. Vorkommen sind in Mineralölen, Bitumen, Pech, Teer, Ruß und daraus hergestellten Produkten, in Flugasche, in Abgasen von PKW, Hausbrand und Großfeuerungsanlagen, auch in der Aluminiumproduktion, Eisen- und Stahlerzeugung, bei Waldbränden und beim Räuchern von Fisch- und Fleischwaren (Grillen) sowie in hölzernen Eisenbahnschwellen.

Die Konzentrationen bewegen sich über weite Strecken der Ems knapp über dem halben Qualitätskriterium. Genaue Emissionsquellen sind derzeit noch nicht bekannt.

Auch im Trüggelbach und im Reiherbach wurden sowohl für Benzo(a)pyren als auch für Fluoranthen Überschreitungen des halben Qualitätsziels festgestellt. Als Belastungsquellen kommen industrielle Abwassereinleitungen der Firmen Windel und Baumgarte Eisen in den Trüggelbach in Betracht. Die Ursache für die Belastung des Reiherbaches zwischen der Einmündung Eisternfeldgraben und Toppmannsbach wird in der Abwassereinleitung der Firma Windel vermutet.

EDTA, Bisphenol A (BPA), Carbamazepin, Nitrilotriessigsäure (NTA)

Hinsichtlich der im Bearbeitungsgebiet relevanten Stoffe EDTA, Bisphenol A (BPA), Carbamazepin und Nitrilotriessigsäure (NTA) liegen zurzeit noch keine Umweltqualitätsnormen vor. Für eine pauschale Gefährdungsabschätzung im Rahmen dieser Bestandsaufnahme wurden für diese Stoffe 10 mg/l als Qualitätskriterium angesetzt.

EDTA ist ein starker Komplexbildner, der in der Industrie vielfach Anwendung (z. B. bei Metallverarbeitung, in Wasch- und Reinigungsmittel, in der Photoindustrie, in der Textilindustrie und bei der Papierverarbeitung) findet. EDTA-Metallkomplexe sind zwar toxikologisch irrelevant, ihre Besonderheit beruht aber auf den vielseitigen, teilweise noch unbekannten Wechselwirkungen u.a. mit Schwermetallen, Härtebildnern und Mikronährstoffen. Da es durch übliche Trinkwasseraufbereitungsverfahren nicht zurückgehalten werden kann, wird es als anthropogen verursachte Einzelsubstanz prioritär im Gewässerschutz behandelt.

Bei Gewässern ohne Einleitungen gereinigten Abwassers wird davon ausgegangen, dass das Qualitätskriterium eingehalten wird. Bei Nebengewässern der Ems mit Einleitungen aus Kläranlagen besteht ein Anfangsverdacht, weshalb diese Abschnitte mangels Messwerten nicht abschließend eingestuft werden konnten.

Ab dem Zufluss des Dalkebaches in die Ems wird für den gesamten folgenden Gewässerabschnitt das Qualitätskriterium nicht eingehalten, ebenso bei der Werse ab etwa Drensteinfurt.

Des Weiteren wird bei der Lutter und dem Reiherbach ab der Fa. Windel als Nebengewässer der Oberen Ems das Qualitätskriterium nicht eingehalten. Die Wapel ab Neunkirchen und der Ölbach ab der Kläranlage Verl sind aufgrund von Überschreitungen des halben Qualitätsziels nicht abschließend einstufbar. Als Belastungsquellen kommen hier zum einen industrielle und kommunale Abwassereinleitungen und zum anderen Fehlanschlüsse in Siedlungsbereichen in Betracht.

Bisphenol A (BPA) ist eine Substanz, die zu den endokrin wirksamen Substanzen zählt. Es wird seit 50 Jahren als Antioxidant und Fungizid zur Herstellung von Kunstharzen (Beschichtung von Konservendosen, Joghurtdeckeln, zahntechnische Füllmasse) und Thermoplasten (z. B. Plastikflaschen, Nahrungs- und Getränkeverpackungen, Frischhaltedosen, Haushaltsgegenstände) eingesetzt. Auf Grund seiner physikalisch-chemischen Eigenschaften wird BPA über das Abwasser in die Oberflächengewässer eingetragen. Die Halbwertszeit liegt zwischen 2 und 6 Tagen. Gemäß OECD Screening Test ist BPA leicht biologisch abbaubar, weist aber eine hohe Bioakkumulation auf. BPA ist in die Wassergefährdungsklasse 2 eingestuft. Biologische Wirkungen auf aquatische Organismen (Schnecken) können schon ab einer Konzentration von 50 ng/l auftreten. Eine amerikanische Studie kommt zu dem Ergebnis, dass BPA erbgutschädigende Wirkungen bei Mäusen auslösen kann. Vom Menschen wird BPA hauptsächlich über Nahrungsmittel aufgenommen, wobei die Gefahren aber noch nicht abschließend nachgewiesen sind.

Ems und Werse bilden mit einer deutlich erhöhten Anzahl an Messbefunden oberhalb der Nachweis- bzw. Bestimmungsgrenze die Schwerpunkte der Belastungen. Leicht auffällig mit fünf Werten oberhalb der Nachweisgrenze ist auch die Ibbenbürener Aa (Dreierwalder Aa). Bei allen anderen Gewässern bewegen sich die Befunde auf einem niedrigen bis sehr niedrigen Niveau.

Carbamazepin ist ein Arzneimittel gegen Epilepsie der Firma Ciba, Schweiz. 1999 wurden ca. 87 Tonnen produziert. Carbamazepin ist biologisch schlecht abbaubar und gelangt durch die Einleitungen der kommunalen Kläranlagen in die Oberflächengewässer. Es wird nahezu in jedem Gewässer nachgewiesen, wobei die Konzentration von der Bevölkerungsdichte abhängt. Carbamazepin ist auch im Trinkwasser als Verunreinigung nachweisbar.

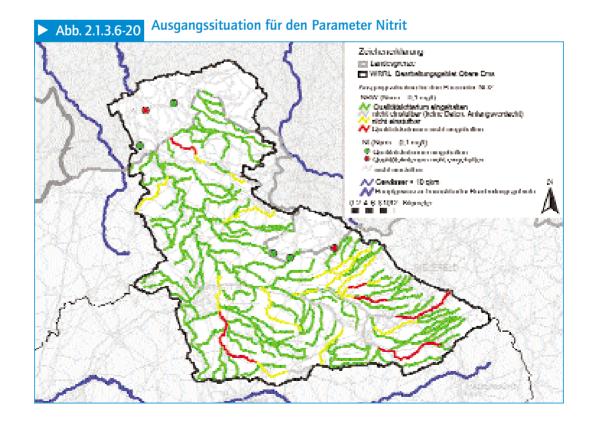
Mit Gehalten von zum Teil bis zu 10 mg/l Carbamazepin sind die Ems, die Glane/Ladbergener Mühlenbach ab Ladbergen und dessen Nebengewässer Lengericher Aabach, die Werse mit dem Nebenfluss Emmerbach und die Ibbenbürener Aa (Dreierwalder Aa) (ab Ibbenbüren) belastet. Nitrilotriessigsäure (NTA) wird vielfach in der Komplexometrie, zur Wasserenthärtung und Maskierung von Schwermetall-Ionen verwendet. NTA eignet sich als Ersatzstoff für Phosphate in Wasch- und Reinigungsmitteln. In hohen Konzentrationen (> 20 mg/l) fördert NTA das Algenwachstum in Abwässern und kann in Sedimenten abgelagerte Schwermetalle remobilisieren. Es ist gut in Wasser löslich, gut biologisch abbaubar und mindergiftig.

Relevante Konzentration des Parameters NTA wurden im Bearbeitungsgebiet in der Lutter und im Lichtebach festgestellt. Diese beiden Gewässer sind auf Grund der Überschreitung des halben Qualitätskriteriums nicht abschließend einstufbar. Die Belastung wird in Emissionen aus den Siedlungsbereichen (Fehlanschlüsse) vermutet.

Nitrit

Nitrit ist ein Zwischenprodukt bei der mikrobakteriellen Oxidation des Ammoniums zu Nitrat (Nitrifikation). Unter bestimmten Bedingungen (erhöhte Ammonium-Konzentration und/oder erhöhter pH-Wert sowie extreme Temperaturen) kann die Nitrifikation auf der Stufe des Nitrits stehen bleiben, so dass toxische Nitritkonzentrationen erreicht werden. Auf Fische wirkt Nitrit schon ab Konzentrationen von 0,07 mg/l giftig, während sich Auswirkungen bei Algen, Bakterien und Wirbellosen erst ab mehreren mg/l zeigen. Normalerweise wird Nitrit durch die Selbstreinigung der Gewässer auch bei Einleitung nicht oder ungenügend gereinigten Abwassers relativ schnell zu Nitrat umgesetzt. Mängel der Gewässerstruktur wirken sich u. a. wegen des verringerten physikalischen Sauerstoffeintrags negativ auf die Nitrifikation aus.

Auf der Basis der im Bericht der Bundesrepublik Deutschland zur Durchführung der Richtlinie 74/464/EWG erklärten Zielwerte wurde Nitrit (Mittelwert) in Nordrhein-Westfalen wie folgt beurteilt:


► Tab. 2.1.3.6-8 Qualitätskriterien für Nitrit (NO₂-N) in NRW

Wert für Nitrit (mg/l)	Einstufung	Bandfarbe
≤ 0,05	Halbes Qualitätskriterium eingehalten	
> 0,05 bis ≤ 0,1	Halbes Qualitätskriterium nicht eingehalten	
> 0,1	Qualitätskriterium nicht eingehalten	

In **Niedersachsen** wird als Qualitätskriterium für Nitrit LAWA-Güteklasse II (0,1 mg/l) angesetzt.

Als Ursache für Nitritbelastungen ist insbesondere die Einleitung unzureichend gereinigten Abwassers in Verbindung mit erheblichen Mängeln in der Gewässerstruktur anzusehen, wodurch ein schneller Abbau des Nitrits behindert wird. Unter Umständen kann auch die Gülledüngung bei niedrigen Wasser- und Bodentemperaturen dazu führen, dass erhöhte Nitritkonzentrationen auftreten.

In der Ibbenbürener Aa (Dreierwalder Aa) wurden erhöhte Nitrit-Konzentrationen festgestellt. Probleme mit Überschreitungen des Qualitätskriteriums gibt es in der Werse und in kleineren Nebengewässern der Ems. Weiterhin wurden an den niedersächsischen Messstellen an der Speller Aa in Hesselte und am Dissener Bach in Hengelage Überschreitungen des Qualitätskriteriums festgestellt.

Oberflächenwasserkörper

2.1

Gesamteinschätzung der Ausgangssituation im Bearbeitungsgebiet Obere Ems durch sonstige synthetische und nicht-synthetische Schadstoffe

Die Belastung im Bearbeitungsgebiet Obere Ems mit PCB und PAK ist an einigen wenigen Stellen noch relevant, insgesamt aber seit Jahren deutlich rückläufig.

Vor dem Hintergrund, dass für naturfremde synthetische Stoffe in Fließgewässern ein Qualitätskriterium von 10 μ g/l als Grundlage angenommen wurde, ist bei den Substanzen EDTA und BPA eine Überschreitung vornehmlich in industriell geprägten Bereichen des Bearbeitungsgebiets feststellbar. Aufgrund der Selbstverpflichtungserklärung einiger Chemieverbände von 1991 ist bei EDTA mit einer Reduzierung der Einträge in die Gewässer zu rechnen.

Dagegen treten bei Carbamazepin die Befunde nahezu flächendeckend auf, wobei in einigen Fällen das Qualitätskriterium überschritten wird.

► Tab. 2.1.3.6-9 a Ausgangssituation Stoffe N_{ges}, P, TOC und AOX (NRW) (Teil 1)

Wasserkörper			$N_{\rm ges}$			P			TOC		AOX			
		Klassenanteile [%]			Klasse	enantei	le [%]	Klasse	enantei	le [%]	Klassenanteile [%			
Gewässer	Wasserkörper-Nummer	+	?	-	+	?	? -		?	-	+ ?		-	
Ems	DE_NRW_3_206483		69	31		90	10		81	19	10	90		
Ems	DE_NRW_3_263688		63	37		92	8		71	29		100		
Ems	DE_NRW_3_296800			100	45	28	27		35	65	35	65		
Ems	DE_NRW_3_316800			100	100				100		100			
Ems	DE_NRW_3_336486		14	86	100			17	83		100			
Ems	DE_NRW_3_358886	1	99	00	100			100	03		100			
Schwarzwasserbach	DE_NRW_31112_0	100	33		100			100	100		100			
Schwarzwasserbach	DE_NRW_31112_3990	100			100				100		100			
Furlbach	DE_NRW_3112_0	100			100			100	100		100			
Furlbach	DE_NRW_3112_6900	100			100			100			100			
Sennebach		100		100	100			100			100			
	DE_NRW_3114_0													
Sennebach	DE_NRW_3114_17500	100		100	100			100	60		100			
Grubebach	DE_NRW_3116_0	100			100			32	68		100			
Forthbach	DE_NRW_31164_0		100			100			100		100			
Forthbach	DE_NRW_31164_5400		100			100			100		100			
Forthbach	DE_NRW_31164_7600		22	78		100			100		100			
Eusternbach	DE_NRW_31172_0		100			100			100		100			
Eusternbach	DE_NRW_31172_3800		100			91	9		100		100			
Hamelbach	DE_NRW_3118_0	100				100			100		100			
Hamelbach	DE_NRW_3118_2800	100			19	81		19	81		100			
Hamelbach	DE_NRW_3118_5800	100			100			100			100			
Dalkebach	DE_NRW_312_0		100		100				100		100			
Dalkebach	DE_NRW_312_949		100		100				100		100			
Dalkebach	DE_NRW_312_9950		100		100			21	79		100			
Dalkebach	DE_NRW_312_21762		100		100			100			100			
Hasselbach	DE_NRW_3124_0	100	100		100			100			100			
Hasselbach	DE_NRW_3124_2192	100			100			100			100			
Menkebach	DE_NRW_3126_0	100	100		100	100		100			100			
Menkebach		2	98		2	98		100			100			
Wapelbach	DE_NRW_3126_12000	2	100			100		100	100		100			
	DE_NRW_3128_0													
Wapelbach	DE_NRW_3128_4900	0.2	100		0.7	100		0.7	100		100			
Wapelbach	DE_NRW_3128_29200	83	17		83	17		83	17		100			
Rodenbach	DE_NRW_31282_0	71	29		100			100			100			
Rodenbach	DE_NRW_31282_6700	100			100			100			100			
Ölbach	DE_NRW_31284_0		100		23	36	40		60	40	100			
Ölbach	DE_NRW_31284_19400	30	70		100			30	70		100			
Landerbach	DE_NRW_312844_0		100		100				100		100			
Landerbach	DE_NRW_312844_8300	83	17		100			83	17		100			
Ruthenbach	DE_NRW_31312_0	100			100				100		100			
Lutter	DE_NRW_3132_0		100			100				100		100		
Lutter	DE_NRW_3132_4193		100		40	60		22	18	60	40	60		
Lutter	DE_NRW_3132_20093		100		100			100			100			
Trüggelbach	DE_NRW_31322_0		100		100				100		100			
Reiherbach	DE_NRW_31324_0		100				100			100		100		
Reiherbach	DE_NRW_31324_2500	36	64				100			100		100		
Welzplagebach	DE_NRW_31326_0	100			100				100		100			
Welzplagebach	DE_NRW_31326_14600	100			100			44	56		100			
Lichtebach	DE_NRW_31328_0	100	100		100			72	28		100			
Lichtebach	DE_NRW_31328_14500		100		100			100	20		100			
Abrocksbach			100	0	100	100	0	100	100		100			
	DE_NRW_3134_0		100			100								
Abrocksbach	DE_NRW_3134_9590		1.0	100			100		100		100			
Abrocksbach	DE_NRW_3134_15290		18	82		18	82		100		100			
Hovebach	DE_NRW_31342_0	100			100			100			100			
Hovebach	DE_NRW_31342_3300	100			100			100			100			
Loddenbach	DE_NRW_31344_0		100		100			100			100			
Loddenbach	DE_NRW_31344_6700		100		100			100			100			
Laibach	DE_NRW_3136_0			100			100			100	26	74		

► Tab. 2.1.3.6-9 b Ausgangssituation Metalle Cr, Cu, Zn, Cd, Hg, Ni und Pb (NRW) (Teil 1)

Wasserkörper		Cr			Cu			Zn			Cd			Hg			Ni			Pb		
		Klassenanteile [%]		e [%]	Klassenanteile [%]		[%] k	Klassenanteile [%]			Klassenanteile [%]] Klassenanteile [%]			Klassenanteile [%]			Klassenanteile		ile [º
Gewässer	Wasserkörper-Nummer	+	?	-	+	?	-	+	?	-	+	?	-	+	?	-	+	?	-	+	?	-
Ems	DE_NRW_3_206483	100			97	3			59	41		89	11		92	8	8	92			97	
Ems	DE_NRW_3_263688	100				100				100			100		100			100				10
ms	DE_NRW_3_296800	100				100			73	27	37	36	27		100			100			73	2
ms	DE_NRW_3_316800	100				100			100		100				100			100			100	
Ems	DE_NRW_3_336486	100			17	83		17	83		100				100			100		17	83	
Ems	DE_NRW_3_358886	100			100			100			100				100		0	100		100		
Schwarzwasserb.	DE_NRW_31112_0	100				100			100		100			100			100				100	
Schwarzwasserb.	DE_NRW_31112_3990	100				100			100		100			100			100				100	
Furlbach	DE_NRW_3112_0	100			100			100			100			100			100			100		
Furlbach	DE_NRW_3112_6900	100			100			100			100			100			100			100		
Sennebach	DE_NRW_3114_0	100			100			100			100			100			100			100		
Sennebach	DE_NRW_3114_17500	100			100			100			100			100			100			100		
Grubebach	DE_NRW_3116_0	100			31	69		31	69		100			100			100			31	69	
Forthbach	DE_NRW_31164_0	100				100			100		100			100			100				100	
Forthbach	DE_NRW_31164_5400	100			95	5		95	5		100			100			100			95	5	
Forthbach	DE_NRW_31164_7600	100			100			100			100			100			100			100		
Eusternbach	DE_NRW_31172_0	100				100			100		100			100			100				100	
Eusternbach	DE_NRW_31172_3800	100				100			100		100			100			100				100	
Hamelbach	DE_NRW_3118_0	100				100			100		100			100			100				100	
Hamelbach	DE_NRW_3118_2800	100			22	78		22	78		100			100			100			22	78	
Hamelbach	DE_NRW_3118_5800	100			100			100			100			100			100			100		
Dalkebach	DE_NRW_312_0	100				100			100		100				100			100			100	
Dalkebach	DE_NRW_312_949	100				100			100		100			100	0		100	0			100	
Dalkebach	DE_NRW_312_9950	100				100			100		100			100			100				100	
Dalkebach	DE_NRW_312_21762	100				100			100		100			100			100				100	
Hasselbach	DE_NRW_3124_0	100			100			100			100			100			100			100		
Hasselbach	DE_NRW_3124_2192	100			100			100			100			100			100			100		
Menkebach	DE_NRW_3126_0	100				100			100		100			100			100				100	
Menkebach	DE_NRW_3126_12000	100			89	11		89	11		100			100			100			89	11	
Wapelbach	DE_NRW_3128_0	100				100			100		100			7	93		7	93			100	
Wapelbach	DE_NRW_3128_4900	100			6	94		6	94		100			100			100			6	94	
Wapelbach	DE_NRW_3128_29200	100			100			100			100			100			100			100		
Rodenbach	DE_NRW_31282_0	100				100			100		100			100			100				100	
Rodenbach	DE_NRW_31282_6700	100			71	29		71	29		100			100			100			71	29	
Ölbach	DE_NRW_31284_0	100				100			100		77	23			100			100			100	
Ölbach	DE_NRW_31284_19400	100				100			100			100			100			100			100	
Landerbach	DE_NRW_312844_0	100				100			100		100				100			100			100	
Landerbach	DE_NRW_312844_8300	100			89	11		89	11		100				100		89	11		89	11	
Ruthenbach	DE_NRW_31312_0	100			100			100			100			100			100			100		
Lutter	DE_NRW_3132_0	100				100			100		100				100			100			100	
Lutter	DE_NRW_3132_4193	100				100			100		100				100			100			100	
Lutter	DE_NRW_3132_20093	100				100			100		100			7	93			100			100	
Trüggelbach	DE_NRW_31322_0	100				100			100		100				100			100			100	
Reiherbach	DE_NRW_31324_0	100				100			100			100		100				100			100	
Reiherbach	DE_NRW_31324_2500	100				100			100			100		100				100			100	
Welzplagebach	DE_NRW_31326_0	100			100			100			100				100		100			100		
Welzplagebach	DE_NRW_31326_14600	100			100			100			100				100		100			100		
ichtebach	DE_NRW_31328_0	100				100			100		100				100		100				100	
ichtebach	DE_NRW_31328_14500	100				100			100		100				100		100				100	
Abrocksbach	DE_NRW_3134_0	100				100			100			100		100			100				100	
Abrocksbach	DE_NRW_3134_9590	100				100			100			100		100			100				100	
Abrocksbach	DE_NRW_3134_15290	100				100			100			100		100			100				100	
Hovebach	DE_NRW_31342_0	100			100			100				100		100			100			100		
Hovebach	DE_NRW_31342_3300	100			100			100				100		100			100			100		
		100			100			100				100		100			100			100		
Loddenbach	DE_NRW_31344_0	100			100			100				100		100			100			100		
Loddenbach Laibach	DE_NRW_31344_6700 DE_NRW_3136_0	100			100	100		100	100			100		100			100			.00	100	

► Tab. 2.1.3.6-9 a Ausgangssituation Stoffe N_{ges}, P, TOC und AOX (NRW) (Teil 2)

Wasserkörper			N_{ges}			P			TOC			AOX	
		Klasse	enantei	le [%]	Klasse	enantei	le [%]	Klasse	enantei	le [%]	Klasse	enanteil	e [%
Gewässer	Wasserkörper-Nummer	+	?	-	+	?	-	+	?	-	+	?	-
Laibach	DE_NRW_3136_14785	9		91	9		91	9		91	100		
Laibach	DE_NRW_3136_21220	100			100			100			100		
Loddenbach	DE_NRW_3138_0		100			100			100		100		
Loddenbach	DE_NRW_3138_16491		100			100			100		100		
Ruthenbach	DE_NRW_31382_0		100			100			100		100		
Ruthenbach	DE_NRW_31382_5100		100			100			100		100		
Axtbach	DE_NRW_314_0			100		100			100			100	
Axtbach	DE_NRW_314_6682			100		100			100			100	
Axtbach	DE_NRW_314_20982			100		84	16		100			100	
Axtbach	DE_NRW_314_26357			100		100			100			100	
Bergeler Bach	DE_NRW_3142_0			100	100				100			100	
Bergeler Bach	DE_NRW_3142_3600			100	100				100			100	
Maibach	DE_NRW_3144_0			100	75	25				100		100	
Maibach	DE_NRW_3144_1500			100	100					100		100	
Maibach	DE_NRW_3144_4400			100	100					100		100	
Beilbach	DE_NRW_3146_0			100	29	71			100			100	
Beilbach	DE_NRW_3146_9200			100		100			100			100	
Beilbach	DE_NRW_3146_14565			100		100			100			100	
Flutbach	DE_NRW_31472_0	100				100				100		100	
Baarbach	DE_NRW_3148_0	100		100		100	100		57	43		100	
Baarbach	DE_NRW_3148_8500			100			100		100	15		100	
Westkirchener Bach	DE_NRW_31482_0			100			100		100			100	
Westkirchener Bach	DE_NRW_31482_2500			100			100		28	72		100	
Südlicher Talgraben	DE_NRW_31492_0			100	100		100	67	33	12	67	33	
	DE_NRW_314924_0	100		100	100			100	33		100	33	
Poggenbach		100		100	100			100			51	49	
Nördlicher Talgraben Holtbach	DE_NRW_3152_0		100	100	100	98	2	100		100	JI	100	
Holtbach	DE_NRW_3154_0 DE_NRW_3154_8583		100			100	Z			100		100	
			100			100			100	100		100	
Hessel	DE_NRW_316_0		11	89		69	31	54	46		74		
Hessel	DE_NRW_316_10872	32	11	68	22	69	68	100	40		100	26	
Hessel	DE_NRW_316_31394			08	32		08				100		
Hessel	DE_NRW_316_36387	100	100		100	100		100	100				
Casumer Bach	DE_NRW_31612_0		100			100			100		100		
Casumer Bach	DE_NRW_31612_4517		100			100			100		100		
Bruchbach	DE_NRW_3162_0		100			100			100		100		
Bruchbach	DE_NRW_3162_1600		100			100			100		100		
Bruchbach	DE_NRW_3162_5100	19	81		19	81		19	81		100		
Alte Hessel	DE_NRW_31632_0		100		100				100		100		
Backhorster Bach	DE_NRW_3164_0			100			100		100		100		
Backhorster Bach	DE_NRW_3164_7800			100		97	3	97	3		100		
Backhorster Bach	DE_NRW_3164_13341			100		100		100			100		
Dissener Bach	DE_NRW_31642_0	1		99		100				100	100		
Speckengraben	DE_NRW_3168_0		100		100					100		100	
Speckengraben	DE_NRW_3168_9100		100		100					100		100	
Mussenbach	DE_NRW_3172_0		27	73			100		63	37		100	
Mussenbach	DE_NRW_3172_7884		100				100			100		100	
Brüggenbach	DE_NRW_31722_0	100					100			100		100	
Brüggenbach	DE_NRW_31722_2200	100					100			100		100	
Maarbecke	DE_NRW_3174_0		36	64			100		100			100	
Maarbecke	DE_NRW_3174_1686		9	91		9	91		100			100	
Bever	DE_NRW_318_0		100		72	28			100			100	
Bever	DE_NRW_318_21995		100			100			100			100	
Frankenbach	DE_NRW_3184_0	100			100				100			100	
Werse	DE_NRW_32_0		36	64		37	63		89	11	84	16	
Werse	DE_NRW_32_43489		22	78			100		100	·		100	
Werse	DE_NRW_32_48200		100	. 0			100		100			100	
Werse	DE_NRW_32_50960		100		0	50	49	38	62			100	

► Tab. 2.1.3.6-9 b Ausgangssituation Metalle Cr, Cu, Zn, Cd, Hg, Ni und Pb (NRW) (Teil 2)

Wasserkörper			Cr			Cu		Zn			Cd			Hg		Ni		Pb	
		Klasse	enanteil	e [%] I	Klasse	nanteile [%] Klasse	nanteil	e [%]	Klasse	enanteil	e [%]	Klasse	nanteile [%]	Klass	enanteile [9	[6] Klass	enantei	ile [
Gewässer	Wasserkörper-Nummer	+	?	-	+	? -	+	?	-	+	?	-	+	? -	+	? -	+	?	
Laibach	DE_NRW_3136_14785	100				100		100			100		100		100			100	
_aibach	DE_NRW_3136_21220	100			92	8	92	8			100		100		100		92	8	
oddenbach	DE_NRW_3138_0	100			91	9	91	9			100		100		100		91	9	
_oddenbach	DE_NRW_3138_16491	100			100		100				100		100		100		100		
Ruthenbach	DE_NRW_31382_0	100				100		100			100		100		100			100	
Ruthenbach	DE_NRW_31382_5100	100				100		100			100		100		100			100	
Axtbach	DE_NRW_314_0	100				100		100			100			100		100		100	
Axtbach	DE_NRW_314_6682	100				100		100			100			100		100		100	
Axtbach	DE_NRW_314_20982	100				100		100			100			100		100		100	
Axtbach	DE_NRW_314_26357	100			86	14	86	14			100			100		100	86	14	
Bergeler Bach	DE_NRW_3142_0	100				100		100			100			100		100		100	
Bergeler Bach	DE_NRW_3142_3600	100				100		100			100			100		100		100	
Maibach	DE_NRW_3144_0	100				100		100			100			100		100		100	
Maibach	DE_NRW_3144_1500	100				100		100			100			100		100		100	
Maibach	DE_NRW_3144_4400	100				100		100			100			100		100		100	
Beilbach	DE_NRW_3146_0	100			100		100				100			100		100	100		
Beilbach	DE_NRW_3146_9200	100			100		100				100			100		100	100		
Beilbach	DE_NRW_3146_14565	100			100		100				100			100		100	100		Γ
Flutbach	DE_NRW_31472_0	100				100		100			100			100		100		100	
Baarbach	DE_NRW_3148_0	100				100		100			100			100		100		100	Г
Baarbach	DE_NRW_3148_8500	100				100		100			100			100		100		100	
Westkirchener B.	DE_NRW_31482_0	100				100		100			100			100		100		100	Г
Westkirchener B.	DE_NRW_31482_2500	100			71	29	71	29			100			100		100	71	29	
Südl. Talgraben	DE_NRW_31492_0	100			100		100			67	33			100	67	33	100		Г
Poggenbach	DE_NRW_314924_0	100			100		100			100			100		100		100		
Nördl. Talgraben	DE_NRW_3152_0	100			30	70	30	70		51	49			100	51	49	30	70	Г
Holtbach	DE_NRW_3154_0	100			96	4	96	4			100			100		100	96	4	
Holtbach	DE_NRW_3154_8583	100			100		100				100			100		100	100		Г
Hessel	DE_NRW_316_0	100				100		100			100			100		100		100	
Hessel	DE_NRW_316_10872	100				100		100			100			100	75	25		100	
Hessel	DE_NRW_316_31394	100			35	65	35	65			100			100	100		35	65	
Hessel	DE_NRW_316_36387	100			100		100				100			100	100		100		Г
Casumer Bach	DE_NRW_31612_0	100			100		100				100			100	100		100		
Casumer Bach	DE_NRW_31612_4517	100			100		100				100			100	100		100		Г
Bruchbach	DE_NRW_3162_0	100			39	61	39	61			100			100	100		39	61	
Bruchbach	DE_NRW_3162_1600	100			100		100				100			100	100		100		Г
Bruchbach	DE_NRW_3162_5100	100			100		100				100			100	100		100		
Alte Hessel	DE_NRW_31632_0	100				100		100			100			100	100			100	
Backhorster Bach	DE_NRW_3164_0	100			39	61	39	61			100			100	100		39	61	
Backhorster Bach	DE_NRW_3164_7800	100			100		100				100			100	100		100		Г
Backhorster Bach	DE_NRW_3164_13341	100			100		100				100			100	100		100		
Dissener Bach	DE_NRW_31642_0	100			100		100			100			1	99	100		100		Г
Speckengraben	DE_NRW_3168_0	100			79	21	79	21			100			100		100	79	21	
Speckengraben	DE_NRW_3168_9100	100			100		100				100			100		100	100		Г
Mussenbach	DE_NRW_3172_0	100			78	22	78	22			100			100		100	78	22	
Mussenbach	DE_NRW_3172_7884	100			100		100				100			100		100	100		
Brüggenbach	DE_NRW_31722_0	100				100		100			100			100		100		100	
Brüggenbach	DE_NRW_31722_2200	100			65	35	65	35			100			100		100	65	35	
Maarbecke	DE_NRW_3174_0	100				100		100			100			100		100		100	
Maarbecke	DE_NRW_3174_1686	100				100		100			100			100		100		100	
Bever	DE_NRW_318_0	100				100		100			100			100		100		100	
Bever	DE_NRW_318_21995	100				100		100			100			100		100		100	
Frankenbach	DE_NRW_3184_0	100			100		100	-			100			100		100	100		
Werse	DE_NRW_32_0	100			44	56	.50	100		100	.55		100		100		.00	100	
	DE_NRW_32_43489	100				100		100		100			100		100			100	
Nerse Nerse		100				100		100		100			100		100			100	
Werse Werse	DE_NRW_32_48200 DE_NRW_32_50960	100			16	84	16	84		100			100		100		16	84	

► Tab. 2.1.3.6-9 a Ausgangssituation Stoffe N_{ges}, P, TOC und AOX (NRW) (Teil 3)

Wasserkörper			$N_{\rm ges}$			P			TOC			AOX	
		Klass	enantei	le [%]	Klasse	enantei	le [%]	Klasse	enantei	le [%]	Klass	enanteile	e [%
Gewässer	Wasserkörper-Nummer	+	?	-	+	?	-	+	?	-	+	?	-
Olfe	DE_NRW_3212_0		100			100			100			100	
Kälberbach	DE_NRW_3214_0		100			100			100			100	
Erlebach	DE_NRW_3216_0		100			100			100		100		
Umlaufsbach	DE_NRW_322_0		100			100			100		100		
Mühlenbach	DE_NRW_3222_0		100			100			100		100		
Flaggenbach	DE_NRW_3232_0			100		13	87		13	87	100		
Flaggenbach	DE_NRW_3232_5207			100			100			100	100		
Ahrenhorster Bach	DE_NRW_324_0			100		100			100		100		
Ahrenhorster Bach	DE_NRW_324_1900	99		1		100			100		100		
Ahrenhorster Bach	DE_NRW_324_11500	100				100			100		100		
Alsterbach	DE_NRW_3242_0	16	84				100		100		100		
Alsterbach	DE_NRW_3242_4900	100					100		100		100		
Alsterbach	DE_NRW_3242_7300	100					100		100		100		
Westerbach	DE_NRW_3252_0	100				100			100		100		
Westerbach	DE_NRW_3252_2400	100				100			100		100		
Emmerbach	DE NRW 326 0		25	75		69	31		100		3	97	
Emmerbach	DE_NRW_326_7086		39	61	17	18	65		100		100		
Getterbach	DE_NRW_3268_0	48	52		100				100		43	57	
Kannenbach	DE NRW 3269922 0	9	91		100				100		100	0,	
Angel	DE_NRW_328_0	3	81	19	100	4	96		100		100	100	
Angel	DE_NRW_328_12791		100	15		100	0		100			100	
Angel	DE_NRW_328_18391		93	7		35	65		100			100	
Angel	DE_NRW_328_27436		46	54	55	33	45		100			100	
Hellbach	DE_NRW_3282_0	94	6	J-T	33	100	73		100			100	
Hellbach	DE_NRW_3282_2700	12	U	88	53	47			100			100	
Nienholtbach	DE_NRW_3284_0	12	100	00	33	100			100			100	
Nienholtbach	DE_NRW_3284_3040		100			100			100			100	
Nienholtbach	DE_NRW_3284_5200		100			100			100			100	
Voßbach	DE_NRW_3286_0		100	100		100			100			100	
Wieninger Bach	DE_NRW_3288_0	36	64	100		100	100		100			100	
-		50	50				100		100			100	
Wieninger Bach Wieninger Bach	DE_NRW_3288_3400	100	30				100		100			100	
*	DE_NRW_3288_8500 DE_NRW_32892_0	100	100			100	100		100			100	
Piepenbach			100			100			100			100	
Piepenbach	DE_NRW_32892_7300	100	100			100	100				0.4		
Kreuzbach	DE_NRW_3294_0	100				100	100		100		84	16	
Gellenbach	DE_NRW_3312_0	100	_	2.6		100			100		100	63	
Münstersche Aa	DE_NRW_332_0	69	5	26		100			100		37	63	
Münstersche Aa	DE_NRW_332_11785		100			100			100		100		
Münstersche Aa	DE_NRW_332_15857		26	74		100			100		100		
Münstersche Aa	DE_NRW_332_20800		92	8		6	94		100		100		
Münstersche Aa	DE_NRW_332_34729		100				100		100		100		
Münstersche Aa	DE_NRW_332_38829		100				100		100		100		
Schlautbach	DE_NRW_3322_0	84	16		83	17			100		100		
Schlautbach	DE_NRW_3322_5400	100			100				100		100		
Meckelbach	DE_NRW_3324_0	37	48	15		100		36	64			100	
Meckelbach	DE_NRW_3324_5100	100				100			100			100	
Kinderbach	DE_NRW_3328_0		100			100			100		100		
Kinderbach	DE_NRW_3328_3200		100			100			100		100		
Kinderbach	DE_NRW_3328_7700		100			100			100		100		
Mühlenbach	DE_NRW_3332_0	8	92			31	69		85	15	100		
Mühlenbach	DE_NRW_3332_13594		100			100			100		100		
Flothbach	DE_NRW_33324_0	58		42			100		100		100		
Glane	DE_NRW_334_0			100	74	26			37	63		100	
Glane	DE_NRW_334_15784			100	68	32		0	86	14	0	100	
Bullerbach	DE_NRW_3342_0		97	3	100					100		100	
Kattenvenner Bach	DE_NRW_33432_0		100			100				100		100	
Mühlenbach	DE_NRW_3344_0			100		16	84		100			100	

► Tab. 2.1.3.6-9 b Ausgangssituation Metalle Cr, Cu, Zn, Cd, Hg, Ni und Pb (NRW) (Teil 3)

Wasserkörper			Cr			Cu		Zn			Cd			Hg		Ni		Pb	
		Klass	enanteil	le [%]	Klasse	nanteile [6] Klass	enante	ile [%]	Klasse	enanteil	e [%]	Klasse	nanteile [%]	Klass	enanteile [%] Klass	enantei	ile [
Gewässer	Wasserkörper-Nummer	+	?	-	+	? -	+	?	-	+	?	-	+	? -	+	? -	+	?	
Olfe	DE_NRW_3212_0	100				100		100		100			100		100			100	
Kälberbach	DE_NRW_3214_0	100			100		100			100			100		100		100		
rlebach	DE_NRW_3216_0	100				100		100		100			100		100			100	
Jmlaufsbach	DE_NRW_322_0	100			21	79	21	79		100			100		100		21	79	
Mühlenbach	DE_NRW_3222_0	100			100		100			100			100		100		100		
Flaggenbach	DE_NRW_3232_0	100				100		100		100			100		100			100	
laggenbach	DE_NRW_3232_5207	100			99	1	99	1		100			100		100		99	1	
Ahrenhorster B.	DE_NRW_324_0	100			100		100			100			100		100		100		
Ahrenhorster B.	DE_NRW_324_1900	100			100		100			100			100		100		100		
Ahrenhorster B.	DE_NRW_324_11500	100			100		100			100			100		100		100		
Alsterbach	DE_NRW_3242_0	100				100		100		100			100		100			100	
Alsterbach	DE_NRW_3242_4900	100			37	63	37	63		100			100		100		37	63	Г
Alsterbach	DE_NRW_3242_7300	100			100		100			100			100		100		100		
Westerbach	DE_NRW_3252_0	100			100		100			100			100		100		100		
Westerbach	DE_NRW_3252_2400	100			100		100			100			100		100		100		
mmerbach	DE_NRW_326_0	100				100		100		100			100		100			100	Г
Emmerbach	DE_NRW_326_7086	100			35	65	35	65		100			100		100		35	65	
Getterbach	DE_NRW_3268_0	100				100		100		100			100		100			100	
Kannenbach	DE NRW 3269922 0	100			100		100			100			100		100		100		
Angel	DE NRW 328 0	100				100		100		100			100		100			100	Г
Angel	DE_NRW_328_12791	100				100		100		100			100		100			100	
Angel	DE_NRW_328_18391	100				100		100		100			100		100			100	
Angel	DE_NRW_328_27436	100			55	45	55	45		100			100		100		55	45	
Hellbach	DE_NRW_3282_0	100				100		100		100			100		100			100	
Hellbach	DE_NRW_3282_2700	100			30	70	30	70		100			100		100		30	70	
Nienholtbach	DE_NRW_3284_0	100			100		100			100			100		100		100		ı
Nienholtbach	DE_NRW_3284_3040	100			100		100			100			100		100		100		
Nienholtbach	DE_NRW_3284_5200	100			100		100			100			100		100		100		ı
/oßbach	DE_NRW_3286_0	100			43	57	43	57		100			100		100		43	57	
Nieninger Bach	DE_NRW_3288_0	100				100		100		100			100		100			100	
Wieninger Bach	DE_NRW_3288_3400	100			51	49	51	49		100			100		100		51	49	
Wieninger Bach	DE_NRW_3288_8500	100			100	.0	100			100			100		100		100	.0	
Piepenbach	DE_NRW_32892_0	100			3	97	3	97		100			100		100		3	97	
Piepenbach	DE_NRW_32892_7300	100			100	31	100	37		100			100		100		100	37	
		100			100		100			100			100		100		100		
Kreuzbach	DE_NRW_3294_0	100			100		100			100	100		100	100	100	100	100		
Gellenbach	DE_NRW_3312_0				100	100	100	100									100	100	L
Münstersche Aa	DE_NRW_332_0	100				100		100			100			100		100		100	
Münstersche Aa	DE_NRW_332_11785	100				100		100			100			100		100		100	
Münstersche Aa	DE_NRW_332_15857	100				100		100			100			100		100		100	
Münstersche Aa	DE_NRW_332_20800	100			25	75	25	75			100			100		100	25	75	
Münstersche Aa	DE_NRW_332_34729	100			100		100				100			100		100	100		
Münstersche Aa	DE_NRW_332_38829	100			100		100				100			100		100	100		
Schlautbach	DE_NRW_3322_0	100				100		100			100			100		100		100	
Schlautbach	DE_NRW_3322_5400	100				100		100			100			100		100		100	
Meckelbach	DE_NRW_3324_0	100			16	84	16	84			100			100		100	16	84	
Meckelbach	DE_NRW_3324_5100	100			100		100				100			100		100	100		
Kinderbach	DE_NRW_3328_0	100				100		100			100			100		100		100	
Kinderbach	DE_NRW_3328_3200	100				100		100			100			100		100		100	
Kinderbach	DE_NRW_3328_7700	100				100		100			100			100		100		100	
Mühlenbach	DE_NRW_3332_0	100			25	75	25	75			100			100		100	25	75	
Mühlenbach	DE_NRW_3332_13594	100			100		100				100			100		100	100		
lothbach	DE_NRW_33324_0	100				100		100			100			100		100		100	
Glane	DE_NRW_334_0	100				100		100			100		100		100			100	
Glane	DE_NRW_334_15784	100			76	24	76	24			100		100		100		76	24	
Bullerbach	DE_NRW_3342_0	100			100		100				100		100		100		100		
Kattenvenner B.	DE_NRW_33432_0	100			3	97	3	97			100		100		100		3	97	
Mühlenbach	DE_NRW_3344_0	100				100		100			100		100		100			100	

► Tab. 2.1.3.6-9 a Ausgangssituation Stoffe N_{ges}, P, TOC und AOX (NRW) (Teil 4)

Wasserkörper			$N_{\rm ges}$			P			TOC			AOX	
		Klasse	enantei	le [%]	Klasse	enantei	le [%]	Klasse	enantei	le [%]	Klasse	enantei	e [%
Gewässer	Wasserkörper-Nummer	+	?	-	+	?	-	+	?	-	+	?	-
Mühlenbach	DE_NRW_3344_4000			100	30	19	51		100			100	
Mühlenbach	DE_NRW_3344_18200			100	100				100			100	
Aldruper Mühlenbach	DE_NRW_33442_0		7	93	100				71	29		100	
Eltings Mühlenbach	DE_NRW_3346_0			100	91	9				100		100	
Eltings Mühlenbach	DE_NRW_3346_15537			100	100					100		100	
Eltings Mühlenbach	DE_NRW_3346_18317	0		100	100			0		100	0	100	
Bockhorner Bach	DE_NRW_33462_0	2		98	100			2		98	2	98	
Bockhorner Bach	DE NRW 33462 9912	100			100			100			100		
Lütkebecke	DE_NRW_33468_0		100		100					100		100	
Lütkebecke	DE_NRW_33468_2500		100		100					100		100	
Saerbecker Mühlenbach	DE_NRW_3352_0		100		100				100			100	
Saerbecker Mühlenbach	DE_NRW_3352_1088		100		100				100			100	
Saerbecker Mühlenbach	DE_NRW_3352_4688		100		100				100			100	
			100		100				100				
Saerbecker Mühlenbach	DE_NRW_3352_15188				100	100						100	
Walgenbach	DE_NRW_3354_0		100	100		100	100		100	7.5		100	
Emsdettener Mühlenbach	DE_NRW_336_0			100			100		25	75		100	
Emsdettener Mühlenbach	DE_NRW_336_8081	43		57		43	57		67	33		100	
Emsdettener Mühlenbach	DE_NRW_336_16081	100				100			100			100	
Landwehrgraben	DE_NRW_3364_0	100					100			100		100	
Landwehrgraben	DE_NRW_3364_2900	100					100			100		100	
Rösingbach	DE_NRW_3366_0	100					100		100			100	
Aabach	DE_NRW_3368_0	18		82	38		62			100		100	
Aabach	DE_NRW_3368_6000	100			100					100		100	
Hummertsbach	DE_NRW_3372_0			100		100			100			100	
Hummertsbach	DE_NRW_3372_6880			100		100			100			100	
Mühlenbach	DE_NRW_3374_0		100		100				100			100	
Frischhofsbach	DE_NRW_3376_0	67	10	23	77	23			19	81		59	4
Frischhofsbach	DE_NRW_3376_10674	100			100					100		100	
Wambach	DE_NRW_3378_0			100	100				100			100	
Wambach	DE_NRW_3378_4077			100	100				100			100	
Wambach	DE NRW 3378 6777			100	100				100			100	
Bevergerner Aa	DE_NRW_338_0		62	38	6	56	38		60	40		100	
Bevergerner Aa	DE_NRW_338_11476		100	30	46	54	30		100	40		100	
•			100		40	100			100			100	
Bevergerner Aa	DE_NRW_338_31676		100		100	100			100			100	
Mühlenbach	DE_NRW_3382_0												
Mühlenbach	DE_NRW_3382_9300		100		100				100			100	
Randelbach	DE_NRW_3392_0		100		100				100			100	
Randelbach	DE_NRW_3392_1385		100		100				100			100	
Elsbach	DE_NRW_3394_7647			100	100					100		100	
Halverder Aa	DE_NRW_342_2556		37	63	45	55				100		100	
Voltlager Aa	DE_NRW_3424_0			100	100					100		100	
Bardelgraben	DE_NRW_3432_4736		100		100					100		100	
Moosbeeke	DE_NRW_3434_8343	100			75	25				100		100	
Giegel Aa	DE_NRW_3438_10089		100		100					100		100	
Mettinger Aa	DE_NRW_344_14915	56	44		100			56	44		56	44	
Mettinger Aa	DE_NRW_344_20304		100		100				100			100	
Mettinger Aa	DE_NRW_344_29104		55	45	51	49		35	65			100	
Mettinger Aa	DE_NRW_344_43304			100	100			100				100	
Hauptgraben	DE_NRW_3442_0		100		100			33	67			100	
Strootbach	DE_NRW_3444_0			100		100		30	100			100	
Strootbach	DE_NRW_3444_2600			100		100			100			100	
Strootbach				100		100			100			100	
	DE_NRW_3444_6500	100		100	100	100			100			100	
Meerbecke	DE_NRW_34454_0	100	100						100	100			
Breischener Bruchgraben	DE_NRW_3446_0	-	100	22	100	00	12		00	100		100	
Dreierwalder Aa	DE_NRW_3448_1494	1	77	23	1	86	13	1	99		1		99
Dreierwalder Aa	DE_NRW_3448_15075		82	18	55	12	33		58	42		78	22
Dreierwalder Aa	DE_NRW_3448_31200		100		100				100			100	
Altenrheiner Bruchgraben	DE_NRW_34486_1839	100			100					100		100	

► Tab. 2.1.3.6-9 b Ausgangssituation Metalle Cr, Cu, Zn, Cd, Hg, Ni und Pb (NRW) (Teil 4)

Wasserkörper			Cr		Cu		Zn			Cd			Hg		Ni		Pb	
			anteile [%]		enanteile [%]			le [%]	Klasse		le [%]				enanteile [%			le [%
Gewässer	Wasserkörper-Nummer	+	? -	+	? -	+	?	-	+	?	-	+	? -	+	? -	+	?	-
Mühlenbach	DE_NRW_3344_4000	100		19	81	19	81			100		100		100		19	81	
Mühlenbach	DE_NRW_3344_18200	100		100		100				100		100		100		100		
Aldruper Mühlenb.	DE_NRW_33442_0	100		100		100				100		100		100		100		
Eltings Mühlenb.	DE_NRW_3346_0	100		100		100				69	31	100		100		100		
Eltings Mühlenb.	DE_NRW_3346_15537	100		100		100				100		100		100		100		
Eltings Mühlenb.	DE_NRW_3346_18317	100		100		100			0	100		100		100		100		
Bockhorner Bach	DE_NRW_33462_0	100		100		100			2	98		2	98	100		100		
Bockhorner Bach	DE_NRW_33462_9912	100		100		100			100			100		100		100		
Lütkebecke	DE_NRW_33468_0	100		100		100				100		100		100		100		
Lütkebecke	DE_NRW_33468_2500	100		100	100	100				100		100	100	100	100	100		
Saerbeck. Mühlenb.	DE_NRW_3352_0	100			100		100			100			100		100		100	
Saerbeck. Mühlenb.	DE_NRW_3352_1088	100		63	37	63	37			100			100		100	63	37	
Saerbeck. Mühlenb.	DE_NRW_3352_4688	100		100		100				100			100		100	100		
Saerbeck. Mühlenb.	DE_NRW_3352_15188	100		100	100	100				100			100		100	100		
Walgenbach	DE_NRW_3354_0	100			100		100			100			100		100		100	
Emsdett. Mühlenb.	DE_NRW_336_0	100			100		100			100			100		100		100	
Emsdett. Mühlenb.	DE_NRW_336_8081	100			100		100			100			100		100		100	
Emsdett. Mühlenb.	DE_NRW_336_16081	100			100		100			100			100		100		100	
Landwehrgraben	DE_NRW_3364_0	100			100		100			100			100		100		100	
Landwehrgraben	DE_NRW_3364_2900	100			100		100			100			100		100		100	
Rösingbach	DE_NRW_3366_0	100		100	100	100	100			100			100		100	100	100	
Aabach	DE_NRW_3368_0	100			100		100			100			100		100		100	
Aabach	DE_NRW_3368_6000	100		100	100		100			100			100		100		100	
Hummertsbach	DE_NRW_3372_0	100		100		100				100			100		100	100		
Hummertsbach	DE_NRW_3372_6880	100		100		100				100			100		100	100		
Mühlenbach	DE_NRW_3374_0	100		100	40	100	40			100			100		100	100	40	
Frischhofsbach	DE_NRW_3376_0	100		52	48	52	48			100			100		100	52	48	
Frischhofsbach	DE_NRW_3376_10674	100		100		100				100			100		100	100		
Wambach	DE_NRW_3378_0	100			100		100			100			100		100		100	
Wambach	DE_NRW_3378_4077	100			100		100			100			100		100		100	
Wambach	DE_NRW_3378_6777	100			100		100	20		100		100	100		100		100	2.
Bevergerner Aa	DE_NRW_338_0	100		62	38	62		38		100		100		62	38	62		38
Bevergerner Aa	DE_NRW_338_11476	100		100		100				100		100		100		100		
Bevergerner Aa	DE_NRW_338_31676	100		100		100				100		100		100		100		
Mühlenbach	DE_NRW_3382_0	100		100		100				100		100		100		100		
Mühlenbach	DE_NRW_3382_9300	100		100	100	100	100			100		100	100	100		100	100	
Randelbach	DE_NRW_3392_0	100			100		100			100			100	100			100	
Randelbach	DE_NRW_3392_1385	100			100		100			100			100	100			100	
Elsbach	DE_NRW_3394_7647	100			100		100		100	100		100	100	100			100	
Halverder Aa	DE_NRW_342_2556	100		100	100	100	100		100			100		100		100	100	
Voltlager Aa	DE_NRW_3424_0	100		100		100			100			100		100		100		
Bardelgraben	DE_NRW_3432_4736																	
Moosbeeke	DE_NRW_3434_8343	100		100	100	100	100		100			100		100	,	100	100	
Giegel Aa	DE_NRW_3438_10089	100		5.0	100		100		100			100		99	1		100	
Mettinger Aa	DE_NRW_344_14915			56	44	56	44									56	44	
Mettinger Aa	DE_NRW_344_20304	100		,	100	,	100		100			100		100		١,	100	
Mettinger Aa	DE_NRW_344_29104	100		100	99	100	99		100			100		100		100	99	
Mettinger Aa	DE_NRW_344_43304	100		100	100	100	100		100			100		100		100	100	
Hauptgraben	DE_NRW_3442_0	100			100		100		100			100		100			100	
Strootbach	DE_NRW_3444_0	100			100		100		100			100		100			100	
Strootbach	DE_NRW_3444_2600	100		4.	100	4.	100		100			100		100			100	
Strootbach	DE_NRW_3444_6500	100		44	56	44	56		100			100		100		44	56	
Meerbecke	DE_NRW_34454_0	100		100		100			100			100		100		100		
Breischen. Bruchgr.	DE_NRW_3446_0	100		100	00	100		0.0	100			100		100	00	100		
Dreierwalder Aa	DE_NRW_3448_1494	100		1	99	1		99	1		99	1	99	1	99	1		99
Dreierwalder Aa	DE_NRW_3448_15075	100		44	56	44	52	4		96	4		96 4		100	44	52	
Dreierwalder Aa	DE_NRW_3448_31200	100		100		100				100			100		100	100		

▶ 2.1 Oberflächenwasserkörper

Ausgangssituation ausgewählter Parameter im niedersächsischen Teil des Bearbeitungsgebiets Obere Ems ► Tab. 2.1.3.6-10

Wasserkörp	per		N _{ges}	P	тос	AOX	Cr	Cu	Zn	Cd	Hg	Ni	Pb
Messstelle	Gewässer	Wasserkörper-Nummer											
Salzbergen	Ems	01001	-	-	-	(?)	(?)	(?)	(?)	(?)	(?)	(?)	(?)
Beesten	Große Aa	01003	-	-	-	(?)	+	+	+	?	+	+	+
Hesselte	Speller Aa	01004	-	-	-	(?)	+	+	+	+	-	+	+
Hengelage	Dissener Bach	01024	-	-	-	(?)	(?)	(?)	(?)	(?)	(?)	(?)	(?)
Sudendorf	Bever	01025	-	-	-	(?)	+	+	?	?	+	+	+
Schwege	Ödingberger Bach	01027	-	-	-	(?)	(?)	(?)	(?)	(?)	(?)	(?)	(?)

Zielerreichung unwahrscheinlich

Zielerreichung unklar

Zielerreichung wahrscheinlich

(?) keine ausreichenden Messdaten vorhanden

2.2

Grundwasserkörper

Die WRRL sieht für das Grundwasser die Abgrenzung von Grundwasserkörpern vor, auf die alle Analysen und Beurteilungen bezogen werden. Unter einem **Grundwasserkörper** wird dabei im Sinne der WRRL ein "abgegrenztes Grundwasservolumen innerhalb eines oder mehrerer Grundwasserleiter" (s. WRRL, Art. 2 (12)) verstanden.

Die WRRL baut auf einem **Regionalkonzept** – den Flussgebietseinheiten, Teileinzugsgebieten etc. – auf, d. h. es wird eine einheitliche und damit auch über eine gewisse Fläche repräsentative Betrachtung gefordert.

Mit der Abgrenzung von Grundwasserkörpern wird diesem Sachverhalt Rechnung getragen. Insofern spielt also in diesem Zusammenhang ein örtlicher Schadensfall – und sei er noch so schwerwiegend – ohne eine übergeordnete, regionale Bedeutung keine Rolle. Es erübrigt sich natürlich nicht, ihn aufgrund bestehender Gesetze und Vorschriften zu sanieren.

Im Hinblick auf die Bearbeitung des Themas Grundwasser ist es unerlässlich, einen Raum zu definieren, der für weitere Betrachtungen als "homogen" festgelegt und in seiner regionalen Aussage nicht weiter unterteilt wird.

2.2.1

Abgrenzung und Beschreibung

Die Grundwasserkörper stellen im Hinblick auf die erstmalige und weitergehende Beschreibung sowie für die daraus resultierende Bewertung die kleinste Gliederungs- und Bewertungseinheit dar. Für Nordrhein-Westfalen und Niedersachsen wurden die Grundwasserkörper jeweils zentral nach landesweit einheitlichen methodischen Vorgehen abgegrenzt. Im Bereich der Landesgrenze wurden die Abgrenzungen gemeinsam festgelegt.

Die Grenzen des Bearbeitungsgebiets Obere Ems in Nordrhein-Westfalen und Niedersachsen, die gleichzeitig das oberirdische Teileinzugsgebiet der Oberen Ems darstellen, wurden als Grundwasserkörpergruppe festgesetzt. Die Abgrenzung der Grundwasserkörper erfolgte ausschließlich innerhalb dieser Grundwasserkörpergruppe, ein Grundwasserkörper ist also genau einer Grundwasserkörpergruppe zugehörig.

Die Abgrenzung der Grundwasserkörper erfolgte in Bezug auf den obersten relevanten Grundwasserleiter. Im Porengrundwasserleiter orientierte sich die Abgrenzung der Grundwasserkörper in erster Linie an unterirdischen Einzugsgebieten anhand von Grundwassergleichenplänen und erst nachrangig an lithologischen Unterschieden. Im Festgestein wurden die geologischen Verhältnisse (lithologische Unterschiede) sowie die oberirdischen Wasserscheiden (Grundwasserregionen) als maßgebliche Abgrenzungskriterien herangezogen. Im Unterschied zur nordrheinwestfälischen Methode wurden in Niedersachsen grundsätzlich die oberirdischen Wasserscheiden als oberstromige und der jeweils relevante Vorfluter als unterstromige Begrenzung herangezogen. Zu methodischen Abweichungen kam es nur, wenn örtlich besondere geologische Verhältnisse zu berücksichtigen waren.

Die Beschreibung der einzelnen Grundwasserkörper erfolgt im Wesentlichen über Steckbriefe. Die Steckbriefe enthalten die wichtigsten geologischen, hydrogeologischen, wasserwirtschaftlichen, pedologischen sowie nutzungsbezogenen Daten, die für eine aussagekräftige Charakterisierung der Grundwasserkörper benötigt werden. Für das Bearbeitungsgebiet Obere Ems wurden 20 Grundwasserkörper – 10 Lockergesteins- und 10 Festgesteinskörper – abgegrenzt (s. Karte 2.2-1). Aufgrund der naturräumlichen Verhältnisse dominieren Porengrundwasserleiter mit mehr als 60 % des Gesamtflächenanteils. Bei mäßigen bis hohen Durchlässigkeiten werden sie bereichsweise intensiv für die öffentliche Wasserversorgung genutzt. Dementsprechend wird die wasserwirtschaftliche Bedeutung dieser Grundwasserkörper überwiegend hoch eingestuft.

Flächenmäßig geringer vertreten sind Grundwasserkörper mit Kluftgrundwasserleitern. Im Hinblick auf die dortigen Grundwasservorkommen und ihre Nutzung für die öffentliche Trinkwasserversorgung kommt diesen Grundwasserkörpern im Bearbeitungsgebiet Obere Ems zumeist eine geringe Bedeutung zu.

Die Tabelle 2.2.1-1 enthält eine Übersicht über die Grundwasserkörper im Bearbeitungsgebiet Obere Ems mit einigen beschreibenden Eigenschaften, die aus den Steckbriefen selektiert wurden. Die numerische Bezeichnung der Grundwasserkörper (z. B. 3_01) leitet sich aus der Gewässernummerierung des zugehörigen Einzugsgebiets (hier: 3) und einer laufenden Durchnummerierung der Grundwasserkörper (hier: _01) ab.

▶ Beiblatt 2.2-1

Grundwasserkörper im Bearbeitungsgebiet Obere Ems

	Gewäs	ser (Einzugsgebiet > 10 km²)
	Seen u	ind Talsperren (Wasserflache > 0,5 km²)
	Kanal	
481000	Staats	grenze
anceson.	Bunde	slandgrenze
Fluss	gebiets	scinheit Ems
	Bearbo	situngsgebiet Obere Ems
	Bearbo	situngsgebiete Hase; Ems / Nordradde
Bena	chbarte	: Flussgebietseinheiten
	Flussg	ebietseinheiten Rhein, Weser
	Grunde	vasserkörper mit GWK - Nummer
		Karst - GWL
		Karst - GWL, Kluft - GWL
		Kluft GWL
		Kluft GWL Poren GWL
		Kluft GWL, Poren/Kluft GWL
		Poren/Kluft GWL
		Pureri GWL
	1838	Grundwasserkörper mit weiteren genutzten Storkwasken

Bezirksregierung Weser - Ems

Umsetzung der Europäischen Wasserrahmenrichtfinie, Phose 1: Bestondsaufnahme Elussgehierseinheit Ems, Bearheitungsgehier Obere Ems

Beiblatt zu K 2.2 - 1: Grundwasserkörper im Bearbeitungsgebiet Obere Ems

► Tab. 2.2.1-1 Übersicht über die Grundwasserkörper im Arbeitsgebiet Lippe (Teil 1)

Grundwas- serkörper	Bezeichnung	Beteiligte Kreise/ kreisfreie Städte	Fläche [ha]	Forma- tion	Grund- wasser- leitertyp	Lithologie	Durch- lässigkeit	Ergie- bigkeit	Wasser- wirtsch. Bedeu- tung	Trink- wasser- gewinnung
DE_GB_3_01	Plantlünner Sand- ebene (West)	Steinfurt; Emsland; Osnabrück	9.837	Quartär	Poren-GWL	Sand, Kies, Schluff	mäßig bis hoch	ergiebig	mittel	nicht relevant
DE_GB_3_02	Plantlünner Sand- ebene (Mitte)	Steinfurt; Emsland	23.810	Quartär	Poren-GWL	Sand, Kies, Schluff	mäßig bis hoch	ergiebig	mittel	aus Grund- wasser
DE_GB_3_03	Plantlünner Sand- ebene (Ost)	Steinfurt; Emsland; Osnabrück	60.694	Quartär	Poren-GWL	Sand, Kies, Schluff	mäßig bis hoch	ergiebig	hoch	aus Grund- wasser
DE_GB_3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	Steinfurt	36.916	Quartär	Poren-GWL	Sand, z.T. Schluff und Kies	mäßig bis hoch	ergiebig bis sehr ergiebig	hoch	aus Grund- wasser, GW- Anreicherung
DE_GB_3_05	Niederung der Oberen Ems (Gre- ven/Ladbergen)	Steinfurt; Waren- dorf; Osnabrück; Münster;	48.577	Quartär	Poren-GWL	Sand, z.T. Schluff und Kies	mäßig bis hoch	ergiebig bis sehr ergiebig	hoch	aus Grund- wasser, GW- Anreicherung Uferfiltrat
DE_GB_3_06	Niederung der Oberen Ems (Sassenberg/ Versmold)	Steinfurt; Warendorf; Gütersloh; Osnabrück; Münster	47.513	Quartär	Poren-GWL	Sand, z.T. Schluff und Kies	mäßig bis mittel	ergiebig	hoch	aus Grund- wasser, GW- Anreicherung Uferfiltrat
DE_GB_3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	Warendorf; Güters- loh; Bielefeld	44.123	Quartär	Poren-GWL	Sand, z.T. Schluff und Kies	mäßig bis mittel	ergiebig	hoch	aus Grund- wasser, Uferfiltrat
DE_GB_3_08	Niederung der Oberen Ems (Rietberg/Verl)	Warendorf; Güters- loh; Paderborn; Bielefeld	36.962	Quartär	Poren-GWL	Sand, z.T. Schluff und Kies	mäßig bis mittel	ergiebig	hoch	aus Grund- wasser
DE_GB_3_09	Sennesande (Nordost)	Gütersloh; Pader- born; Lippe; Bielefeld	14.426	Quartär	Poren-GWL	Sand, z.T. Kies	mäßig bis mittel	sehr ergiebig	hoch	aus Grund- wasser
DE_GB_3_10	Münsterländer Kiessandzug (Süd)	Warendorf; Münster	1.377	Quartär	Poren-GWL	Sand, z.T. Kies	mittel bis hoch	ergiebig bis sehr ergiebig	hoch	aus Grund- wasser, GW- Anreicherung
DE_GB_3_11	Münsterländer Oberkreide (Oel- de/Herzebrock)	Warendorf; Gütersloh	33.206	Kreide	Kluft-GWL	Tonmergelstein, z.T. Mergel- und Kalkmer- gelstein örtlich Kalkstein	sehr gering bis mäßig	wenig ergiebig	gering	nicht relevant
DE_GB_3_12	Münsterländer Oberkreide (Sendenhorst/ Beckum)	Warendorf; Coesfeld; Unna; Münster; Hamm	57.260	Kreide	Kluft-GWL	Tonmergelstein, z.T. Mergel- und Kalkmer- gelstein örtlich Kalkstein	sehr gering bis mäßig	wenig ergiebig	gering	nicht relevant
DE_GB_3_13	Münsterländer Oberkreide (Altenberge/ Aschenberg)	Steinfurt; Warendorf; Coesfeld; Münster	35.538	Kreide	Kluft-GWL	Tonmergelstein, z.T. Mergel- und Kalkmer- gelstein örtlich Kalkstein	sehr gering bis mäßig	wenig ergiebig	gering	nicht relevant
DE_GB_3_14	Teutoburger Wald (Südost)	Gütersloh; Lippe; Bielefeld	7.007	Kreide	Kluft-GWL	Kalkstein, Mergelstein, Sandstein	gering bis hoch	wech- selnd ergiebig	hoch	aus Grund- wasser

□ Tab. 2.2.1-1 Übersicht über die Grundwasserkörper im Arbeitsgebiet Lippe (Teil 2)

Grundwas- serkörper	Bezeichnung	Beteiligte Kreise/ kreisfreie Städte	Fläche [ha]	Forma- tion	Grund- wasser- leitertyp	Lithologie	Durch- lässigkeit	Ergie- bigkeit	Wasser- wirtsch. Bedeu- tung	Trink- wasser- gewinnung
DE_GB_3_15	Teutoburger Wald (Nordwest)	Steinfurt; Gütersloh; Osnabrück	10.707	Kreide	Kluft-GWL	Kalkstein, Mergelstein, Sandstein	gering bis hoch	wech- selnd ergiebig	hoch	aus Grund- wasser
DE_GB_3_16	Südhang des Schafbergs	Steinfurt	2.121	Jura	Kluft-GWL	Kalkstein, Ton- mergelstein, Sandstein	sehr gering bis mäßig	gering ergiebig	gering	nicht relevant
DE_GB_3_17	Karbon des Schafbergs	Steinfurt	5.241	Karbon	Kluft-GWL	Sandstein, Tonstein, Kohlenflöze	gering bis mäßig	mäßig ergiebig	mittel	nicht relevant
DE_GB_3_18	Nordosthang des Schafbergs	Steinfurt	4.781	Trias/ Jura	Kluft-GWL	Kalkstein, Ton- mergelstein, Sandstein	sehr gering bis mäßig	gering ergiebig	gering	nicht relevant
DE_GB_3_19	Nordosthang der Baumberge	Coesfeld	632	Kreide	Kluft-GWL	Sandmergel- stein, z.T. Mer- gelkalkstein	mittel	mäßig ergiebig	gering	nicht relevant
DE_GB_3_20	Thieberg bei Rheine	Steinfurt	2.400	Kreide	Kluft-GWL	Kalkstein, Mergelkalk- stein	mäßig bis hoch	ergiebig	gering	nicht relevant

Hydrogeologisch ist das Bearbeitungsgebiet Obere Ems besonders durch das Münsterländer Kreidebecken geprägt. Die Grundwasserkörper 3_01, 3_02, 3_03, 3_05, 3_06 und 3_15 haben Flächenanteile in Niedersachsen und Nordrhein-Westfalen, die übrigen Grundwasserkörper liegen ausschließlich in NRW.

Die Landnutzung des Bearbeitungsgebiets Obere Ems gliedert sich zu rd. 69 % in landwirtschaftliche Nutzflächen, rd. 17 % in Waldflächen, rund 13 % in städtische und rd. 1 % in sonstige Flächen.

Mit den **Kluftgrundwasserleitern** des hydrogeologischen Teilraums "Osning und Thieberg" (Grundwasserkörper 3_14 und 3_15) bildet der Rücken des Teutoburger Walds – etwa von Augustdorf bis Tecklenburg – den nördlichen Rand der Grundwasserkörpergruppe. Daran schließen sich weiter im Norden die Kluftgrundwasserleiter der Teilräume "Ibbenbüren-Osnabrücker Bergland" (3_16, 3_18) und "Karbon des Schafbergs" (3_17) an. Aus den lithologischen Unterschieden ergeben sich zum Teil erhebliche hydrogeologische Unterschiede. Die Durchlässigkeiten und Ergiebigkeiten schwan-

ken von sehr gering bis hoch bzw. gering ergiebig bis mäßig oder wechselnd ergiebig. Dementsprechend ist auch die Grundwasserneubildung mit < 5-13 l/s·km²·a stark schwankend und die wasserwirtschaftliche Bedeutung der betroffenen Grundwasserkörper in weiten Bereichen gering. Nur den Grundwasserkörpern 3 14 und 3 15 wurde wegen der Nutzung des Grundwasservorkommens für die öffentliche Wasserversorgung eine hohe bis mittlere Bedeutung zugewiesen. Sowohl dort als auch im Grundwasserkörper 3_17 werden weitere Grundwasserstockwerke genutzt. An der nordwestlichen Grenze zum Teileinzugsgebiet der Issel liegt inselartig der Grundwasserkörper 3_20 (rd. 24 km² Ausdehnung) als Kluftgrundwasserleiter des hydrogeologischen Teilraums "Osning und Thieberg". Er wird im dortigen Bereich von Porengrundwasserleitern umschlossen. Die wasserwirtschaftliche Bedeutung dieses Grundwasserkörpers wird bei mäßiger bis hoher Durchlässigkeit sowie durchschnittlicher Ergiebigkeit als gering eingestuft.

Der südliche und südwestliche Bereich des Bearbeitungsgebiets wird durch die Kluftgrundwasserleiter der Teilräume "Mergelsteine des Kernmünsterlands" (3_11, 3_12, 3_13) und

Tab. 2.2.1-2

► 2.2 Grundwasserkörper

"Baumberge" (3_19) abgegrenzt. Lithologische Unterschiede bestehen hier nur im Übergang zu den Baumbergen. Die Durchlässigkeiten sind im Bereich der Baumberge mittel und im übrigen Gebiet sehr gering bis mäßig; die Ergiebigkeiten schwanken zwischen wenig und mäßig ergiebig. Hinsichtlich der Nutzung für die öffentliche Wasserversorgung sind diese Grundwasserkörper unbedeutend. In den Grundwasserkörpern 3_12 und 3_13 sind vereinzelt Salzwasseraufstiege infolge aufsteigender Tiefenwässer nachweisbar.

Zwischen den flankierenden Festgesteinsbereichen erstrecken sich von Südost bis Nordwest die quartärzeitlichen **Poren- bzw. Lockergesteinsgrundwasserleiter** der hydrogeologischen Teilräume "Senne" (3_09), "Niederung der Ems" (3_04, 3_05, 3_06, 3_07, 3_08) und "Ems-Vechte-Niederung" (3_01, 3_02, 3_03). Die lithologischen Unterschiede sind gering, es überwiegen Sand-, Kies- und zum Teil Schluffablagerungen. Bei Grundwasserneubildungsraten von 5-13 l/s·km²·a sind die Durchlässigkeiten mäßig bis hoch und die Ergiebigkeiten ergiebig bis sehr ergiebig. Aus wasserwirtschaftlicher Sicht sind

insbesondere in den Rinnenstrukturen des Vorosnings, der Urems und des Münsterländer Kiessandzugs, der sich in südlicher Verlängerung mit dem Grundwasserkörper 3_10 in den Teilraum "Mergelsteine des Kernmünsterlands" einschneidet, gute hydrogeologische Eigenschaften gegeben. Die Grundwasservorkommen der Rinnen werden in erheblichem Umfang für die öffentliche Wasserversorgung genutzt; im Grundwasserkörper 3_09 wird Grundwasser auch aus tieferen Grundwasserstockwerken gefördert. In Bereichen mit vergleichsweise hohem Bedarf wird das Grundwasserdargebot durch Anreicherung mit Oberflächenwasser aus dem DEK (9,030 Mio. m³/a), der Ems (1,750 Mio. m³/a), der Glane (2,300 Mio. m³/a) und dem Hemelter Bach (1,500 Mio. m³/a) erhöht. Im Grundwasserkörper 3_03 treten südlich von Fürstenau lokale Grundwasserversalzungen durch aufsteigende Tiefenwässer auf.

Aus den Kluft- und Porengrundwasserleitern können gemäß den erteilten Wasserrechten im Einzelnen folgende Grundwassermengen zu Trinkwasserzwecken gewonnen werden:

Übersicht über die Grundwasserentnahmen zur Trinkwassergewinnung

Grund- wasser- körper	Bezeichnung	zugelassene Entnahmemenge	betroffenes Bundesland	Bemerkungen
3_02	Plantlünner Sandebene (Mitte)	12.000 m³/a	NI	
3_03	Plantlünner Sandebene (Ost)	4.361.944 m³/a	NI	
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	19.100.000 m³/a	NRW	Grundwasseranreicherung in NRW: aus Glane bis 2,3 Mio. m³/a; Hemelter Bach bis 1,5 Mio. m³/a
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	13.300.000 m ³ /a	NRW	Grundwasseranreicherung in NRW: aus DEK bis 3,53 Mio. m³/a
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	7.924.480 m³/a	NI, NRW	NI 3.214.980 m ³ /a, NRW 4.709.500 m ³ /a; Grundwasseranreicherung in NRW: aus der Ems bis 1,75 Mio. m ³ /a
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	14.867.920 m³/a	NRW	
3_08	Niederung der Oberen Ems (Rietberg/Verl)	7.540.000 m ³ /a	NRW	
3_09	Sennesande (Nordost)	26.700.000 m ³ /a	NRW	
3_10	Münsterländer Kiessandzug (Süd)	8.700.000 m ³ /a	NRW	Grundwasseranreicherung aus dem DEK bis 5,5 Mio. m³/a
3_14	Teutoburger Wald (Südost)	1.472.000 m ³ /a	NRW	
3_15	Teutoburger Wald (Nordwest)	2.201.450 m³/a	NI, NRW	NI 1.641.450 m ³ /a, NRW 560.000 m ³ /a

2.2.2

Grundwasserabhängige Ökosysteme

Gemäß WRRL ist im Rahmen der Bestandsaufnahme eine Analyse durchzuführen, in welchen Grundwasserkörpern grundwasserabhängige Ökosysteme vorhanden sind. Dies erfolgte in Nordrhein-Westfalen durch landesweite Auswertungen der Landesanstalt für Ökologie, Bodenordnung und Forsten NRW (LÖBF). Die Identifizierung erfolgte in einem ersten Schritt durch Verschneidung von Daten der Natura 2000-Gebiete sowie schutzwürdiger Biotope gemäß Biotopkataster NRW mit den grundwasserabhängigen Böden gemäß digitaler Bodenkarte 1:50.000. In Niedersachsen erfolgte die Identifizierung durch Verschneidung der Natura 2000-Gebiete und des grundwasserabhängigen Grünlands in Naturschutzgebieten außerhalb von Natura 2000-Gebieten mit der Bodenübersichtskarte 1:50.000. Hochmoorstandorte werden nicht zu den grundwasserabhängigen Lebensräumen gezählt. Als Ergebnis ist festzuhalten, dass alle Grundwasserkörper in Nordrhein-Westfalen und Niedersachsen – in unterschiedlichen Anteilen – (potenziell) grundwasserabhängige Ökosysteme aufweisen.

Im Bearbeitungsgebiet Obere Ems liegen grundwasserabhängige Ökosysteme schwerpunktmäßig in den Auenbereichen der Fließgewässer. Flächenmäßig ist hier insbesondere die Emsniederung von Bedeutung. Aber auch die Festgesteinsregionen des Einzugsgebiets verfügen über eine Vielzahl von Bereichen, die als potenziell grundwasserabhängig ausgewiesen wurden. Die weitergehende Betrachtung und Bewertung grundwasserabhängiger Ökosysteme gemäß den Vorgaben der WRRL erfolgt im Rahmen des Monitorings.

2.2.3

Beschreibung der Ausgangssituation für das Grundwasser

2.2.3.1

Einführung

Die Beschreibung der Ausgangssituation für das Grundwasser bezieht sich in Nordrhein-Westfalen im Wesentlichen auf die im Rahmen der Bestandsaufnahme verwendeten Immissionsdaten. Auch die Zustandsbeschreibung gemäß WRRL stützt sich in erster Linie auf Immissionsdaten. In Niedersachsen werden zur Erfassung und Beschreibung der diffusen Belastungen sowohl Emissions- als auch Immissionsdaten verwendet.

Für die Zustandsbeschreibung des Grundwassers wird nach WRRL zwischen dem mengenmäßigen und dem chemischen Zustand differenziert. Die Kriterien für die Zustandsbeschreibung sind in Anhang V der WRRL spezifiziert.

Mengenmäßiger Zustand

Für den **guten mengenmäßigen Zustand** werden im Anhang V der WRRL folgende Kriterien aufgeführt:

Die jährliche Grundwasserneubildung im Grundwasserkörper wird nicht von der langfristigen mittleren jährlichen Entnahme überschritten.

Dementsprechend unterliegt der Grundwasserspiegel keinen anthropogenen Veränderungen, die

- zu einem Verfehlen der ökologischen Qualitätsziele gemäß Artikel 4 WRRL für in Verbindung stehende Oberflächengewässer,
- zu einer signifikanten Verringerung der Qualität dieser Gewässer,
- zu einer signifikanten Schädigung von grundwasserabhängigen Landökosystemen führen,

wenn diese nur zeitweise oder kontinuierlich in einem räumlich begrenzten Gebiet auftreten. Dies gilt auch für Änderungen der Strömungsrichtung, die sich aus Änderungen des Grund-

▶ 2.2 Grundwasserkörper

wasserspiegels ergeben, es sei denn, solche Richtungsänderungen verursachen einen Zustrom von Salzwasser oder sonstige nachteilige Zuströme.

Chemischer Zustand

Für den guten chemischen Zustand werden im Anhang V der WRRL folgende Kriterien aufgeführt:

Die chemische Zusammensetzung des Grundwasserkörpers ist so beschaffen, dass die Schadstoffkonzentrationen

- wie unten angegeben keine Anzeichen für Salz- oder andere Einträge erkennen lassen,
- · die nach anderen einschlägigen Rechtsvorschriften der Gemeinschaft gemäß Artikel 17 WRRL geltenden Qualitätsnormen nicht überschreiten.
- nicht derart hoch sind, dass die in Artikel 4 WRRL spezifizierten Umweltziele für in Verbindung stehende Oberflächengewässer nicht erreicht, die ökologische oder chemische Qualität derartiger Gewässer signifikant verringert oder die Landökosysteme, die unmittelbar von dem Grundwasserkörper abhängen, signifikant geschädigt werden.

Änderungen der Leitfähigkeit sind kein Hinweis auf Salz- oder andere Intrusionen in den Grundwasserkörper.

2.2.3.2

Ausgangssituation für die Bestandsaufnahme

Bei der Bestandsaufnahme wurden in Nordrhein-Westfalen zunächst die Daten des Landesgrundwasserdienstes (Quantität) und der Grundwasserüberwachung (Qualität) ausgewertet (Stand 2003). In Niedersachsen wurden im ersten Schritt Grundwasserbilanzen erstellt und ausgewertet (Quantität) und hinsichtlich der diffusen Belastungen (Qualität) Emissionsberechnungen durchgeführt (Stand 2004).

Für das Bearbeitungsgebiet Obere Ems erfolgte eine stufenweise Auswertung der Emissionsund Immissionsdaten vor der Frage, ob die Ziele der WRRL in den einzelnen Grundwasserkörpern erreicht werden können. Dazu müssen einheitliche Belastungen – z. B. Auswirkungen von Altlasten oder landwirtschaftlichen Aktivitäten jeweils einen definierten Flächenanteil des Grundwasserkörpers erreichen. In den Kapiteln zur Beschreibung der Belastungen des Grundwassers (Kap. 3.2) werden die jeweiligen Methoden sowie die in Nordrhein-Westfalen und Niedersachsen vereinbarten Kriterien im Einzelnen erläutert.

Die Ergebnisse der Auswertungen werden in den Kapiteln 3.2.5 und 4 zusammengefasst bzw. bewertet.

Die Belastungen wurden daraufhin überprüft, ob hierdurch ein Grundwasserkörper als Einheit beeinflusst wird.

Tabelle 2.2.3.2-1 zeigt eine Übersicht der Datenlage (Immissionsdaten) in den einzelnen Grundwasserkörpern und listet bezogen auf die bewerteten Parameter (s. Kap. 3.2) die Anzahl der zur Analyse verwendeten Messstellen auf. Im Rahmen der Analyse der Belastungen im Kapitel 3.2 wird die jeweilige Verteilung der Messstellen in Karten dargestellt.

Insgesamt liegen in den landesweiten Datenbanken Daten zu 6.853 Grundwassermessstellen im Bearbeitungsgebiet Obere Ems vor (s. Tab. 2.2.3.2-1). Aufgrund der naturräumlichen Gliederung sind diese Messstellen nicht gleichmäßig im Arbeitsgebiet verteilt. Eine deutliche Häufung von Messstellen findet sich in den quartären Lockergesteinen der Emsniederung. Die Verteilung der Messstellen spiegelt somit auch die wasserwirtschaftliche Bedeutung der jeweiligen Grundwasservorkommen wider.

Um für die Auswertungen im Rahmen der Bestandsaufnahme herangezogen zu werden, mussten die Grundwassermessstellen bzw. die zugehörigen Daten bestimmte Kriterien erfüllen, die im NRW-Leitfaden sowie in der niedersächsischen Methodenbeschreibung dokumentiert sind. Dies ist ein Grund dafür, dass die zur Auswertung herangezogene Anzahl von Grundwassermessstellen geringer ist als die Anzahl von Grundwassermessstellen in den jeweiligen Grundwasserkörpern (s. Tab. 2.2.3.2-1).

Tabelle 2.2.3.2-1 zeigt, dass insbesondere für die Auswertungen zur mengenmäßigen Belastung im Bearbeitungsgebiet Obere Ems eine weitestgehend ausreichende Zahl von Messstellen zur Verfügung standen (rd. 21 % der vorhandenen Messstellen), die der Anforderung einer 30-jährigen Ganglinie genügten.

Die Zahl der zur Auswertung der chemischen Belastung des Grundwassers verfügbaren Messstellen ist von Grundwasserkörper zu Grundwasserkörper sehr unterschiedlich. Zum Teil standen über 100 Messstellen zur Verfügung, zum Teil aber auch deutlich weniger. Die größte Anzahl auszuwertender Messstellen ist gemäß Tabelle 2.2.3.2-1 für die Parameter Ammonium, Chlorid, Nitrat, pH-Wert und Sulfat vorhanden, während für Auswertungen bezüglich der Belastung mit LHKW, Nickel und Pflanzenschutzmitteln auf deutlich weniger Messstellen zurükkgegriffen werden kann.

Ergänzend zu den Grundwassermessstellen des Landesgrundwasserdienstes wurden in Nordrhein-Westfalen für die tendenzielle Bewertung der Grundwasserkörper vornehmlich dort, wo keine oder nur wenige landeseigene Grundwassermessstellen zur Verfügung standen, Daten der Unteren Wasserbehörden des Kreises Coesfeld sowie der Gesundheitsämter der Kreise Steinfurt und Warendorf und der kreisfreien Stadt Münster herangezogen.

In Verbindung mit den o. g. Daten Dritter wird davon ausgegangen, dass die nachfolgenden Auswertungen als repräsentativ und im Hinblick auf die Anforderungen der WRRL zur Bestandsaufnahme als ausreichend angesehen werden können.

► 2.2 Grundwasserkörper

Tah 22 32.1 Datengrundlagen für die Auswertungen zur Bestandsaufnahme im Bearbeitungsgebiet Obere Ems

Grund	Bezeichnung	Fläche	vorhandene Grund-	Anzak	Anzahl verwendeter Grundwassermessstellen	ndeter C	rundwa	sserme	sssteller	_		
wasser-		<u></u>	wassermessstellen	pei de	bei den Auswertungen zur Bestandsaufnanme	ertunger	ı zur be	standsa	urnang Europe	o		
Körper			je Grundwasser- körper gesamt	Analyse der mengenmäßigen Ammo- Chlorid Nitrat LHKW Belastung (Trendanalyse) nium	Ammo- nium	Chlorid	Nitrat	LHKW	Nickel	pH- Wert	PSM	Sulfat
3_01	Plantlünner Sandebene (West)	9.837	26	7								
3_02	Plantlünner Sandebene (Mitte)	23.810	104	31	7	2	3	7	2	7	7	7
3_03	Plantlünner Sandebene (Ost)	60.694	118	28	3	c	12	2	3	c	7	3
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	36.916	473	121	51	21	21	43	20	21	25	12
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	48.577	442	121	36	36	38	32	33	36	31	36
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	47.513	441	74	80	80	84	44	19	82	28	77
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	44.123	1.816	330	162	172	167	77	80	167	23	125
3_08	Niederung der Oberen Ems (Rietberg/Verl)	36.962	998	232	101	102	105	82	98	105	09	66
3_09	Sennesande (Nordost)	14.426	1.572	279	226	244	243	29	125	243	20	229
3_10	Münsterländer Kiessandzug (Süd)	1.377	09	∞	∞	∞	∞	∞	8	∞	∞	∞
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	33.206	153	27								
3_12	Münsterländer Oberkreide (Sendenhorst∕Beckum)	57.260	356	85	2	2	2	4	2	2	4	2
3_13	Münsterländer Oberkreide (Altenberge/Aschenberg)	35.538	229	48	7	7	2	2	2	7	7	2
3_14	Teutoburger Wald (Südost)	7.007	53	2	13	13	13	6	6	13	2	13
3_15	Teutoburger Wald (Nordwest)	10.707	30	4	7	7	7	7	2	7	7	2
3_16	Südhang des Schafbergs	2.121	15	æ								
3_17	Karbon des Schafbergs	5.241	37	11								
3_18	Nordosthang des Schafbergs	4.781	40	23	-	-	-	-	-	-	-	-
3_19	Nordosthang der Baumberge	632	2		-	-	-	-	-	-	-	-
3_20	Thieberg bei Rheine	2.400	17	9								
SUMME		483.128	6.853	1.470	693	722	735	376	468	721	211	654

3.1 Belastungen der Oberflächengewässer

Die Belastungen ("pressures"), die sich aus den einzelnen Nutzungsarten ("driving forces") ergeben, sind im Folgenden für die **Oberflächengewässer** und das **Grundwasser** getrennt beschrieben. Hierbei werden zunächst gezielt die Belastungen beschrieben, ohne vertiefend auf deren Auswirkungen auf die einzelnen Wasserkörper einzugehen. Diese zusammenschauende Betrachtung erfolgt anschließend in Kapitel 4 dieses Berichts.

3.1

Belastungen der Oberflächengewässer

Die Belastungen der Oberflächengewässer werden in den folgenden Unterkapiteln im Hinblick auf Belastungen durch

- kommunale Einleitungen,
- · industrielle Einleitungen,
- · diffuse Verunreinigungen,
- Wasserentnahmen und Überleitungen,
- hydromorphologische Veränderungen,
- Abflussregulierungen

und durch sonstige, vorher noch nicht erfasste Belastungen beschrieben.

Abb. 3.1.1.1-1 Kläranlage Rheine

3.1.1

Kommunale Einleitungen

In diesem Kapitel werden Abwassereinleitungen aus kommunalen Kläranlagen und Regenwasseranlagen behandelt.

3.1.1.1

Auswirkungen kommunaler Kläranlagen unter stofflichen Aspekten

Das kommunale Abwasser im Bearbeitungsgebiet Obere Ems wird in 82 kommunalen Kläranlagen biologisch behandelt. Davon liegen 70 Kläranlagen in NRW und 12 Kläranlagen (nur > 2.000 EW erfasst) in Niedersachsen. Die gesamte im Jahr 2002 aus diesen Anlagen eingeleitete Abwassermenge beträgt ca. 183 Mio. m³ (180 Mio. in NRW; 7,3 Mio. in NI) und beeinflusst in erheblichem Maße das Abflussgeschehen und die Wasserqualität der Ems und ihrer Nebengewässer.

Der Anschlussgrad der Bevölkerung im Bearbeitungsgebiet Obere Ems an die öffentliche Abwasserbeseitigung liegt bei rund 93 %. Die restlichen 7 % entsorgen in erster Linie in Kleinkläranlagen. Die Einleitungen aus Kleinkläranlagen werden im Bearbeitungsgebiet als nicht relevant angesehen.

Bedingt durch die räumliche Lage einiger Städte und Gemeinden (z. B. Münster, Beckum, Ennigerloh, Everswinkel, etc.) erfolgen Einleitungen kommunaler Kläranlagen zum Teil in abflussschwache Gewässer. Dies kann im Einzelfall zu einer signifikanten Verschlechterung der Gewässergüte in diesen Gewässern führen (z. B. Werse nach Einleitung KA Beckum).

Art und Zusammensetzung kommunaler Abwässer stellen ein Problem grundsätzlicher Art dar. So belasten z.B. Reinigungsmittel, Medikamente, Pflanzenschutz- und -behandlungsmittel sowie andere Stoffe über die Kläranlagen die Gewässer. Ob auf diesem Sektor signifikante Belastungen auftreten, ist noch zu prüfen.

Einige kommunale Kläranlagen im Bearbeitungsgebiet Obere Ems werden durch die jeweils standorttypische Industrie beeinflusst.

So weisen die zentralen Auswertungen beispielsweise in einigen Fällen eine TOC-Belastung in den Abläufen der kommunalen Kläranlagen aus, die auf Indirekteinleitungen aus der Textilindustrie zurückzuführen ist. In einigen Kläranlagenabläufen sind auch erhöhte Frachten Stickstoff (Nges) und Phosphor (Pges) zu verzeichnen. Hierbei handelt es sich i.d.R. um Anlagen, die mit Abwässern aus dem Bereich der Lebensmittelindustrie beschickt werden. Teilweise erhöhte Schwermetallfrachten lassen sich auf Indirekteinleitungen aus der Metallindustrie zurückführen.

Insgesamt ist festzustellen, dass sich die kommunalen Kläranlagen im Bearbeitungsgebiet hinsichtlich ihrer Reinigungsleistung in einem guten Zustand befinden. Die in den Einleitungserlaubnissen festgesetzten Überwachungswerte liegen unterhalb der Anforderungen der Abwasserverordnung oder entsprechen ihnen.

Die Anpassung der öffentlichen Abwasseranlagen an die Anforderungen der Abwasserverordnung (AbwV) und der kommunalen Abwasserverordnung (KomAbwV) ist damit abgeschlossen. Einige Kläranlagen befinden sich zur Zeit noch im Ausbau (siehe Tab. 3.1.1.1-1) bzw. werden künftig stillgelegt (siehe Tab. 3.1.1.1-2).

Abb. 3.1.1.1-2 Einleitung der Kläranlage Nordwalde in den Brüggemannsbach (Emsdettener Mühlenbach)

► Tab. 3.1.1.1-1 Kläranlagen mit relevanten Erweiterungen (Stand 2004)

Kläranlage	Bemerkungen
Ascheberg	Erweiterung bis Ende 2006; BB/NK
Havixbeck	Erweiterung bis Ende 2005; BB/NK
Greven	Erweiterung bis Ende 2007; BB
Saerbeck	Erweiterung bis Ende 2006; BB/NK
Rheda-Wiedenbrück	Erweiterung bis Ende 2005; u.a. Schlammwasserbehandlung

 $BB = Belebungsbecken, \, NK = Nachklärung$

Tab. 3.1.1.1-2

Kommunale Kläranlagen, die stillgelegt werden und deren Abwasser anderen Kläranlagen zugeleitet wird

Kläranlage	Anschluss an Kläranlage
Münster-Mariendorf	Münster-Hauptkläranlage bis 2011

3.1 Belastungen der Oberflächengewässer

Die Einleitungen von kommunalen Kläranlagen beeinflussen unmittelbar unterhalb der Einleitung die Gewässerqualität. Die Gewässerqualität wird aber nicht nur unmittelbar nach der Einleitung beeinträchtigt, auch die nachfolgenden Wasserkörper sind von der Einleitung nicht abbaubarer Stoffe oder von Nährstoffen betroffen. Die in der nachfolgenden Tabelle aufgeführten Kläranlagen (Stand 2002) führen eindeutig und nachweisbar zu Verschlechterungen der Gewässergüte:

Tab. 3.1.1.1-3 Kläranlagen und Gewässergüteveränderungen (Stand 2002)

Gewässer	Einleitung	Veränderung Gewässer- güte (Stand 2003)	Bemerkungen
Leddener Mühlenbach (Ibbenbürener Aa)	Kläranlage Tecklenburg-Ledde	→ -	Ausbaumaßnahmen erfolgt
Lengericher Aabach	Kläranlage Lengerich	→ -	Ausbaumaßnahmen erfolgt
Werse	Kläranlagen Beckum	→	Stoffliche Belastung durch gereinigtes Abwasser
Angel	Kläranlagen Beckum- Neubeckum	→ -	Maßgebliche Beeinflussung bei geringer Wasserführung
Aabrooksbach	Kläranlage Harsewinkel	→ -	Gütewechsel ggf. durch Mischwassereinleitungen unterhalb der Kläranlageneinleitung verursacht
Ems	Kläranlage Rietberg	→ -	Leichte Güteschwankungen, nur geringer Einfluss durch KA
Ems	Kläranlage Hövelhof	→ -	Überschreitung des Signifikanzkriteriums 1/3 MNQ

3.1.1.2

Frachten aus kommunalen Kläranlagen

Die Ermittlung der punktuellen Belastungen aus kommunalen Abwasserreinigungsanlagen erfolgte durch Auswertung der Daten aus dem Jahre 2002.

In Niedersachsen wurden entsprechend der LAWA-Arbeitshilfe Abwassereinleitungen aus kommunalen Kläranlagen ab einer Größe von 2.000 EW (gemäß Kommunalabwasserrichtlinie) herangezogen. Dabei wurden die Jahresfrachten der jeweiligen kommunalen Kläranlage für CSB, N_{ges} und P_{ges} (kg/a) dem "Lagebericht 2002 über die Behandlung von kommunalem Abwasser gemäß Artikel 16 der EG RL 91/271 EWG" in Verbindung mit dem niedersächsischen Programm EU2 entnommen.

In **Nordrhein-Westfalen** wurden für die Ermittlung der punktuellen Belastungen aus kommunalen Abwasserreinigungsanlagen die Daten für die Stoffe N_{ges}, P_{ges}, TOC und ausgewählter Schwermetalle aus den landeszentralen Datenbeständen LINOS ERG (Labordateninformations-

system Ergebnisdatenbank), NIKLAS KOM (Neues integriertes Kläranlagensystem für Kommunen und Abwasserzweckverbände) und NADia (Neues Abwasserdialogsystem, Abwasserabgabe) ausgewertet. Dabei wurden für die Frachtberechnung zunächst die Einzelfrachten zum Zeitpunkt der Probenahme als Produkt aus Konzentration und Wassermenge ermittelt. Der Mittelwert dieser so ermittelten Einzelfrachten für den verifizierten Auswertezeitraum (i.d.R. das gesamte Jahr 2002) wurde dann zu einer Jahresfracht in [kg/a] hochgerechnet.

Konzentrationswerte unterhalb der Bestimmungsgrenze gehen mit dem halben Wert der Bestimmungsgrenze in die Einzelfrachtberechnung ein. Es ist darauf hinzuweisen, dass gemäß den jeweiligen wasserrechtlichen Bescheiden in den unterschiedlichen Laboren mit um eine Zehnerpotenz differierenden Bestimmungsgrenzen gearbeitet wird. Das führt dazu, dass die Werte für verschiedene Kläranlagen nicht exakt vergleichbar sind.

Die Ergebnisse der Auswertungen sind in den folgenden Karten und Tabellen so dargestellt, dass der Einfluss auf den unmittelbar durch die Einleitung betroffenen Wasserkörper erkennbar ist:

► Tab. 3.1.1.2-1 Emissionen aus kommunalen Kläranlagen und industriell-gewerblichen Einleitungen im Bearbeitungsgebiet Obere Ems (Teil 1)

Gewässer	Wasserkörper-Nummer	Einleitung [km]	Anlage	Тур	K-Nr.*
Ems	DE_NRW_3_206483	208,945	Rheine-Nord	KOM NG	52
Ems	DE_NRW_3_206483	232,443	Emsdetten-Austum	KOM	14
Ems	DE_NRW_3_206483	238,458	Saerbeck	KOM	54
Ems	DE_NRW_3_206483	246,865	Greven-Reckenfeld	KOM NG	18
Ems	DE_NRW_3_206483	247,529	Stadtwerke Greven GmbH	IGL	35
Ems	DE_NRW_3_206483	252,773	Stadt Greven	IGL	34
Ems	DE_NRW_3_206483	258,877	Münster-Hauptkläranlage	KOM NG	43
Ems	DE_NRW_3_263688	267,953	Standortverwaltung Münster	IGL	38
Ems	DE_NRW_3_263688	269,817	Gaststätte Horst van Os	IGL NG	13
Ems	DE_NRW_3_263688	273,842	Telqte	KOM	62
Ems	DE_NRW_3_263688	274,399	Stadtwerke Telgte GmbH	IGL	37
Ems	DE_NRW_3_263688	275,561	Winkhaus Techn. GmbH & Co	IGL	52
Ems	DE_NRW_3_263688	280,388	Willy Reher	IGL	28
Ems	DE_NRW_3_263688	291,291	Warendorf	KOM NG	68
Ems	DE_NRW_3_296800	313,317	Finanzbauamt	IGL NG	10
Ems	DE_NRW_3_296800	315,075	Fa. Gottenstroeter	IGL	14
Ems	DE_NRW_3_316800	322,231	Herzebrock	KOM	27
Ems	DE_NRW_3_316800	323,885	Rheda-Wiedenbrueck, Rheda	KOM	51
Ems	DE_NRW_3_316800		Fa. Hermann Knaup	IGL NG	51 17
		332,555	•	KOM	53
Ems	DE_NRW_3_336486	336,966	Rietberg Fa. E. Kuehlmann		
Ems	DE_NRW_3_336486	344,956		IGL	22
Ems	DE_NRW_3_336486	347,351	Deponie Westerwieh	IGL	6
Ems	DE_NRW_3_336486	355,011	Hoevelhof	KOM	28
Ems	DE_NRW_3_358886				
Schwarzwasserbach	DE_NRW_31112_0				
Schwarzwasserbach	DE_NRW_31112_3990				
Furlbach	DE_NRW_3112_0				
Furlbach	DE_NRW_3112_6900				
Sennebach	DE_NRW_3114_0				
Sennebach	DE_NRW_3114_17500				
Grubebach	DE_NRW_3116_0	0,655	Wienerberger Ziegelind.	IGL NG	49
Grubebach	DE_NRW_3116_0	11,882	Franz Schroeder GmbH & Co. KG	IGL NG	31
Grubebach	DE_NRW_3116_0	12,905	Fa. Nolte Möbel	IGL	25
Forthbach	DE_NRW_31164_0	4,046	Brauerei Hohenfelde	IGL	4
Forthbach	DE_NRW_31164_5400	5,442	Langenberg	KOM	35
Forthbach	DE_NRW_31164_7600				
Eusternbach	DE_NRW_31172_0				
Eusternbach	DE_NRW_31172_3800				
Hamelbach	DE_NRW_3118_0				
Hamelbach	DE_NRW_3118_2800				
Hamelbach	DE_NRW_3118_5800				
Dalkebach	DE_NRW_312_0				
Dalkebach	DE_NRW_312_949	2,266	Gütersloh, Putzhagen	KOM	20
Dalkebach	DE_NRW_312_9950	18,836	Bielefeld, Sennestadt	KOM	10
Dalkebach	DE_NRW_312_21762				
Hasselbach	DE_NRW_3124_0				
Hasselbach	DE_NRW_3124_2192				
Menkebach	DE_NRW_3126_0				
Menkebach	DE_NRW_3126_12000	17,143	Haus Neuland	IGL	16
Menkebach	DE_NRW_3126_12000	17,222	Herr Becker	IGL	3
Menkebach	DE_NRW_3126_12000	19,945	Oerlinghausen-Nord	KOM	48
Wapelbach	DE_NRW_3128_0		J		
Wapelbach	DE_NRW_3128_4900	10,051	Fa. K. Stuekerjuergen	IGL NG	40
Wapelbach	DE_NRW_3128_4900	27,678	Schloss Holte-Stukenbrock	KOM	57
Wapelbach	DE_NRW_3128_29200	27,070	Sellioss Holle-StateHoldet	KOM	31
Rodenbach	DE_NRW_31282_0				
Rodenbach	DE_NRW_31282_6700	0.070	Voil West	L/OA4	C 4
Ölbach	DE_NRW_31284_0	8,978	Verl-West	KOM	64

^{*} K-Nr. = Karten-Nummer entspricht Nummer der Anlage auf den nachfolgenden Karten

► Tab. 3.1.1.2-1 Emissionen aus kommunalen Kläranlagen und industriell-gewerblichen Einleitungen im Bearbeitungsgebiet Obere Ems (Teil 2)

Gewässer	Wasserkörper-Nummer	Einleitung [km]	Anlage	Тур	K-Nr.
Ölbach	DE_NRW_31284_0	18,989	Wasserwerk Mühlgrund	IGL	45
Ölbach	DE_NRW_31284_19400	29,409	Augustdorf	KOM	6
Landerbach	DE_NRW_312844_0	1,825	Verl, Sende	KOM	63
Landerbach	DE_NRW_312844_8300				
Ruthenbach	DE_NRW_31312_0				
Lutter	DE_NRW_3132_0				
Lutter	DE_NRW_3132_4193	13,816	Abwasserverband Obere Lutter	KOM	1
Lutter	DE_NRW_3132_20093				
Trüggelbach	DE_NRW_31322_0	2,227	Mannesmannröhrenwerke AG	IGL NG	23
Reiherbach	DE_NRW_31324_0				
Reiherbach	DE_NRW_31324_2500	7,776	Fa. Windel	IGL	50
Reiherbach	DE_NRW_31324_2500	9,100	Fa. Windelsbleiche	IGL	51
Welzplagebach	DE_NRW_31326_0				
Welzplagebach	DE_NRW_31326_14600				
Lichtebach	DE_NRW_31328_0	3,898	Fa. Interluebke	IGL	20
Lichtebach	DE_NRW_31328_14500				
Abrocksbach	DE_NRW_3134_0	0,844	Harsewinkel	KOM	25
Abrocksbach	DE_NRW_3134_9590				
Abrocksbach	DE_NRW_3134_15290	16,723	Steinhagen	KOM	60
Abrocksbach	DE_NRW_3134_15290	16,946	Fa. Koenig und Schlichte	IGL	21
Hovebach	DE_NRW_31342_0				
Hovebach	DE_NRW_31342_3300	3,418	Förd. d. Landeskultur e.V.	IGL	12
Loddenbach	DE_NRW_31344_0	272			
Loddenbach	DE_NRW_31344_6700	7,540	Förd. d. Landeskultur e.V	IGL	11
Loddenbach	DE_NRW_31344_6700	8,026	Gut Friedrichsruh	IGL	15
Laibach	DE_NRW_3136_0	10,952	Halle, Kuensebeck	KOM NG	24
Laibach	DE_NRW_3136_0	10,952	ASTA Medica AG	IGL NG	1
Laibach	DE_NRW_3136_14785	15,078	Fa. Techn. Werke Osning	IGL NG	41
Laibach	DE_NRW_3136_14785	18,702	Halle, Brandheide	KOM	21
Laibach	DE_NRW_3136_21220	10,702	Halle, Dialiulielue	KOW	21
Loddenbach	DE_NRW_3138_0				
Loddenbach	DE_NRW_3138_16491				
Ruthenbach	DE_NRW_31382_0	5,024	Halle, Hoerste	KOM	23
Ruthenbach	DE_NRW_31382_5100	9,507	Fa. August Storck	IGL	39
		·			
Axtbach	DE_NRW_314_0	1,281	Wasserversorgungsverband Beckum	IGL	44 9
Axtbach	DE_NRW_314_0	4,973	Beelen	KOM	9
Axtbach	DE_NRW_314_6682	22.717	0.11	1/014	47
Axtbach	DE_NRW_314_20982	23,717	Oelde	KOM	47
Axtbach	DE_NRW_314_26357				
Bergeler Bach	DE_NRW_3142_0				
Bergeler Bach	DE_NRW_3142_3600				
Maibach	DE_NRW_3144_0				
Maibach	DE_NRW_3144_1500				
Maibach	DE_NRW_3144_4400	7,115	Fa. Westhoff-Schoening	IGL	46
Beilbach	DE_NRW_3146_0				
Beilbach	DE_NRW_3146_9200				
Beilbach	DE_NRW_3146_14565				
Flutbach	DE_NRW_31472_0				
Baarbach	DE_NRW_3148_0				
Baarbach	DE_NRW_3148_8500				
Westkirchener Bach	DE_NRW_31482_0				
Westkirchener Bach	DE_NRW_31482_2500	4,050	Ennigerloh-Westkirchen	KOM	16
Südlicher Talgraben	DE_NRW_31492_0				
Poggenbach	DE_NRW_314924_0				
Nördlicher Talgraben	DE_NRW_3152_0				
Holtbach	DE_NRW_3154_0				
Holtbach	DE_NRW_3154_8583				
Hessel	DE_NRW_316_0	9,889	Sassenberg	KOM	55

^{*} K-Nr. = Karten-Nummer entspricht Nummer der Anlage auf den nachfolgenden Karten

► Tab. 3.1.1.2-1 Emissionen aus kommunalen Kläranlagen und industriell-gewerblichen Einleitungen im Bearbeitungsgebiet Obere Ems (Teil 3)

Gewässer	Wasserkörper-Nummer	Einleitung [km]	Anlage	Тур	K-Nr.*
Hessel	DE_NRW_316_10872	19,085	Fa. Menzi Dr. Fuest & Lange	IGL	24
Hessel	DE_NRW_316_10872	29,436	Borgholzhausen, Im Recke	KOM	11
Hessel	DE_NRW_316_31394	34,544	Halle, Hesseln	KOM	22
Hessel	DE_NRW_316_36387				
Casumer Bach	DE_NRW_31612_0	0,377	Fa. Gebr. Smilde GmbH	IGL	32
Casumer Bach	DE_NRW_31612_4517				
Bruchbach	DE_NRW_3162_0	0,994	Versmold, Wohnheim Halstenbeck	KOM NG	67
Bruchbach	DE_NRW_3162_1600				
Bruchbach	DE_NRW_3162_5100	7,372	Solbad-Ravensberg	IGL	33
Alte Hessel	DE_NRW_31632_0	4,079	Versmold, Hesselteich	KOM	66
Backhorster Bach	DE_NRW_3164_0	1,273	Versmold	KOM	65
Backhorster Bach	DE_NRW_3164_0	6,041	Fa. H&E Reinert	IGL	29
Backhorster Bach	DE_NRW_3164_7800				
Backhorster Bach	DE_NRW_3164_13341	13,949	Fa. Driftmeyer	IGL	7
Dissener Bach	DE_NRW_31642_0	.,.			
Speckengraben	DE_NRW_3168_0	1,699	Woestmann GmbH & Co. KG	IGL NG	53
Speckengraben	DE_NRW_3168_9100	.,230		.525	
Mussenbach	DE_NRW_3172_0	5,369	Everswinkel	KOM NG	17
Mussenbach	DE_NRW_3172_7884	10,882	Polizei Fortbildungsinstitut	IGL	26
Brüggenbach	DE_NRW_31722_0	10,002	1 onzor i ortoniaunganatitut	IJL	20
Brüggenbach	DE_NRW_31722_2200				
Maarbecke	DE_NRW_31722_2200 DE_NRW_3174_0				
		F 472	Humana Milahunian FC	ICI	10
Maarbecke	DE_NRW_3174_1686	5,472	Humana Milchunion EG	IGL	18
Bever	DE_NRW_318_0	8,370	Ostbevern	KOM	49
Bever	DE_NRW_318_0	13,347	Vossko Tiefkühlkost GmbH	IGL NG	42
Bever	DE_NRW_318_21995	24,372	Sassenberg-Fuechtorf	КОМ	56
Remseder Bach	DE_NRW_3182_0				
Frankenbach	DE_NRW_3184_0				
Werse	DE_NRW_32_0	5,632	Münster-Mariendorf	KOM	45
Werse	DE_NRW_32_0	17,926	Münster-Am Loddenbach	KOM NG	40
Werse	DE_NRW_32_0	36,934	Drensteinfurt	KOM	12
Werse	DE_NRW_32_43489	46,958	Ahlen-Stadt	KOM NG	2
Werse	DE_NRW_32_48200				
Werse	DE_NRW_32_50960	58,693	Beckum	KOM	7
Olfe	DE_NRW_3212_0				
Kälberbach	DE_NRW_3214_0				
Erlebach	DE_NRW_3216_0				
Umlaufsbach	DE_NRW_322_0				
Mühlenbach	DE_NRW_3222_0				
Flaggenbach	DE_NRW_3232_0	3,970	Drensteinfurt-Rinkerode	KOM	13
Flaggenbach	DE_NRW_3232_5207				
Ahrenhorster Bach	DE_NRW_324_0				
Ahrenhorster Bach	DE_NRW_324_1900				
Ahrenhorster Bach	DE_NRW_324_11500				
Alsterbach	DE_NRW_3242_0	4,209	Sendenhorst	KOM	58
Alsterbach	DE_NRW_3242_4900				
Alsterbach	DE_NRW_3242_7300				
Westerbach	DE_NRW_3252_0				
Westerbach	DE_NRW_3252_2400				
Emmerbach	DE_NRW_326_0	3,811	BASF Lacke und Farben AG	IGL	2
Emmerbach	DE_NRW_326_0	5,051	Münster-Hiltrup	KOM	44
Emmerbach	DE_NRW_326_7086	22,596	Ascheberg	KOM	4
Emmerbach	DE_NRW_326_7086	25,634	Ascheberg-Herbern	KOM NG	5
Getterbach	DE_NRW_3268_0	4,116	Münster-Geist	KOM NG	41
Kannenbach	DE_NRW_3269922_0	7,110	a.istoi ooist	KOW WO	71
Angel	DE_NRW_328_0				
Aligei	DL_ININV_320_U				
Angel	DE_NRW_328_12791				

^{*} K-Nr. = Karten-Nummer entspricht Nummer der Anlage auf den nachfolgenden Karten

► Tab. 3.1.1.2-1 Emissionen aus kommunalen Kläranlagen und industriell-gewerblichen Einleitungen im Bearbeitungsgebiet Obere Ems (Teil 4)

Gewässer	Wasserkörper-Nummer	Einleitung [km]	Anlage	Тур	K-Nr.*
Angel	DE_NRW_328_27436	32,166	Beckum-Neubeckum	KOM	8
Hellbach	DE_NRW_3282_0				
Hellbach	DE_NRW_3282_2700	8,112	Eternit AG	IGL	9
Nienholtbach	DE_NRW_3284_0				
Nienholtbach	DE_NRW_3284_3040				
Nienholtbach	DE_NRW_3284_5200				
Voßbach	DE_NRW_3286_0				
Wieninger Bach	DE_NRW_3288_0				
Wieninger Bach	DE_NRW_3288_3400	5,946	Warendorf-Hoetmar	KOM	69
Wieninger Bach	DE_NRW_3288_8500				
Piepenbach	DE_NRW_32892_0				
Piepenbach	DE_NRW_32892_7300				
Kreuzbach	DE_NRW_3294_0				
Gellenbach	DE_NRW_3312_0	2,678	IKA Schenking Greven	IGL	19
Münstersche Aa	DE_NRW_332_0				
Münstersche Aa	DE_NRW_332_11785				
Münstersche Aa	DE_NRW_332_15857				
Münstersche Aa	DE_NRW_332_20800				
Münstersche Aa	DE_NRW_332_34729				
Münstersche Aa	DE_NRW_332_38829				
Schlautbach	DE_NRW_3322_0	0,861	Havixbeck	KOM NG	26
Schlautbach	DE_NRW_3322_5400				
Meckelbach	DE_NRW_3324_0				
Meckelbach	DE_NRW_3324_5100				
Kinderbach	DE_NRW_3328_0	1,042	Stadtwerke Münster GmbH Wasserw. Kinderhaus	IGL NG	36
Kinderbach	DE_NRW_3328_3200				
Kinderbach	DE_NRW_3328_7700				
Mühlenbach	DE_NRW_3332_0	10,099	Altenberge	KOM NG	3
Mühlenbach	DE_NRW_3332_13594				
Flothbach	DE_NRW_33324_0	3,809	Münster-Haeger	KOM NG	42
Glane	DE_NRW_334_0				
Glane	DE_NRW_334_15784	19,938	Lienen-Kattenvenne	KOM NG	38
Glane	DE_NRW_334_15784	21,417	Lienen-Hoester Mark	KOM NG	37
Bullerbach	DE_NRW_3342_0				
Kattenvenner Bach	DE_NRW_33432_0				
Mühlenbach	DE_NRW_3344_0	0,208	Ladbergen	KOM	34
Mühlenbach	DE_NRW_3344_4000	11,319	Lengerich	KOM	36
Mühlenbach	DE_NRW_3344_4000	15,455	Dyckerhoff Zementwerk AG	IGL NG	8
Mühlenbach	DE_NRW_3344_18200				
Aldruper Mühlenbach	DE_NRW_33442_0				
Eltings Mühlenbach	DE_NRW_3346_0	5,712	Greven-Schmedehausen	KOM	19
Eltings Mühlenbach	DE_NRW_3346_15537				
Eltings Mühlenbach	DE_NRW_3346_18317				
Bockhorner Bach	DE_NRW_33462_0				
Bockhorner Bach	DE_NRW_33462_9912				
Lütkebecke	DE_NRW_33468_0				
Lütkebecke	DE_NRW_33468_2500				
Saerbecker Mühlenb.	DE_NRW_3352_0				
Saerbecker Mühlenb.	DE_NRW_3352_1088				
Saerbecker Mühlenb.	DE_NRW_3352_4688				
Saerbecker Mühlenb.	DE_NRW_3352_15188				
Walgenbach	DE_NRW_3354_0				
Emsdettener Mühlenb.	DE_NRW_336_0				
Emsdettener Mühlenb.	DE_NRW_336_8081	12,684	Nordwalde	KOM	46
Emsdettener Mühlenb.	DE_NRW_336_16081				
Landwehrgraben	DE_NRW_3364_0				
Landwehrgraben	DE_NRW_3364_2900				
Rösingbach	DE_NRW_3366_0				

^{*} K-Nr. = Karten-Nummer entspricht Nummer der Anlage auf den nachfolgenden Karten

► Tab. 3.1.1.2-1 Emissionen aus kommunalen Kläranlagen und industriell-gewerblichen Einleitungen im Bearbeitungsgebiet Obere Ems (Teil 5)

Gewässer	Wasserkörper-Nummer	Einleitung [km]	Anlage	Тур	K-Nr. *
Aabach	DE_NRW_3368_0	4,892	Steinfurt-Borghorst-Nord	KOM NG	59
Aabach	DE_NRW_3368_6000				
Hummertsbach	DE_NRW_3372_0				
Hummertsbach	DE_NRW_3372_6880				
Mühlenbach	DE_NRW_3374_0				
Frischhofsbach	DE_NRW_3376_0				
Frischhofsbach	DE_NRW_3376_10674				
Wambach	DE_NRW_3378_0				
Wambach	DE_NRW_3378_4077				
Wambach	DE_NRW_3378_6777				
Bevergerner Aa	DE_NRW_338_0				
Bevergerner Aa	DE_NRW_338_11476				
Bevergerner Aa	DE_NRW_338_31676				
Mühlenbach	DE_NRW_3382_0	2,582	Wasserversorgungsverband Teckl	IGL NG	43
Mühlenbach	DE_NRW_3382_9300				
Randelbach	DE_NRW_3392_0				
Randelbach	DE_NRW_3392_1385				
Elsbach	DE_NRW_3394_7647				
Ahe	DE_NRW_3416_3979				
Halverder Aa	DE_NRW_342_2556	3,982	Hopsten-Schale	KOM NG	31
Halverder Aa	DE_NRW_342_2556	10,229	Hopsten-Halverde	KOM	30
Voltlager Aa	DE_NRW_3424_0		·		
Bardelgraben	DE_NRW_3432_3685				
Moosbeeke	DE_NRW_3434_8343				
Giegel Aa	DE_NRW_3438_10089	10,697	Hopsten	KOM	29
Mettinger Aa	DE_NRW_344_14238	,			
Mettinger Aa	DE_NRW_344_20304				
Mettinger Aa	DE_NRW_344_29104	30,331	Recke	KOM NG	50
Mettinger Aa	DE_NRW_344_29104	38,181	Mettingen	KOM	39
Mettinger Aa	DE_NRW_344_43304	30,101	Metangen	KOW	33
Hauptgraben	DE_NRW_3442_0	8,764	Westerkappeln	KOM NG	70
Strootbach	DE_NRW_3444_0	0,704	Westerkappeni	KOW IVO	70
Strootbach	DE_NRW_3444_2600				
Strootbach	DE_NRW_3444_6500				
Meerbecke	DE_NRW_34454_0				
Breischener Bruchgr.	DE_NRW_3446_0				
Dreierwalder Aa	DE NRW 3448 1494	11,927	Hoerstel	КОМ	32
Dreierwalder Aa	DE_NRW_3448_15075	16,021	Wibarco, IKA	IGL	47
Dreierwalder Aa	DE_NRW_3448_15075	16,031	Wibarco, GKA Werkskläranlage ECE	IGL	48
Dreierwalder Aa			Ibbenbüren-Puesselbüren		
Dreierwalder Aa	DE_NRW_3448_15075	17,047	Preussag Anthrazit GmbH	KOM IGL NG	33 27
Dreierwalder Aa	DE_NRW_3448_15075	18,096		IGL NG	
	DE_NRW_3448_15075	18,096	RWE Energie AG		30
Dreierwalder Aa	DE_NRW_3448_15075	21,675	Crespel & Deiters GmbH & Co	IGL	5
Dreierwalder Aa	DE_NRW_3448_15075	30,790	Tecklenburg-Ledde	КОМ	61
Dreierwalder Aa	DE_NRW_3448_31200				
Altenrheiner Bruchgr.	DE_NRW_34486_1839				
NIEDERSACHSEN	01001			1/014	0.2
Ems	01001		Salzbergen	KOM	82
Große Aa	01002				
Große Aa	01003		Freren	KOM	77
Große Aa	01003		Nordmilch eG Werk Beesten	IGL	54
Deeper Aa, Fürste- nauer Mühlenbach	01006				
Fürstenauer Mühlenb.			Fürstenau	KOM	78
Reetbach	01007				
Ahe, Memedingsbach,	01008				
Wolfsbergbach	01009				

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

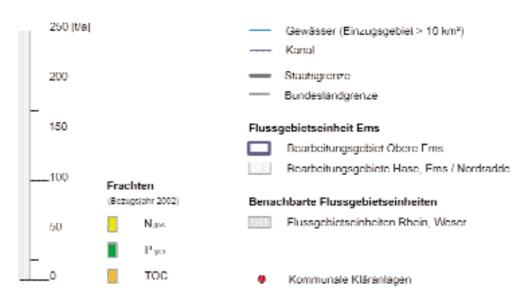
 $[\]star$ K-Nr. = Karten-Nummer entspricht Nummer der Anlage auf den nachfolgenden Karten

► Tab. 3.1.1.2-1 Emissionen aus kommunalen Kläranlagen und industriell-gewerblichen Einleitungen im Bearbeitungsgebiet Obere Ems (Teil 6)

Gewässer	Wasserkörper-Nummer	Einleitung [km]	Anlage	Тур	K-Nr. *
Elberger Graben, Ver- bundgraben, Kanal- graben	01010				
Fleckenbach	01011		Emsbüren	KOM	80
Listruper Bach	01012				
Elsbach	01013				
Schinkenkanal	01015				
Reitbach, Thuiner Mühlenbach	01016				
Giegel Aa	01018				
Moosbecke	01019				
Bardelgraben	01020				
Hopstener Aa	01021				
Dissener Bach	01024		Dissen	KOM	72
Süßbach	01025		Bad Rothenfelde	KOM	74
Süßbach	01025		Bad Laer	KOM	71
Linksseitiger Talgra- ben, Remseder Bach, Rankenbach	01026		Glandorf	KOM	75
Linksseitiger Talgra- ben, Remseder Bach, Rankenbach	01026		Hilter	KOM	76
Oedinger Bach, Wip- senbach, Glaner Bach, Kolbach	01027		Bad Iburg	KOM	81
Recktebach	01028				
Dümmer Bach,	01029				
Bockhorner Bach	01000				
Voltlager Aa	01030				70
Weeser Aa, Vorderer Kölzenkanal	01031		Neuenkirchen/Merzen		79

graue Hinterlegung = künstlicher Wasserkörper/vorläufig als erheblich verändert ausgewiesener Wasserkörper

KOM Kommunale Einleitung direkt in den Oberflächenwasserkörper (KOM = Karten 3.1.1 bis 3.1.3)


KOM NG Kommunale Einleitung über ein Nebengewässer

IGL Industriell/gewerbliche Einleitung direkt in den Oberflächenwasserkörper (IGL = Karten 3.1.8 bis 3.1.10)

IGL NG Industriell/gewerbliche Einleitung über ein Nebengewässer

^{*} K-Nr. = Karten-Nummer entspricht Nummer der Anlage auf den nachfolgenden Karten

Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

K_NR	ID	NAME	N _{pov} [l/b]	P _{yer} [Va]	TOC [Va]
NRW					
1	316	Abwasserverband Obere Lutter	173,43	2,33	169,88
2	3071	Ahlen-Sladt	107,57	6,01	87,08
3	3032	Altenberge	6,19	1,31	10,22
4	3010	Ascheberg	4,65	0,84	7,12
5	3011	Ascheberg Herbern	4,83	0,36	3,76
6	2729	Augustdorf	8,22	0,98	8,89
- /	30/7	Beckum	27,20	4,47	29,98
8	30/5	Beckum-Neubeckum	15,53	1,56	17,85
9	3078	Reelen	1,19	0,08	5,15
10	309	Bielefeld, Sennestadt	27,05	2,20	20,23
11	411	Borgholdhausen, Im Recke	1,47	0,67	8,88
12		Drensteinfurt	3,42	0,58	9,43
13	3080	Drensteinfurt-Rinkerode	10,13	0,39	4,43
14	3033	Emisdetten Austum	20,88	0,98	52,23
15	3081	Ennigerloh	23,45	1,31	27,93
16	3084	Ennigerioh-Westkirchen	2,49	0,49	6,22
17	3085	Everswinkel	7,19	0,55	8,56
18	3035	Greven Reckenfeld	41,89	1,54	52,34
19	3038	Greven Schmedehausen	0,84	0,10	0,80
20	315	Gütersioh, Putzhagen	58,33	3,55	104,34
21		Halle, Brandheide	16,07	0,72	11,96
22	320	Halle, Hesseln	2,87	0,49	2,26

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Normghoti 22, 48140 Milasto

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1. Bestandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 1: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

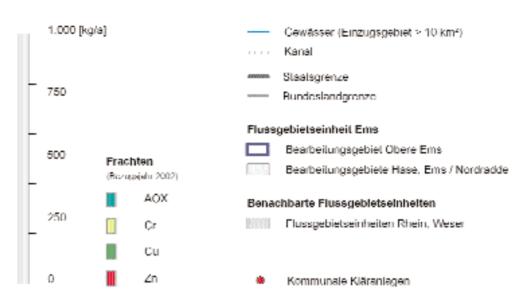
K_NR	ID .	NAMF	N _{pex} [t/a]	P _{ges} [t/a]	TOC [t/a]
23	321	Halle, Hörste	1,14	0,27	1,12
24	322	Halle, Künsebeck	10,62	1,27	23,72
25		Harsewinkel	16,85	0,73	21,78
26	3020	Havisbeck	17,87	1,18	10,63
27	328	Herzebrock	9,64	1,29	24,87
28	396	Hoevelhot	13,06	1,57	23,18
29	3039	Hopsten	2,22	0,33	3,84
30	3040	Hopsten Halverde	1,34	0,17	1,18
31	3038	Hopsten Schale	0,59	0,10	1,14
32	3037	Hörstel	13,75	0,47	19,97
33	3044	ibbenbüren-Püsselbüren	28,80	3,41	61,72
34	3045	Ladbergen	1,12	0,04	5,07
35	327	Langenberg	3,19	0,37	8,53
35	3048	Lengerich	31,58	3,41	27,09
3/	3050	Lienen-Höster Mark	×	X	X
38	3049	Lienen-Kattenvenne	0,83	0,16	1,31
39	3054	Mettingen	7,01	0,65	12,54
40		Münsler-Am Loddenbach	12,79	0,56	22,09
41	3001	Münster-Geist	2,98	0,27	12,94
42	3006	Münster-Häger	1,87	0,02	0,55
43	3008	Munister Hauptklaranlage	105,72	7,95	207,86
44	3003	Münster Hiltrup	4,68	0,50	16,17
45	3009	Münster-Manendorf	9,68	0,29	8,11
46	3057	Nordwalde	4,88	0,45	7,93
47	3087	Oelde	19,70	1,05	35,44
48	2771	Oerlinghausen Nord	9,18	1,01	4,45
49		Oslbevern	2,73	0,43	7,28
50		Hecke	2,06	0,68	9,20
51	329	Rheda-Wiedenbruck, Rheda	99,98	2,45	87,68
52		Rheine Nord	80,91	7,69	169,60
53	333	Rielberg	6,53	1,29	30,27
54		Saerbeck	5,52	0,48	6,05
55		Sassenberg	6,89	0,53	16,12
56		Sassenberg Fuchtorf	2,70	0,32	10,29
57		Schloß Holle Stukenbrock	16,64	1,55	23,65
58		Sendenhorst	1,96	0,29	7,65
59		Steinfurt-Borghorst-Nord	7,84	0,82	13,87
60		Steinhagen	23,98	1,73	17,09
61		Tecklenburg Ledde	1,87	0,52	1,27
62		Telgle	27,03	2,88	21,82
63		Verl, Sende	7,49	1,26	10,56
64		Verl-West	8,11	0,73	24,98
65		Versmold	32,25	2,90	38,70
66		Versmold, Hesselleich	0,32	0,04	0,55
6/		Versmold, Wohnheim Halstenbeck	0,00	0,00	X
68		Warendorf	44,33	5,20	59,74
69		Warendorf Hoetman	1,06	0,35	2,04
70	3070	Westerkappeln	2,88	0,22	3,66

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 1: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

K_NR	ID	NAME	N _{yes} [Va]	Γ _{yo} [Va]	TOC [Va]
NI:					
71	402	Bad Laer, Schumacher-Kläranlagen	1,94	0,26	6,24
/2	414	Dissen; e4 Umwelt & Service CmbH	21,31	0,58	18,56
73	331	Emsburen; WVI ingener Land	0,28	0.20	4,00
74	403	Gemeinde Bad Rothenfelde	2,88	0,52	7,23
75	437	Gemeinde Glandorf	0,74	0,24	2,83
76	418	Cemeinde Hilter / Teutoburger Wa	2,34	0,60	5,44
77	332	Samtgemeinde Freren	1,32	0,12	3,15
78	415	Samtgemeinde Fürstenau	4,35	0,90	8,00
79	428	Samtgemeinde Neuenkirchen	0,65	0,13	2,3
80	354	Spelle; WV Lingener Land	1,41	0,13	4,78
81	401	Stadt Bad Iburg	1,48	0,73	62
82	351	TAV Bad Bentheim, Schüttorf, Sal	0,83	88,0	4,71


x - keine Probenahme / keine Wertangabe

Flussgehietseinheit Erns, Bearbeitungsgebiet Obere Erns

Beiblatt zu K 3.1 - 1: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)

K_NR	ID	N/MF	AOX[kg/a]	Cr [kg/a]	Cu [kg/a]	7n [kg/a]
NRW.						
1	316	Abwasserverband Obere Lutter	428,09	×	×	×
- 2		Ahlen-Stadt	220,00	19,41	82,03	×
.3	3032	Altenberge	65,12	1,74	14,19	×
- 4	3010	Ascheberg	11,72	1,04	5,79	×
5	3011	Ascheberg-Herbern	7,27	0,52	7,28	X
- 6	2729	Augustdort	×	5,43	27,48	Х
7	3077	Beckum	62,37	4,44	28,29	×
8	3075	Beckum Neubeckum	42,18	3,58	12,73	×
9	3078	Beelen	21,71	0,92	5,03	×
10	309	Bieleteld, Sennestadt	×	8,42	39,00	х
11	411	Borgholzhausen, Im Recke	×	7,25	21,16	×
12	3079	Drensteinfurt	14,84	1,41	6,10	>
13	3080	Drensteinfurt-Rinkerode	2,92	0,31	2,37	>
		Emsdetten-Austum	234,10	7,49	104,63	
15	3084	Ennigerlah	83,93	5,34	41,20	>
16	3084	Ennigerlah Westkirchen	8,67	1,04	6,23)
17	3085	Everswinkel	13,83	1,38	16,97	>
18	3035	Greven-Reckenfeld	119,39	20,09	40,63	117,88
		Greven-Schmedehausen	2,13	0,09	0,43	Х
20		Guetersloh, Putzhagen	×	18,84	157,38	X
21	319	Halle, Brandheide	×	5,54	61,58	х
22	320	Halle, Hesseln	×	0,61	10,14	Х

x keine Probenahme / keine Wertangabe

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

No myledi 22, 4814/1800metr

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1. Bestandsaufnahme

Flussgebietseinheit Eins, Bearbeitungsgebiet Obere Eins

Beiblatt zu K 3.1 - 2: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)

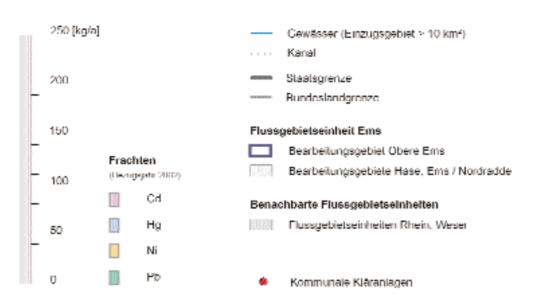
Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)

K_NR	ID	NAME	AOX [kg/a]	Cr [kg/a]	Cu [kg/a]	Zn [kg/a]
23	321	Halle, Hoerste	X	0,26	3,57	X
24	322	Halle, Kuensebeck	×	9,85	61,91	X
25		Harsewinkel	×	×	×	X
26	3020	Havisbeck	33,09	1,77	7,68	×
27	328	Herzebrock	×	9.76	32.62	×
28	396	Hoevelhot	18.92	4,48	30.45	x
		Hopsten	18.67	0.49	7,94	X
		Hopsten-Halverde	1.14	0.03	0,34	×
		Hopsten Schale	2,77	0,12	1,30	x
		Hoerstel	66,35	1,73	6.92	х
		Ibbenbueren-l'uesselbueren	190,59	31,83	86,/1	x
		Ladbergen	17.99	1,45	4,13	×
35		Langenberg	×	2,72	11,54	x
		Lengerich	55.02	5,78	30,11	×
		Lienen-Hoester Mark	X	×	X	×
		Lienen-Kattenvenne	4,01	0,15	1,11	×
		Mettingen	44.79	1,75	7,56	x
		Muenster Am Luddenbach	43.28	4.24	20,97	x
		Muensler-Geist	50.77	1,66	9,91	x
		Muenster-Haeger	, , , , , , , , , , , , , , , , , , ,	1,55	0,01	v
		Muenster-Hauptklaeranlage	871.25	32,56	155,16	^
		Muenster Hiltrup	48.04	2.63	11,39	-
		Muenster Mariendorf	27,35	0.98	7.35	^
		Nordwalde	23,40	1.05	9,09	· ·
4/		Oelde	115,93	5,83	22,34	^
		Oerlinghausen-Nord	110,00	424	17,82	
		Ostbevern	22.96	1,12	6.28	
		Recke	26.89	1,00	6.23	
51		Rheda-Wiedenbrueck, Rheda	20,00	//,89	200,46	
52		Rheine-Nord	434.94	16,99	144,39	
53		Rietberg	4.54):14	12,10	49,15	*
		Saerbeck	20,32	0,95	17,84	
		Sassenberg	44.82	1.24	17,64	X
		Sassenberg-Fuechtorf	86.56			Α
57		Schloss Holte-Stukenbrock	00,00	0,81 13.27	8,80 42,88	x
		Sendenhorst	21.23	1.81	9.88	
		Steinfurt-Borghorst-Nord	59.87	1,17	13,43	×
60		Steinhagen	58,07	11,56	58,91	X
61		Tecklenburg-Ledde	3,63	0.19		x
		Telgte	30,95			×
63						x
		Verl, Sende	×		35,09	X
64		Verl-West	×	13,05	46,57	×
65		Versmold	X	6,45 0,15	60,44 1,05	X
66		Versmold, Hesselteich	×			x
67		Versmold, Wohnheim Halstenbeck	404.45	X 0.50	57.54	Х
		Warendorf	121,15	8,59	57,64	X
		Warendorf-Hoetman	6,16		2,92	X
70	3070	Westerkappeln	14,44	0,81	3,24	×

x keine Probenahme / keine Wertangabe

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 2: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr., Cu und Zn)


Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)

K_NR	ID	NAME	AOX [kg/a]	Cr [kg/a]	Cu [kg/a]	Zn [kg/a]	
NI:							
71	402	Bad Laer, Schumacher-Kläranlagen					
72	414	Dissen; e4 Umwelt & Service GmbH					
73	331	Emsbüren, WV Lingener Land					
74	403	Gemeinde Bad Rothenfelde					
75	437	Gemeinde Clandorf					
76	418	Gemeinde Hilter / Teutoburger Wa					
77	332	Samtgemeinde Freren	unterhalb der Schwellenwerte				
78	415	Samtgemeinde Fürstenau					
79	428	Samtgemeinde Neuenkirchen					
80	354	Spelle; WVI ingener Land]				
81	401	Stadt Bad Iburg	7				
82	351	TAV Bad Bentheim, Schütlorf, Sal	1				

Flussgebietseinheit Ems, Koordinierungsraum Obere und Mittlere Ems, Arbeitsgebiet Ems-NRW

Beiblatt zu K 3.1 - 2: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr., Cu und Zn)

Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

_NR	ID	NAME	Cd [kg/a]	Hg [kg/s]	Ni [kg/a]	Pb [kg/a]
IRW:						
1	316	Abwasserverband Obere Lutter	×	×	×	
2	3071	Ahlen Stadt	21,88	1,39	138,68	205,00
3	3032	Allenberge	0,38	0,15	15,07	0,75
4	3010	Ascheberg	0,21	0,08	8,35	0,98
5	3011	Ascheberg-Herbern	0,18	0,07	7,27	0,58
8	2729	Augustdorf	2,99	0,11	6,26	35,09
7	3077	Beckum	1,11	0,44	11,10	6,2
8	30/5	Beckum-Neubeckum	0,64	0,25	25,45	1,3
9	30/8	Reelen	0,20	0,08	7,94	0,5
10	309	Bielefeld, Sennestadt	0,59	0,24	11,78	11,7
11	411	Borgholzhausen, Im Recke	2,87	0,14	7,25	31,0
12	30/9	Drensteinfurt	0,31	0,12	12,21	0,6
13	3080	Drensteinfurt-Rinkerode	0,07	0,03	2,92	0,1
14	3033	Emisdetten-Austum	1,35	0,54	53,96	2,7
15	3081	Ennigerloh	0,95	0,38	38,14	4,7
16	3084	Ennigerloh-Westkirchen	0,22	0,09	8,67	0,8
17	3085	Everswinkel	0,35	0,14	13,83	1,3
18	3035	Greven-Reckenfeld	1,52	0,40	40,18	8,2
19	3036	Greven Schmedehausen	0,02	0,01	0,87	0,0
20	315	Gueterstoh, Putzhagen	2,26	0,90	45,23	45,2
21		Halle, Brandheide	0,46	0,18	16,56	8,8
22	320	Halle, Hesseln	0,04	0,02	0,82	0,8

x keine Probenahme / keine Wertangabe

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Navingheff 22, 481-17 Nitrovice

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Destandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 3: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

K_NR	ID	NAME	Cd [kg/a]	Hg [kg/a]	Ni [kg/a]	Pb [kg/a]
23	321	Halle, Hoerste	0,03	0,01	0,53	0,53
24	322	Halle, Kuensebeck	0,74	0,30	14,78	14,/8
25	324	Harsewinkel	×	×	×	×
26	3020	Haviobeck	0,38	0,15	15,38	0.77
27	328	Herzebrock	0.65	0.26	13.01	13,01
28	396	Hoevelhot	0.44	0,18	8,/6	8,/6
		Hopsten	0,10	0,04	3,91	0,20
		Hopston-Halverde	0.01	< 0.01	0.26	0,01
		Hopsten Schale	0,03	0,01	1,05	0,05
		Hoerstel	0.35	0.14	13,84	1,20
		Ibbenbueren-Puesselbueren	1,88	0,64	63,66	7,44
		Ladbergen	0,09	0.04	3,68	0,18
35		Langenberg	0,14	0,05	2.72	2,72
		Lengerich	4.42	0,48	48.18	38.81
		Lienen-Hoester Mark				30,01
			X	X	X	X
		Lienen-Kattenvenne	0,03	0,01	1,23	0,06
		Mettingen	0,38	0,15	15,13	0,76
		Muenster Am Loddenbach	0,78	0,31	31,07	4,09
		Muenster-Geist	0,36	0,14	14,42	0,72
		Muenster-Haeger	X	X	X	×
		Muenster-Hauptklaeranlage	5,81	2,33	232,54	21,35
		Muenster Hiltrup	0,57	0,23	22,78	1,14
		Muenster Mariendorf	0,24	0,10	9,75	2,80
		Nordwalde	0,23	0,09	9,11	0,89
		Öelde	1,12	0,45	44,68	2,46
		Qerlinghausen-Nord	2,48	0,08	4,24	25,68
		Ostbevern	0,24	0,10	9,89	88,0
50		Recke	0,20	80,0	7,97	0,40
51		Rheda-Wiedenbrueck, Rheda	2,02	0,81	40,44	34,69
52		Rheine-Nord	3,40	1,36	135,96	8,27
53		Riefberg	0,61	0,24	13,18	12,10
		Saerbeck	0,21	80,0	8,23	1,96
55	3090	Sassenberg	0,34	0,14	13,67	1,68
56		Sassenberg-Fuechtorf	0,20	80,0	8,13	0,41
57		Schloss Holte-Stukenbrock	2,61	0,29	13,27	31,67
		Sendenhorst	0,38	0,14	14,48	1,11
59	3065	Steinfurt-Borghorst-Nord	0,41	0,16	16,38	0,82
60		Steinhagen	0,68	0,23	11,56	12,48
61	3068	Tecklenburg-Ledde	0,04	0,01	1,50	0,14
62	3095	Telgte	0,55	0,22	22,19	2,39
63	338	Verl, Sende	3,53	0,15	7,58	37,45
64	337	Verl-West	3,81	0,69	13,27	41,47
65	339	Versmold	1,13	0,45	35,20	22,59
00	343	Versmold, Hesselteich	0,03	< 0,01	0,15	0,35
67		Versmold, Wohnheim Halstenbeck	х	х	×	×
68		Warendorf	1,74	0,69	69,50	7,72
		Warendorf-Hoetman	0,15	0,06	5,84	0,48
		Westerkappeln	0,16	0.06	6,48	0,43

x keine Probenahme / keine Wertangabe

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 3: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

K_NR	ID.	N/MF	ΛΟΧ [kg/a]	Cr [kg/a]	Cu [kg/u]	7n [kg/a]			
NI.									
71	402	Bad Laer; Schumacher-Kläranlagen							
72	414	Dissen; e4 Umwelt & Service GmbH	1						
73	331	Ernsbüren, WV Lingener Land	1						
74	403	Gemieinde Bad Rothenfelde							
75	437	Gemieinde Glandorf	Şloffe wurden im Rahmen der Finleiler						
76	418	Gemeinde Hilter / Teutoburger Wa	überwachung nicht untersucht, da						
77	332	Samtgemeinde Freren] unt	orhalb der S	Schwellenwe	chwellenwerte			
78	415	Samtgemeinde Fürstenau							
79	428	Samtgemeinde Neuenkirchen	1						
80	354	Spelle; WVI ingener Land	1						
81	401	Stadt Bad Iburg	1						
82	351	IAV Bad Bentheim, Schüttorf, Sal							

Plussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems-

Beiblatt zu K 3.1 - 3: Einleitungen kommunaler Kläranlagen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

3.1 Belastungen der Oberflächengewässer

3.1.1.3

Auswirkungen von Regenwassereinleitungen unter stofflichen Aspekten

Der Anteil der baulich geprägten Flächen, der Siedlungsfreiflächen und der verkehrsrelevanten Flächen im Bearbeitungsgebiet Obere Ems liegt bei 13 % der Gesamtfläche von 4.829 km². Im Mittel wird das Bearbeitungsgebiet zu rd. 40 % im Mischverfahren und zu rd. 60 % im Trennverfahren entwässert. Für den industriell geprägten Oberlauf liegt der Anteil des Mischsystems mit 60 % etwas höher. Im niedersächsischen Teil des Bearbeitungsgebiets wird nur im Trennverfahren entwässert.

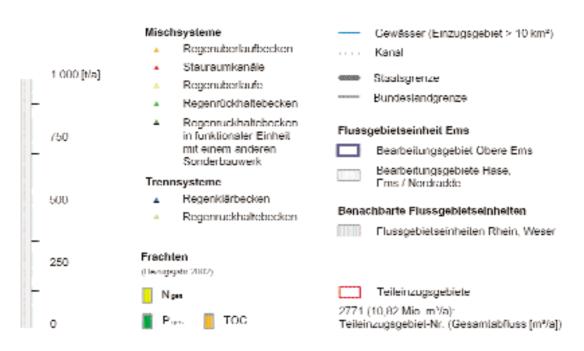
Für Einleitungen aus Regenwasser im Bearbeitungsgebiet liegen keine flächendeckenden und belastbaren Daten vor.

In Niedersachsen wurde zur Abschätzung der Regenwassereinleitung davon ausgegangen, dass bei zusammenhängenden, versiegelten Flächen ab 10 km² mit einem signifikanten Eintrag von Regenwasser in die Oberflächengewässer gerechnet werden kann. Da im Bereich der Oberen Ems/NI keine zusammenhängenden versiegelten Flächen größer 10 km² existieren, wurde hier nicht näher auf die Auswirkungen von Regenwassereinleitungen eingegangen.

In Nordrhein-Westfalen wurde aufgrund der derzeitigen Datenlage im Bereich der Regen- und Mischwasserableitung durch das MUNLV ein Abschätzverfahren für die hieraus resultierenden Belastungen entwickelt. Das Abschätzverfahren arbeitet mit pauschalierten spezifischen Schadstofffrachten. Regionale Besonderheiten, wie industrielle Einflüsse, Stadt-/Landeffekte, ablagerungsfreie Kanalisationen usw., finden keine Berücksichtigung.

Für das Abschätzverfahren wurden die in der Landesdatenbank REBEKA (Regenbeckenkataster) von den StUÄ erfassten Sonderbauwerke zur Regen- und Mischwasserableitung herangezogen. Hierzu gehören Bauwerke im Mischsystem wie Regenüberläufe und Regenüberlaufbecken sowie Bauwerke im Trennsystem wie Regenklärbecken.

Für die Behandlung des Regenwassers sind im Bearbeitungsgebiet Obere Ems/NRW bisher 583 öffentliche Bauwerke (Regenüberlaufbecken, Stauraumkanäle, Regenüberläufe, Regenrückhaltebecken, Regenklärbecken) errichtet worden.


Die Analyse der nordrhein-westfälischen Daten hat ergeben, dass die temporären Einleitungen von Regenwasser und Mischwasser mit ihren stofflichen Einträgen und den hydraulischen Abflussspitzen flächendeckend ein Problem im Bearbeitungsgebiet Obere Ems/NRW darstellen.

Vergleicht man die Emissionen der Kläranlagen (kommunal und industriell) mit den abgeschätzten Frachten der Regenwasserkanalisation, so zeigt sich, dass die Schwermetallfracht aus der Regenwasserkanalisation die Fracht aus den Kläranlagen im Schnitt um das 5-fache überschreitet. Am höchsten sind die Emissionen für Blei. Hier ist davon auszugehen, dass der Anteil des Regenwassers gegenüber den Kläranlagen mehr als 20-mal so hoch ist. Den größten punktuellen Frachtanteil trägt die Regenwasserkanalisation auch für den Summenparameter TOC bei (4.490 t/a zu 1.823 t/a aus Kläranlagen). Zur Stickstofffracht aus Punktquellen tragen die Kläranlagen mit 1.407 t/a doppelt soviel bei wie die Regenwassereinleitungen. Je nach Parameter hat die Trennkanalisation einen Anteil von 83% bis 97%.

Besonders betroffen durch Regenwassereinleitungen sind die abflussschwachen Oberläufe der Gewässer. Im Mittel- und Unterlauf der Gewässer liegen häufig größere Ortschaften, in denen die Vielzahl von Regen- und Mischwassereinleitungen zu Belastungen führt. Nach der intensiven Verbesserung der Reinigungsleistung der Kläranlagen im kommunalen und industriellen Bereich in den letzten Jahren stellen die Niederschlagswassereinleitungen nunmehr einen der Hauptbelastungspfade für die Gewässer bei den Punktquellen dar. Neben den Frachten gilt dies insbesondere für kurzfristige hydraulische Spitzenbelastungen, die zu kritischen Zuständen insbesondere in kleinen und mittelgroßen Gewässern führen können.

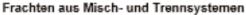
Die folgenden Karten 3.1-4 bis 3.1-6 zeigen die Belastungssituation im nordrhein-westfälischen Teil des Bearbeitungsgebiets auf. Dargestellt werden die emittierten Jahresfrachten in kg/a bzw. t/a für die Kenngrößen TOC, N, P, AOX, Cr, Cu, Zn, Cd, Hg, Ni und Pb. Zusätzlich werden die jährlich entlasteten Abwassermengen in m³/a angegeben, wie sie sich aus den nordrhein-westfälischen Abschätzungen ergeben. Hieraus sind erste Hinweise auf die Belastung der Wasserkörper abzuleiten.

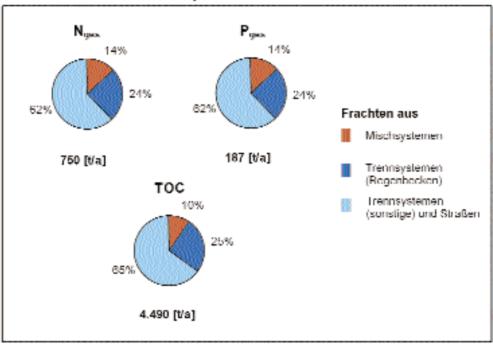
Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für N, P und TOC)

Teileinzugsgebiet	Ared [ha]	N _{ges} [t/a]	P _{ges} [t/a]	TOC [t/a]
NRW:				
311	3.184	/2,23	18,06	441,22
312	3 320	79,10	19,78	485,60
313	4 664	99,91	24,98	606,90
314	1.458	29,20	7,30	173,93
315	/06	13,16	3,29	74,53
316	1.244	27,74	6,93	168,98
317	852	16,79	4,20	95,50
318	432	8,96	2,24	53,55
319	9/1	2,09	0,52	13,09
321+322	1.858	35,98	8,99	212,58
323+324	425	8,68	2,17	52,06
325-327	1 502	31,24	7,81	193,47
328+329	2.639	53,19	13,30	317,39
331	164	3,53	0,88	22,04
332	2 294	44,51	11,13	257,67
333+334	2 563	57,43	14,38	331,42
335+336	1.350	28,77	7,19	170,56
337+338	1.9/5	41,29	10,32	252,49
339	942	17,95	4,49	84,25
34	3 675	78,11	19,53	462,50
Nt keine relevante b	:inträge			

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

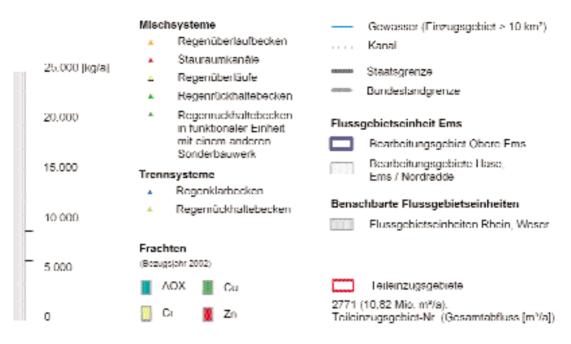

Navinghoff 22, 48147 Nitrautor


Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgehietseinheit Ems, Bearheitungsgehiet Ohere Ems

Beiblatt zu K 3.1 - 4: Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für N, P und TOC)

Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für N, P und TOC)



Flussgehietseinheit Ems, Bearheitungsgehiet Obere Ems

Beiblatt zu K 3.1 - 4: Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für N, P und TOC)

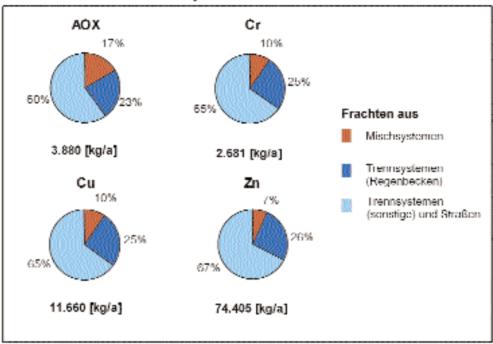
Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für AOX, Cr, Cu und Zn)

Teileirougsgebiet	A _{ed} [ha]	AOX [kg/a]	Cr [kg/a]	Cu [kg/a]	7n [kg/a]
NRW:					
311	3.184	367,96	264,05	1.146,49	7.442,47
312	3.320	401,35	290,78	1.261,98	8 226,65
313	4 664	511,20	362,97	1.576,78	10 187,80
314	1.458	151,72	103,79	451,66	2.858,79
315	706	/0,98	44,20	193,2/	1.1/1,02
316	1 244	141,61	101,10	439,06	2 843,62
317	852	90,24	56,67	247,68	1.507,45
318	432	48,42	31,97	139,07	888,15
319	94	10,47	7,85	34,04	225,19
321+322	1.858	188,06	126,73	551,89	3,480,48
323+324	425	44,83	31,09	135,20	864,18
325-327	1.502	157,38	115,97	502,91	3,302,50
328+329	2.639	275,97	189,43	824,21	5.243,58
331	164	17,63	13,22	57,31	379,11
332	2 294	236,26	153,23	666,57	4 137,45
333+334	2.583	305,53	197,02	859,88	5.305,76
335+336	1.350	149,98	101,72	112,83	2.801,27
337+338	1.975	210,15	151,12	656,09	4.263,03
339	942	108,36	48,69	217,19	1.048,83
34	3 675	394,28	289,16	1.254,28	8,219,81

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

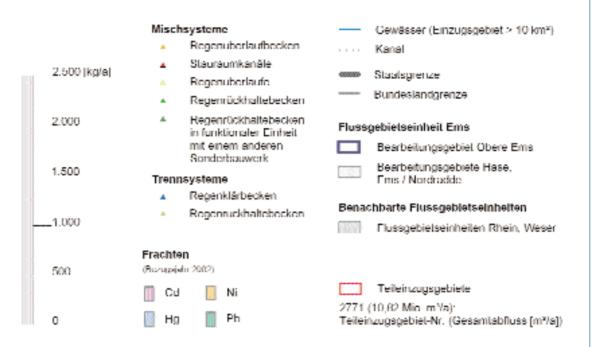
Umsetzung der Europhischen Wassermhmenrichtlinie, Phase 1: Bestandsaufnahme


Flussgehietseinheit Ems, Bearbeitungsgebiet Übere Ems

Nesinghalt 22, 48147 Monday

Beiblatt zu K 3.1 - 5: Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für AOX, Cr, Cu und Zn)

Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für AOX, Cr, Cu und Zn)


Frachten aus Misch- und Trennsystemen

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

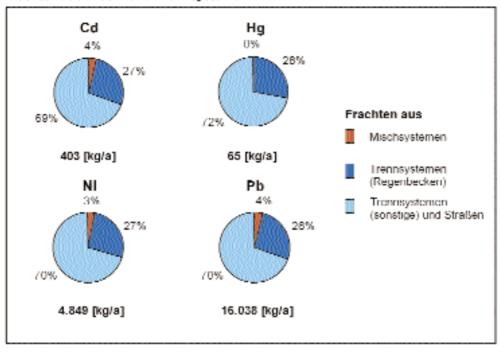
Beiblatt zu K 3.1 - 5: Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für AOX, Cr, Cu und Zn)

Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für Cd, Hg, Ni und Pb)

Teileinzugsgebiet	A _{red} [ha]	Cd [kg/a]	Hg [kg/a]	Ni [kg/a]	Ph [kg/a]
NRW:					
311	3.184	10,89	6,69	191,00	1.623,49
312	3,320	45,35	7,45	548,44	1.799,68
313	4 664	55,74	9,08	672,69	2 215,20
314	1 458	15,48	2,47	186,03	616,37
315	705	6,04	0,91	71,93	242,98
316	1.244	15,59	2,55	188,29	619,33
317	852	7,81	1,19	93,09	313,80
318	432	4,79	0,77	57,68	190,82
319	94	1,28	0,21	15,24	49,75
321+322	1.858	18,64	2,96	223,93	743,96
323+324	425	4,68	0,75	56,43	186,50
325 327	1.502	18,32	3,03	221,83	726,04
328+329	2.839	28,30	4,54	340,83	1.127,89
331	164	2,12	0,35	25,66	83,76
332	2.294	21,/8	3,38	260,57	872,32
333+334	2 563	27,85	4,31	333,01	1 116,21
335+336	1 350	15,04	2,40	180,84	600,12
337+338	1.975	23,44	3,84	283,24	930,52
339	942	4,07	0,34	44,56	1/4,93
34	3,675	45,52	7,52	550,98	1.804,62

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems


Umsetzung der Europäischen Wasserrahmennehtling, Pluse 1. Bestandsaufrühme

Flussgebietseinheit Erns, Bearbeitungsgebiet Obere Erns

Beiblatt zu K 3.1 - 6: Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für Cd, Hg, Ni und Pb)

Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für Cd, Hg, Ni und Pb)

Frachten aus Misch- und Trennsystemen

Flussgehietseinheit Ems, Bearheitungsgehiet Obere Ems

Beiblatt zu K 3.1 - 6: Regen- und Mischwassereinleitungen im Bearbeitungsgebiet Obere Ems/NRW (Frachten für Cd, Hg, Ni und Pb)

3.1.1.4

Auswirkungen von kommunalen Einleitungen unter mengenmäßigen Aspekten

Das hydrologische Gewässerregime wird nennenswert durch Einleitungen beeinflusst. Neben der Einleitung niederschlagsbedingter Abflüsse, die landeszentral erfasst werden, kommt der Einleitung von kommunalen Kläranlagen besondere Bedeutung zu.

Als Kriterium dafür, welche Gewässer im Hinblick auf die Wassermengen in besonderer Weise durch Einleitungen belastet sind, wurde in Nordrhein-Westfalen einerseits der mittlere Niedrigwasserabfluss des Gewässers MNQ mit dem mittleren Abfluss Q_{mittel} an der Einleitungsstelle verglichen (Signifikanzkriterium: Q_{mittel} > 1/3 MNQ). Andererseits wurden Einleitungen größer als 50 1/s ebenfalls als relevant eingestuft.

In Niedersachsen hat die Betrachtung der kommunalen Einleitungen hinsichtlich des mengenmäßigen Aspektes für den niedersächsischen Teil des Bearbeitungsgebiets Obere Ems keine relevanten Einleitungen ergeben. Die folgenden Ausführungen beschränken sich deshalb auf den nordrhein-westfälischen Anteil.

In **Nordrhein-Westfalen** wurde für die Ermittlung der mengenmäßigen Belastung aus kommunalen Einleitungen eine Datenbank mit folgenden Erhebungsdaten zusammengestellt:

- · Name der Einleitung,
- · Art der Einleitung,
- · Rechts- und Hochwert,
- · Gewässername,
- · mittlere tatsächliche Einleitungsmenge,
- Größe des Gewässereinzugsgebiets an der Einleitungsstelle,
- mittlerer Niedrigwasserabfluss an der Einleitungsstelle

Diese Datenbank greift sowohl auf Daten aus den zentralen Datenbeständen des Landes (Datendrehscheibe Einleitungen/Abwasser DEA sowie LINOS) als auch auf die zusätzlich ermittelten Daten zurück. Die erstellte Datenbank bezieht sich auf das Auswertejahr 2002.

In der folgenden Karte 3.1-7 sind die Einleitungen aufgelistet, bei denen Q_{mittel} größer als 1/3 des MNQ ist oder größer ist als 50 l/s. Nach dem derzeitigen Stand der Erhebungen gibt es einige Stellen im Bearbeitungsgebiet Obere Ems/NRW, an denen die Einleitungen aus kommunalen Kläranlagen signifikante Auswirkungen auf den mengenmäßigen Zustand an Gewässern mit einem Einzugsgebiet > 10 km² haben. Besonders betroffen sind abflussschwache Anfangsgewässer.

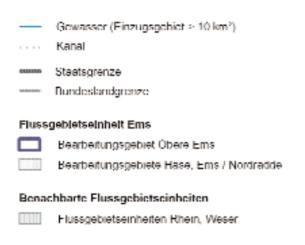
Im nordrhein-westfälischen Teil der Oberen Ems beeinflussen damit nach der bisherigen Datenlage 55 der 70 kommunalen Kläranlagen die Wassermenge im jeweiligen Einleitungsgewässer signifikant. Bei 46 Einleitungen ist der mittlere Kläranlagenabfluss $Q_{\text{mittel}} > 1/3$ MNQ und bei 33 Einleitungen beläuft sich der Abfluss auf > 50 l/s.

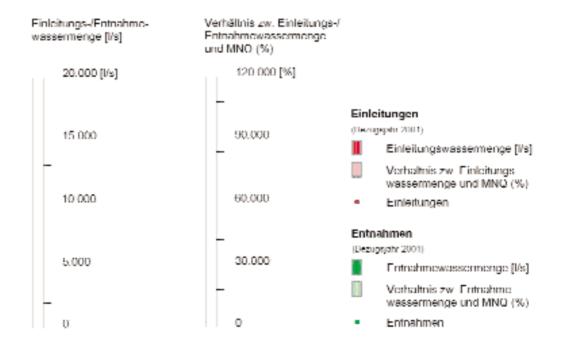
Die hydraulischen Auswirkungen der Niederschlagswassereinleitungen sind in der Fläche nicht untersucht bzw. dokumentiert. Insbesondere bei Einleitungen in kleinere Gewässer ist jedoch gerade bei diesen Einleitungen mit erheblichen hydraulischen Belastungen zu rechnen, insbesondere mit kurzfristigen Belastungsspitzen.

▶ 3.1 Belastungen der Oberflächengewässer

► Tab. 3.1.1.4-1 Kommunale Einleiter mit Einleitungen größer als 1/3 MNQ im Bearbeitungsgebiet Obere Ems/NRW (Teil 1)

Gewässer	Wasserkörper-Nummer	Ein- leitung [km]	Тур	Anlage	Einleitungswassermenge	Einzugs- gebiet [km²]	MNQ [l/s]	Verhältnis Einlei- tung/ MNQ
Ems	DE_NRW_3_206483	258,88	KOM NG	Münster-Hauptkläranlage	725	1,00	1	72.504 %
Ems	DE_NRW_3_206483	208,95	KOM NG	Rheine-Nord	435	3.748,00	5.772	8%
Ems	DE_NRW_3_206483	232,44	KOM	Emsdetten-Austum	100	3.355,00	4.362	2 %
Ems	DE_NRW_3_206483	246,87	KOM NG	Greven-Reckenfeld	127	1,00		
Ems	DE_NRW_3_263688	273,84	KOM	Telgte	97	1.612,00	2.579	4 %
Ems	DE_NRW_3_263688	291,29	KOM NG	Warendorf	199	1.258,00	2.076	10 %
Ems	DE_NRW_3_316800	323,89	KOM	Rheda-Wiedenbrück, Rheda	256	356,00	392	65 %
Ems	DE_NRW_3_316800	322,23	KOM	Herzebrock	75	360,30	396	19 %
Ems	DE_NRW_3_336486	336,97	KOM	Rietberg	77	122,50	270	28%
Ems	DE_NRW_3_336486	355,01	KOM	Hoevelhof	42	18,76	75	56 %
Forthbach	DE_NRW_31164_5400	5,44	KOM	Langenberg	17	20,60	31	56%
Dalkebach	DE_NRW_312_949	2,27	KOM	Gütersloh, Putzhagen	290	81,00	243	119 %
Dalkebach	DE_NRW_312_9950	18,84	KOM	Bielefeld, Sennestadt	72	15,83	51	141 %
Menkebach	DE_NRW_3126_12000	19,95		Oerlinghausen-Nord	27	0,52	2	1.714 %
Wapelbach	DE_NRW_3128_4900	27,68	KOM	Schloß Holte-Stukenbrock	84	5,49	25	333 %
Ölbach	DE_NRW_31284_0	8,98		Verl-West	65	59,95	132	49 %
Ölbach	DE_NRW_31284_19400	29,41	KOM	Augustdorf	34	4,12	12	279 %
Landerbach	DE_NRW_312844_0	1,83		Verl. Sende	48	19,80	101	47 %
Lutter	DE_NRW_3132_4193	13,82	KOM	Abwasserverb. Obere Lutter	335	58,60	205	163 %
Abrocksbach	DE_NRW_3134_0	0,84	KOM	Harsewinkel	79	69,50	174	45 %
Abrocksbach	DE_NRW_3134_15290	16,72		Steinhagen	73	12,10	48	152 %
Laibach	DE_NRW_3136_0	10,95		Halle, Künsebeck	91	6,15	12	741 %
Laibach	DE_NRW_3136_14785	18,70	KOM	Halle, Brandheide	42	3,40	9	499%
Ruthenbach	DE_NRW_31382_0	5,02	KOM	Halle, Hörste	4	4,00	6	65 %
Axtbach	DE_NRW_314_20982	23,72	KOM	Oelde	157	23,50	31	513 %
	DE_NRW_31482_2500	4,05		Ennigerloh-Westkirchen	30	5,50	11	274 %
Hessel	DE_NRW_316_10872	29,44	KOM	Borgholzhause, Im Recke	46	15,20	40	116 %
	DE_NRW_3164_0	1,27	KOM	Versmold	119	53,00	106	112 %
Mussenbach	DE_NRW_3172_0	5,37	KOM NG	Everswinkel	42	1,00	1	4.166 %
Werse	DE_NRW_32_0	17,93		Münster-Am Loddenbach	95	3,00	5	2121 %
Werse	DE_NRW_32_43489	46,96		Ahlen-Stadt	310	91,00	146	213 %
Werse	DE NRW 32 50960	58,69	KOM	Beckum	179	19,50	10	1.838 %
Flaggenbach	DE_NRW_3232_0	3,97	KOM	Drensteinfurt-Rinkerode	173	31,00	16	109 %
Alsterbach	DE_NRW_3242_0	4,21	KOM	Sendenhorst	42	9,00	14	311 %
Emmerbach	DE_NRW_326_0	5,05		Münster-Hiltrup	69	107,00	51	133 %
Emmerbach	DE_NRW_326_7086	25,63		Ascheberg-Herbern	23	2,10	2	1.119 %
Emmerbach	DE_NRW_326_7086			Ascheberg	34	36,70	18	185 %
Getterbach		22,60		Münster-Geist	43			4.338 %
	DE_NRW_3268_0	27,44	KOM NG KOM NG		99	1,00	1	
Angel	DE_NRW_328_18391			Ennigerloh		1,30	3	3.814 %
Angel Wieninger Bach	DE_NRW_328_27436	32,17		Beckum-Neubeckum Warendorf-Hoetmar	80 14	14,50	29 27	275 % 54 %
-	DE_NRW_3288_3400	5,95				20,50		
Schlautbach Mühlenbach	DE_NRW_3322_0	0,86		Havixbeck	47	5,75	6	816 %
	DE_NRW_3332_0	10,10		Altenberge	44	1,00	1	4.432 %
Flothbach	DE_NRW_33324_0	3,81	KOM NG	Münster-Häger	2	1,00	1	208 %
Glane	DE_NRW_334_15784	19,94		Lienen-Kattenvenne	3	1,00	1	301 %
Mühlenbach	DE_NRW_3344_4000	11,32	KUM	Lengerich	135	18,50	19	728 %


Belastungen der Oberflächengewässer


► Tab. 3.1.1.4-1

Kommunale Einleiter mit Einleitungen größer als 1/3 MNQ im Bearbeitungsgebiet Obere Ems/NRW (Teil 2)

Gewässer	Wasserkörper-Nummer	Ein- leitung [km]	Тур	Anlage	Einleitungs- wasser- menge [I/s]	Einzugs- gebiet [km²]	MNQ [l/s]	Verhältnis Einlei- tung/ MNQ
Emsdettener	DE_NRW_336_8081	12,68	KOM	Nordwalde	27	18,00	14	189%
Mühlenbach								
Aabach	DE_NRW_3368_0	4,89	KOM NG	Steinfurt-Borghorst-Nord	59	2,50	3	2.351 %
Giegel Aa	DE_NRW_3438_10089	10,70	KOM	Hopsten	12	1,50	2	531 %
Mettinger Aa	DE_NRW_344_29104	38,18	KOM	Mettingen	55	36,50	73	75%
Hauptgraben	DE_NRW_3442_0	8,76	KOM NG	Westerkappeln	19	2,00	4	468%
Dreierwalder Aa	DE_NRW_3448_1494	11,93	KOM	Hörstel	50	85,50	718	7 %
Dreierwalder Aa	DE_NRW_3448_15075	17,05	KOM	Ibbenbüren-Püsselbüren	202	70,00	105	192 %

Einleitungen und Entnahmen im Bearbeitungsgebiet Obere Ems/NRW

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Noungtoil 22, 46147 Millioter

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 7:

Einleitungen und Entnahmen im Bearbeitungsgebiet Obere Ems/NRW

Beiblatt 3.1-7 Einleitungen und Entnahmen im Bearbeitungsgebiet Obere Ems/NRW

Anlagen mit einer Einleitungs-/Entnahmewassermenge von > 50 l/s oder einem Verhältnis Q/MNQ von > 33,3 %

Karte	Herkunft	Name	Einleitungs wasser menge [l/s]	Verhällnis Q/MNQ [%]
NRW:		A STATE OF THE STA	1 1	
8-	I IGI	Dyckerhoff Zementwerk AG	11,00	110 000,0
27	IIGL	Preussag Anthrazit GmbH	25,00	1.315,7
30-	IIGL	RWE Energie AG	26,00	2.600,0
47-	I IGL	Wibarco, IKA	1,22	121,8
48-	I IGI	Wibarco, GKA Werksklaranlage ECE	3,82	254,6
55	I IGI	WWRippelbaum Sassenberg	20,00	1.000,0
1-	KOM	Abwasserverband Obere Luller	33/1,67	163,1
2-8	ком	Ahlen-Stadt	309,53	212,5
3-8	KOM	Altenberge	44,32	4,431,6
4 k	KOM	Ascheberg	33,89	184,6
5 P	KOM	/scheberg Herbern	23,49	1.118,8
6-8	ком	Augustdorf	31,11	278,9
7-8	KOM	Beckum	1/9,22	1,838,1
8-k	KOM	Beckum-Neubeckum	79,62	274,5
10 F	KOM	Bielefeld, Sennestadt	71,87	141,4
11-	КОМ	Borgholzhause, Im Recke	45,97	116,3
13-k	ком	Drensteinfurt-Rinkerode	16,94	109,3
14-k	KOM	Emsdetten-Austum	100,00	2,2
15 k	KOM	Ennigerloh	99,16	3.813,6
16 F	KOM	Ennigerloh Westkirchen	30,18	274,3
17-8	ком	Everswinkel	41,66	4.165,5
18-8	KOM	Creven-Reckenfeld	127,42	
	KOM	Guetersloh, Putzhagen	290,02	119,3
21 F	KOM	Halle, Brandheide	42,44	499,3
23-∤	KOM	Halle, Hörsle	4,17	65,1
24-F	ком	Halle, Kuensebeck	91,20	741,4
25-k	KOM	Harsewinkel	78,84	45,3
26 F	KOM	Havisbeck	46,92	816,0
27-⊮	KOM	Herzebrock	75,37	19,0
28-k	ком	Hoevelhot	41,88	55,8
29-8	KOM	Hopsten	11,94	530,8
32 F	KOM	Hoerstel	50,46	7,0
33 F	KOM	Ibbenbueren Puesselbueren	201,88	192,2
35-8	ком	Langenberg	17,22	55,7
36-8	KOM	Lengerich	134,60	727,5
38-k	KOM	Lienen-Kattenvenne	3,01	300,9
39 P	KOM	Mettingen	54,87	75,1
	KOM	Muenster-Am Loddenbach	95,45	2.121,2
41-8	ком	Muenster-Cerst	43,38	4.337,6
	KOM	Munster-Hager	2,08	208,3
43 F	KOM	Muenster Hauptklaeranlage	725,04	72-504,4
44 F	KOM	Muenster Hiltrop	68,50	133,3
46-k	ком	Nordwalde	27,22	189,0
		Finleitungen oder Entrahmen		

x - keine Probenahme / keine Wertangabe

Flussgebietseinheit Ems, Bearbeitungsgebiet Ohere Ems

Beiblatt zu K 3.1 - 7:

Einleitungen und Entnahmen im Bearbeitungsgebiet Obere Ems/NRW

Einleitungen und Entnahmen im Bearbeitungsgebiet Obere Ems/NRW

Anlagen mit einer Einleitungs-/Entnahmewassermenge von > 50 l/s oder einem Verhältnis Q/MNQ von > 33,3 %

Karte	Uerkunft	Name	Finleitungs wasser- menge [Vs]	Verhaltnis Q/MNQ [%]
47 K	KOM	Oelde	156,84	513,37
48-K	KOM	Oerlinghausen-Nord	25,89	1.713,97
51-K	KOM	Rheda-Wiedenbrueck, Rheda	256,48	65,50
52-K	KOM	Rheine-Nord	435,00	7,54
53 K	KOM	Rietberg	76,76	28,48
57-K	KOM	Schloss Holle-Stukenbrock	84,17	333,28
58-K	KOM	Sendenhorst	42,04	311,39
59-K	KOM	Steinfurt-Borghorst-Nord	58,77	2:350,79
80 K	KOM	Steinhagen	73,33	151,52
82 K	KOM	Telgle	97,22	3,77
63-K	KOM	Verl, Sende	47,93	47,46
64-K	KOM	Verl-West	64,80	49,13
65 K	KOM	Versmold	119,07	112,33
88 K	KOM	Warendorf	199,07	9,59
69-K	KOM	Warendorf-Hoetmar	14,44	54,20
70-K	KOM	Westerkappein	18,70	467,59
1.8	Sumpfung	v Ocynhausen Schacht, Akt Z - i1 7 3 3	431,25	×
2-8	Sumpfung	Westfeld, Akt Z i1-7-3-5	158,55	×

Karte	Herkunft	Name	Entrahme	Verhältnis
100	5		wasser menge [l/s]	OWNO [Je]
1-E	Innkwasservers.	Dörenthe	78,40	14,93
2 □	Trinkwasservers.	St. /rmold/Neuenkirchen	44,18	69,03

x - keine Probenahme / keine Wertangabe

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 7:

Einleitungen und Entnahmen im Bearbeitungsgebiet Obere Ems/NRW

3.1.2

Industriell-gewerbliche Einleitungen

In diesem Kapitel werden industrielle und gewerbliche Direkteinleiter sowie Kühlwasser- und Sümpfungswassereinleitungen behandelt.

3.1.2.1

Auswirkungen von industriell-gewerblichen Einleitungen unter stofflichen Aspekten

Insgesamt wurden die Einleitungen von 54 industriell-gewerblichen Betrieben im Bearbeitungsgebiet Obere Ems betrachtet. Davon liegen 53 Anlagen im nordrhein-westfälischen Teil des Bearbeitungsgebiets und eine Anlage im niedersächsischen Teil.

Bei der Betrachtung der Ergebnisse der Emissionsüberwachung aus dem Jahr 2002 fallen bei einzelnen Einleitungen lokale Belastungen auf, wobei die gesetzlichen Anforderungen von allen Anlagen eingehalten werden.

In Niedersachsen wurden für die Betrachtung der Belastungen aus industriell-gewerblichen Kläranlagen die Anlagen gemäß IVU-Richtlinie (Integrierte Vermeidung und Verminderung der Umweltverschmutzung) sowie die Nahrungsmittelbetriebe mit Kläranlagen > 4.000 EW herangezogen.

Den niedersächsischen Teil des Bearbeitungsgebiets Obere Ems betreffend sind keine signifikanten IVU-Anlagen gemeldet. Eine relevante Einleitung aus dem Bereich der Nahrungsmittelindustrie existiert mit der Einleitung der Fa. Nordmilch eG in Beesten. Dabei wurden für die Bestandsaufnahme die Parameter TOC (aus CSB errechnet), Nges und Pges betrachtet (siehe Karte 3.1-8). Die Daten wurden dem "Lagebericht 2002 über die Behandlung von kommunalem Abwasser gemäß Artikel 16 der EG RL 91/271 EWG" in Verbindung mit dem niedersächsischen Programm EU2 entnommen.

In Nordrhein-Westfalen wurden alle industriell-gewerblichen Direkteinleitungen betrachtet. Für die Frachtberechnung wurden die Daten aus der amtlichen Überwachung herangezogen. Dabei wurden zunächst die Einzelfrachten zum Zeitpunkt der Probenahme als Produkt aus Konzentration und Abwasservolumen ermittelt. Der Mittelwert dieser so ermittelten Einzelfrachten wurde dann zu einer Jahresfracht [kg/a] hochgerechnet. Die dabei teilweise sehr hohen Frachten lassen sich auf die hohen Wassermengen in Verbindung mit Kühlwassereinleitungen zurückführen. Betrachtet wurden hier die Parameter TOC, Pges, Nges, AOX, Cr, Cu, Zn, Cd, Hg, Ni und Pb.

In den Karten 3.1-8 bis 3.1-10 sind die Frachten der industriellen Direkteinleiter im Bearbeitungsgebiet Obere Ems für die o.g. Parameter dargestellt. Die nicht abgaberelevanten Kühlwassereinleitungen werden im Rahmen der mengenmäßigen Betrachtung berücksichtigt (Karte 3.1-7).

Ergänzend zu diesen Daten werden in Tab. 3.1.2.1-1 die eingeleiteten Frachten der IVU-Anlagen im Bearbeitungsgebiet Obere Ems aufgeführt. Nach Art. 15 (3) IVU-Richtlinie veröffentlicht die Kommission der Europäischen Union alle drei Jahre ein Verzeichnis der wichtigsten Emissionen und ihrer Quellen anhand der von den Mitgliedsstaaten übermittelten Informationen.

Die vorliegenden Meldungen bzw. Erklärungen beruhen auf Messungen, Berechnungen und Schätzungen, sie beziehen sich sowohl auf Direkteinleitungen als auch auf Indirekteinleitungen. Stoffabhängig erfolgt dort ein Schadstoffabbau oder eine Schadstoffverlagerung in den Klärschlamm bzw. in das Gewässer.

Die Diskrepanz der in den Karten 3.1-8 bis 3.1-10 dargestellten Frachten zu den Frachtwerten der IVU-Anlagen lassen sich darauf zurückführen, dass die Frachtwerte der IVU-Anlagen auf Basis von Eigenerklärungen der Anlagenbetreiber beruhen und die in den Karten dokumentierten IGL-Frachten (Industrie/Gewerbe/Landwirtschaft) auf Grundlage der amtlichen Überwachung ermittelt wurden.

▶ 3.1 Belastungen der Oberflächengewässer

► Tab. 3.1.2.1-1 Eingeleitete Jahresfrachten der IVU-Anlagen im Bearbeitungsgebiet Obere Ems

r iddi Silizii i											
Firma, Betrieb	Gewässer (Direkt- einleiter)	Kläranlage (Indirekt- einleiter)	Chlorid [kg/a]	Chrom [kg/a]	Kupfer [kg/a]	Fluoride [kg/a]	Nickel [kg/a]	Gesamt-P [kg/a]	Gesamt-N [kg/a]	TOC [kg/a]	Zink [kg/a]
Möller-Werke GmbH		Obere-Lutter	2.300.000	527				7.750	211.000	2.710.000	
Cramer GmbH & Co.,		Greven-		139	139		139				558
Anton		Reckenfeld									
apetito AG		Rheine-Nord								70.000	
Kettelhack GmbH & Co.		Rheine-Nord						10.900		350.000	
RWE Energie AG	Dreierwalder Aa (Ibbenbürener Aa)					2.850			58.900		

▶ Beiblatt 3.1-8 Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

K_NR	Betreiber	Branche	N _{yo} [Va]	Pyc [Va]	TOC [Va]
NRW:					
1	ASTA Medica AG	01, 22, 31	4,25	0,09	3,85
2	BASH Lacke und Farben AG	09	2,87	0,12	3,08
3	Herr Becker	/	×	X	X
4	Brauerei Hohenfelde	11	×	Y	×
5	Crespel & Deilers GmbH & Co		×	X	х
6	Deponie Westerwieh	51	X	X	X
1	Fa. Drittmeyer	01	×	X	X
8	Dyckerhoff Zementwerk AG	01; 31	1,79	0,10	1,92
9	Fternit AG		0,07	0,02	0,63
10	Finan⊿bauamt	01, 49	0,67	0,11	0,45
11	Förd. d. Landeskultur e.V.	01	×	X	X
12	Förd, d. Landeskultur e.V.	01	×	×	X
13	Gaststatte Horst van Os	01	×	x	х
14	Γa. Gottenströter	01, 31	×	X	х
15	Gut Friedrichsruh	01	x	X	X
16	Haus Neuland	01	×	X	X
17	Fa Hermann Knaup	10	×	×	×
18	Humana Milchunion FG	03	1,33	0,10	2,96
19	IKA Schenking Greven	01, 26	х	X	X
20	Fa. Interlübke	01	×	X	X
21	Fa Konig und Schlichte	12;31	×	×	×

x - keine Probenahme / keine Werlangabe

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Noraghell 22, 46147 Münder

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1: Destandsaufnahme

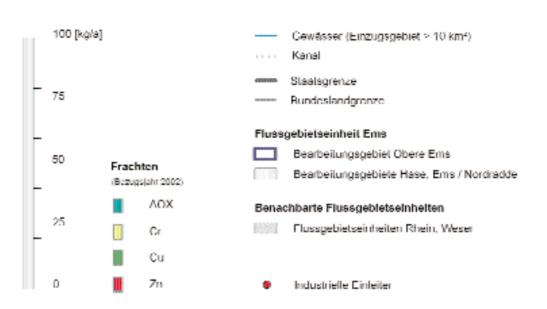
Flussgebietseinheit Ems, Bearbeitungsgebiet Ohere Ems

Beiblatt zu K 3.1 - 8: Industrielle Einleitungen

im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

▶ Beiblatt 3.1-8 Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

K_NR	Betreiber	Branche	N _{pro} [Va]	Pyr. [Va]	TOC [Va]
22	Fa F Kuhlmann	08	×	×	3
23	Mannesmannrohrenwerke AG	01	4,00	0,05	1,86
24	Fa.Menzi Dr.Fuest & Lange	31	×	X.	,
25	Fa. Nolte Möbel	01	×	×)
26	Polizei Fortbildungsinstitut		Х	×	>
27	Preußag Anthrazit GmbH	31	0,14	0,00	0,33
28	Willy Reher	01	0,38	0,05	0,13
28	Γa.H&E Reinert	31	х	X.	
30	RWE Energie AC	01	77,83	0,05	6,45
31	Franz Schroder GmbH & Co KG	1	×	×)
32	Fa Gebr. Smilde GmbH	0.4	×	×	
33	Solbad-Ravensberg	01,05	0.33	0.01	1,21
34	Stadt Greven	01	X	×)
35	Stadtwerke Greven CmbH	31	×	×)
36	Stadtwerke Münster CmbH	31	Х	×	
	Wasserwerk Kinderhaus				
37	Stadtwerke Telgte GmbH	31	0,06	0,01	0,11
38	Standortverwaltung Munster	01	5,16	0,23	2,16
39	Fa. /ugust Storck		х	х	
40	Fa. K. Stükerjürgen	31	×	×	:
41	Fa, lechnische Werke Ösning		x	×	
42	Vossko Tiefkuhlkost GmbH	10	×	×	
43	Wasserversorgungsverband Teckl	31	×	×	
	Wasserversorgunsverband Beckum	31	×	X.	
	Wasserwerk Mühlgrund	31	x	×	;
46	Fa Westhoff-Schoning	31	×	×	
47	Wibarco IKA	31	0.34	0,04	0,92
48	Wibarco IKA Werksklärani, ECI	42	1,88	0,01	1,16
49	Wienerberger Ziegelindustrie	01	×	×	
	Fa. Windel	31; 38; 49; 5	19,92	2,16	22,26
51	Fa Windelsbleiche	31	×	×	
52	Winkhaus Techn. GmbH & Co	40	10,02	0,10	3,88
53	Wöstmann GmbH & Co. KG	10	0.01	0.02	0.04
			-,-,	-,	-,-
VI:	Internation of the state of		.,1	n a al	
- 34	Nordmilch eG Werk Beesten		2,33	0.17	6,73


x - keine Probenahme / keine Wertangabe

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 8:

Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für N, P und TOC)

Beiblatt 3.1-9 Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)

K_NR	Belreiber	Branche	AOX [kg/a]	Cr [kg/a]	Cu [kg/a]	Zn [kg/a]
NRW:						
1 AS	TA Medica AG	01;22;31	38,00	×	6,08	×
2 B/V	SF Lacke und Farben IAG	9	10,00	×	1,58	13,38
3 He	m Becker	- (×	x	×	×
4 Bra	auerei Hohentelde	11	×	х	×	χ
5 Gro	espel & Deiters GmbH & Co		×	х	×	X
6 De	ponie Westerwieh	51	×	х	×	Х
7 Га.	. Driftmeyer	1	×	x	×	×
8 Dyc	ckerhott Zementwerk AG	01; 31	×	х	9,11	X
9 Etc	ernit AG		1,00	1,41	0,43	х
10 Fin	anzbauamt	01, 49	×	х	2,51	Х
11 Γδι	rd. d. Landeskultur e.V.	1	×	х	×	Х
12 Főr	rd, d. Landeskultur e.V.	1	×	×	×	χ
13 Ga	ststatte Horst van Os	1	×	X	×	X
14 Га.	. Gottenströter	01, 31	×	х	×	х
15 Gu	l Friedrichsruh	1	×	×	×	Х
16 Ha	us Neuland	1	×	х	×	χ
17 Fa	Hermann Knaup	10	×	X	×	X
18 Hu	mana Milchunion EG	3	8,00	х	х	Х
19 IKA	A Schenking Greven	01,26	×	х	X	X
20 Fa.	. Interlübke	1	×	×	×)

x - keine Probenahme / keine Wertangabe

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Nounghold 22, 48147 Münster

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgebietseinheit Ems, Bearheitungsgehiet Obere Ems

Beiblatt zu K 3.1 - 9: Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)

Beiblatt 3.1-9 Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)

NR	Betreiber	Branche	AOX [kg/a]	Cr[kg/a]	Cu (kg/a)	Zn [kg/a]
22	Fa F Kuhlmann	B	×	×	×	
23	Mannesmannrohrenwerke AG	1	ж	х	10,26	40,8
24	Fa.Menzi Dr.Fuest & Lange	31	X	X	×	
25	Fa. Nolte Möbel	1	×	×	×	
26	Polizei Fortbildungsinstitut		×	X	×	
27	Proußag Anthrazit GmbH	31	0,00	0,03	0,09	
28	Willy Reher	1	0,00	X	×	
29	Γa.H&E Reinert	31	X	X	×	
30	RWE Energie AG	1	46,00	12,38	4,/2	12,6
31	Franz Schroder, GmbH & Co, KG	1	×	×	×	
32	Fa Gebr Smilde GmbH	4	ж	к	×	
33	Solbad Ravensberg	01, 08	×	X	0.80	
34	Stadt Creven	1	×	×	×	
35	Stadtwerke Creven CmbH	31	×	×	×	
36	Stadtwerke Münster OmbH	31	×	×	×	
	Wasserwerk Kinderhaus					
37	Stadtwerke Telgte CmbH	31	0,00	Х	X	
38	Standortverwaltung Munster	1	5,00	x	×	
39	Fa. August Storck		×	×	×	
40	Γa. K. Stükerjürgen	31	X	X	×	
41	Fa. Fechnische Werke Osning		×	X	×	
42	Vossko Tiefkuhlkost GmbH	10	×	х	×	
43	Wasserversorgungsverband Teckl	31	ж	х	×	
44	Wasserversorgunsverband Beckum	31	×	×	×	
45	Wasserwerk Mühlgrund	31	×	X	×	
46	Fa. Westhoff-Schöning	31	×	×	×	
47	Wibarco IKA	31	10,00	×	0,32	
48	Wibarco IKA Werksklärant, ECI	42	75,00	0,89	×	
49	Wienerberger Ziegelindustrie	1	X	X	×	
50	Fa. Windel	31; 38; 49; 5	48,00	×	51,09	
51	Fa. Windelsbieiche	31	×	×	×	
52	Winkhaus Techn Gmb11 & Co	40	4,00	13,95	1,39	84,4
	Wüstmann GmbH & Co. KG	10	0.00		0.05	


x - keine Probenahme / keine Wertangabe

Flussgebietseinheit Erns, Bearheitungsgebiet Ohere Erns

Beiblatt zu K 3.1 - 9:

Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für AOX, Cr, Cu und Zn)

▶ Beiblatt 3.1-10 Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

K NR	Betreiber	Branche	Cd [kg/a]	Hg [kg/a]	Ni [kg/a]	Pb [kg/a]
NRW:						
1	ASTA Medica AG	01;22;31	к	×	х	×
2	BASE Lacke und Farben AG	9	х	x	х	0,31
3	Herr Becker	- 7	Х	x	х	×
4	Brauerei Hohenfelde	11	х	×	X	X
5	Crespel & Deiters GmbH & Co		к	×	×	х
8	Deponie Westerwieh	51	×	×	×	Х
1	Fa. Driftmeyer	1	×	×	×	×
8	Dyckerhoff Zementwerk AG	01; 31	x	×	×	3,68
9	Fternit AG		×	×	×	х
10	Finanzbauamt	01, 49	×	×	×	х
11	Γörd. d. Landeskultur e.V.	1	×	×	×	Х
12	Förd, d. Landeskultur e.V.	1	x	×	×	>
13	Gaststatte Horst van Os	1	×	×	×	×
14	Fa Gottenstrater	01;31	к	×	×	х
15	Gut Friedrichsruh	1	×	×	×	Х
16	Haus Neuland	1	×	×	×	×
17	Fa.Hermann Knaup	10	x	x	x	X
18	Humana Milchunion FG	3	К	×	x	×
19	IKA Schenking Greven	01, 28	х	×	х	Х
20	Fa. Interlübke	1	×	×	×	X

x - keine Probenahme / keine Wertangabe

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

No arginili 22, 48147 Milaster

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 10: Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

▶ Beiblatt 3.1-10 Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

K_NR	Betreiber	Branche	Cd [kg/a]	Hg [kg/a]	Ni [kg/a]	Pb [kg/a]
22	Fa. C. Kühlmann	8	×	х	х	х
23	Mannesmannröhrenwerke AG	1	×	x	х	x
24	Fa.Menz Dr.Fuest & Lange	31	×	×	×	х
25	Fa Nolte Mobel	1	×	×	×	×
28	Polizei Fortbildungsinstitut		×	х	х	×
27	Preußag Anthrazit GmbH	31	×	x	0,10	×
28	Willy Reher	1	×	х	x	X
29	Fa H&F Reinert	31	×	×	×	×
30	RWE Energie AG	1	0,35	0,83	7,41	1,53
31	Franz Schröder GmbH & Co. KG	1	x	x	X	×
32	Fa.Cebr. Smilde GmbH	4	×	×	×	х
33	Şolbad-Ravensberg	01;06	×	×	×	×
34	Stadt Greven	1	к	К	К	×
35	Stadtwerke Greven GmbH	31	×	x	×	×
38	Stadtwerke Münster GmbH	31	×	x	x	>
	Wassenwerk Kinderhaus					
37	Stadtwerke Telgte GmbH	31	×	×	×	0,04
38	Standortverwaltung Münster	1	×	×	×	0,15
39	Fa August Storck		×	x	х	×
40	Γa. K. Stökerjürgen	31	×	×	×	>
41	Fa.Technische Werke Osning		×	×	×	>
42	Vossko Tiefkühlkost CmbH	10	×	х	X	>
43	Wasserversorgungsverband Teckl	31	×	x	x)
44	Wasserversorgunsverband Beckum	31	×	×	×)
45	Wasserwerk Mühlgrund	31	×	х	x	>
46	Fa. Westhoff-Schöning	31	×	х	X	>
47	Wibarco IKA	31	×	х	7,46)
48	Wibarco IKA Werksklarani. FCI	42	0,30	0,09	1,88	0,58
49	Wienerberger Ziegelindustrie	1	×	x	×	×
50	Fa. Windel	31; 38; 49; 5	×	×	×	x
51	Fa Windelsbleiche	31	×	×	×	×
52	Winkhaus Techn GmbH & Co	40	К	к	К	0,08
53	Wöstmann GmbH & Co. KG	10	×	х	Х	×
NI:			'	'	'	
	Nordmilch eG Werk Beesten	keine relevant	aa Luslaub:			

x - keine Probenahme / keine Werlangabe

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.1 - 10:

Industrielle Einleitungen im Bearbeitungsgebiet Obere Ems (Frachten für Cd, Hg, Ni und Pb)

3.1.2.2

Industriell-gewerbliche Einleitungen, Kühlwassereinleitungen, Grubenwassereinleitungen unter chemisch-physikalischen und mengenmäßigen Aspekten

Einleitungen von industriell-gewerblichem Abwasser

Die Betrachtung der industriell-gewerblichen Einleitungen hinsichtlich mengenmäßiger Aspekte haben für den niedersächsischen Teil des Bearbeitungsgebiets keine relevanten Einleitungen ergeben.

Im nordrhein-westfälischen Teil des Bearbeitungsgebiets leiten einige der 53 industriellgewerblichen Kläranlagen nur diskontinuierlich in die Gewässer ein. Hier muss im Einzelfall beurteilt werden, ob die Einleitungen temporär zu einer erheblichen hydraulischen Belastung des Gewässers führen. Bei den kontinuierlichen Einleitungen gilt wie bei den kommunalen Einleitungen (siehe Kap. 3.1.1.4) das Signifikanzkriterium von 1/3 MNQ bzw. eine Einleitungsmenge von 50 l/s. Als Einleitungsmenge werden die mittleren tatsächlichen Trockenwetterabflüsse der Anlagen herangezogen.

Wie Karte 3.1-7 in Kapitel 3.1.1.4 zeigt, kommt es bei sechs Einleitungen der 53 industriellgewerblichen Betriebe im Bearbeitungsgebiet Obere Ems/NRW zu einer Überschreitung des Signifikanzkriteriums von 1/3 MNQ. Es handelt sich hierbei ausschließlich um kontinuierliche Einleitungen. Die meisten der betroffenen Gewässer haben eine sehr geringe Niedrigwasserführung. Keine der Anlagen überschreitet die signifikante Einleitungsmenge von 50 l/s.

Eine mengenmäßige Belastung der Gewässer durch diskontinuierliche Einleitungen ist nicht bekannt.

Bezüglich der physikalisch-chemischen Aspekte sind in Niedersachsen Angaben von industriellen Direkteinleitungen, die nach IVU – Richtlinie berichtspflichtig sind mit Jahresfrachten von denjenigen Stoffen, die sich aus der Liste der wasserrelevanten 26 Stoffe ergeben (EPER-Liste), gemacht. Anlagen dieser Art sind im Bearbeitungsgebiet Obere Ems/NI nicht vorhanden.

Weiterhin werden Jahresfrachten der prioritären Stoffe, der Stoffe der Gewässerqualitätsverordnung zur RL 76/464/EWG erfasst und Nahrungsmittelbetriebe > 4000 EW (eine Anlage im Bearbeitungsgebiet Obere Ems/NI), bei denen die Datenerhebung wie bei kommunalen Kläranlagen erfolgt.

In Nordrhein-Westfalen sind physikalischchemische Belastungen aufgrund industriellgewerblicher Einleitungen vereinzelt für den Parameter Chlorid zu verzeichnen. Die Chloridbelastung des Bruchbaches beispielsweise rührt aus der Einleitung des Solebades Ravensberg. Es liegen dort salzhaltige natürliche Quellen vor.

Von der im niedersächsischen Teil des Bearbeitungsgebiets betrachteten industriell-gewerblichen Einleitung sind keine physikalisch-chemischen Belastungen bekannt.

Einleitungen von Grubenwasser (Sümpfungswasser)

Die Steinkohleförderung in Ibbenbüren ist durch hohe Grubenwasserzuflüsse gekennzeichnet. Jährlich werden ca. 18 Mio. m³ stark chloridhaltigen Grubenwassers in die Ibbenbürener Aa eingeleitet. Durch den Zufluss von etwa 0,4 m³/s Grubenwasser wird der Abfluss der Ibbenbürener Aa stark erhöht. Am Pegel Lehen II oberhalb des Ibbenbürener Aasees beträgt die Abflussspende 1,9 l/s, nach Einleitung der Grubenwässer am Pegel Hörstel 8,5 l/s. Als Abfluss bedeutet dies, dass der MNQ von 105 l/s um 570 l/s erhöht wird. Die Ibbenbürener Aa wird somit nicht nur stofflich, sondern auch hydraulisch erheblich von den eingeleiteten Grubenwassermengen geprägt.

Das Grubenwasser des im Abbau befindlichen Ostfeldes weist Chloridkonzentrationen von durchschnittlich 16.000 mg/l auf, wobei es sich um reines Kochsalz handelt. Ebenfalls stark chloridhaltig sind die an gleicher Stelle befindlichen Einleitungen zweier chemischer Betriebe, des Kraftwerks Ibbenbüren und des nicht mehr im Abbau befindlichen, vollgelaufenen Westfeldes. Im Vergleich zum Ostfeld sind die Frachten mit ca. 2 % der Tagesfracht von etwa 600 t aber zu vernachlässigen.

Die Flora und Fauna in der Ibbenbürener Aa sind stark verändert. Lediglich einige salzto-

3.1 Belastungen der Oberflächengewässer

lerante Arten finden sich hier bei einem Salzgehalt, der dem der mittleren Ostsee entspricht.

Die Sümpfungswassereinleitungen an der Ibbenbürener Aa gehören zu den größten gewässerverunreinigenden Beeinträchtigungen im Bearbeitungsgebiet. Mit der Planung zur Erschließung neuer Abbaufelder wird derzeit ein Abbau bis zum Jahr 2027 prognostiziert.

Einleitung von Kühlwasser

Gemeinsam mit der Einleitung des Sümpfungswassers aus der Steinkohleförderung in Ibbenbüren erfolgt die Einleitung von Kühlwasser (ca. 1 Mio. m³ im Jahr 2002), das zuvor dem Dortmund-Ems-Kanal entnommen wurde.

3.1.3

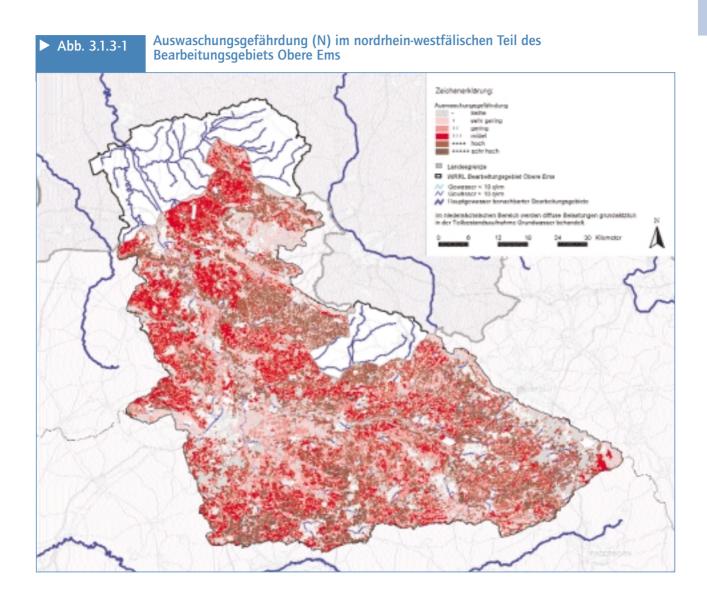
Diffuse Verunreinigungen

Unter Stoffeinträgen aus diffusen Quellen versteht man im Allgemeinen Einträge von Stoffen aus nicht näher zu bestimmenden Schmutzquellen. Aus diffusen Quellen werden insbesondere Fest-, und Nährstoffe sowie Pflanzenschutzmittel und Schwermetalle in die Oberflächengewässer eingetragen. Der Nährstoff Stickstoff gelangt dabei überwiegend in gelöster Form über das Grundwasser in die Oberflächengewässer, Phosphor wird an Partikel gebunden überwiegend durch Erosion, aber auch aus Moor- und Marschböden in die Gewässer eingetragen.

Aussagen zur Stickstoffbelastung für den niedersächsischen Teil des Bearbeitungsgebiets sind daher dem Kapitel 3.2 "Belastungen des Grundwassers" zu entnehmen.

Die folgenden Ausführungen beschränken sich auf den nordrhein-westfälischen Teil des Bearbeitungsgebiets.

Zur Einschätzung der Belastungen durch diffuse Verunreinigungen wurden in Nordrhein-Westfalen GIS-gestützte Analysen zur Erosions- und Auswaschungsgefährdung durchgeführt. Diese liefern eine erste Grundlage für die Relevanz diffuser Einträge in die Oberflächengewässer. Diese Analysen zielen im Wesentlichen auf Einflüsse aus der landwirtschaftlichen Nutzung der Flächen ab und berücksichtigen nutzungsbedingte, bodenkundliche und orographische Aspekte von Erosion und Auswaschung.


Ergänzend wurden gewässernahe Altlastenstandorte identifiziert und hinsichtlich ihrer Relevanz eingeschätzt.

Landwirtschaft

Als wesentliche anthropogene, diffuse Belastungsquelle ist für das Bearbeitungsgebiet Obere Ems/NRW die Auswaschung von Nährstoffen (v. a. Stickstoff/Nitrat) aus landwirtschaftlich genutzten Flächen anzusehen. Nach einer überschlägigen Rechnung passieren ca. 9.000 Tonnen Stickstoff jährlich die Grenze nach Niedersachsen. Davon stammen etwa 1.400 Tonnen aus kommunalen und industriellen Kläranlagen, weitere 750 Tonnen aus der Regenwasserbeseitigung. Die verbleibende Differenz von ca. 7.000 Tonnen ist diffusen Quellen, vor allem der intensiven landwirtschaftlichen Nutzung im Bearbeitungsgebiet zuzurechnen. Bei den Stickstoffausträgen darf das Augenmerk nicht nur auf die direkten Nitrateinträge ins Grund- und Oberflächenwasser gerichtet werden, sondern auch auf die gasförmigen Stickstoffverluste der Tierintensivhaltung in Form von Ammoniak.

Die Kombination der intensiven Landwirtschaft im Bearbeitungsgebiet mit hohen Viehdichten führt bei den vorherrschenden Bodenverhältnissen (leichte Sandböden) und dem z.T. geringem Grundwasserflurabstand zu dem vorhandenen hohen Potential einer diffusen Verunreinigung der Gewässer im Bearbeitungsgebiet. Vor allem in den Wintermonaten lassen sich erhebliche Stickstofffrachten in den Gewässern verzeichnen.

Haupteintragspfade in die Gewässer sind das Grundwasser bzw. der Zwischenabfluss (interflow). Die wegen der hohen Grundwasserstände im Bearbeitungsgebiet erforderlichen landwirtschaftlichen Drainagen beschleunigen den Zwischenabfluss erheblich und stellen einen, mangels Daten, bisher nicht quantifizierbaren Anteil an den Stickstoffeinträgen dar.

Altlasten

Die Altstandorte und Altablagerungen wurden in einem 200 m breiten Streifen zu beiden Seiten der für die WRRL relevanten Oberflächengewässer aus dem nordrhein-westfälischen Fachinformationssystem Altlasten und schädliche Bodenverunreinigungen (FIS AlBo) ermittelt, vereinzelt konnten die Informationen auf Grundlage von Einzelgutachten verdichtet werden.

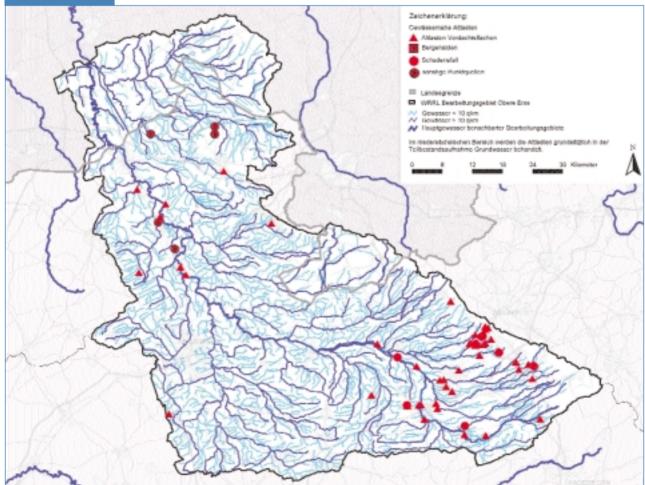
Im Ergebnis in Abb. 3.1.3-2 zeigen sich für den Bereich Obere Ems/NRW 60 Altlasten und schädliche Bodenverunreinigungen, die im Umkreis von bis zu 200 m zu einem Gewässer liegen. Bei 17 dieser gewässernahen Altlasten

kann eine potenzielle Beeinträchtigung der nahegelegenen Fließgewässer nicht ausgeschlossen werden. Potenzielle Belastungsschwerpunkte finden sich insbesondere im Oberlauf der Ems und in den ihr rechtsseitig zufließenden Gewässern sowie im Bereich der Ems zwischen Greven und Rheine.

Nach den bisherigen Erkenntnissen spielen gewässernahe Altstandorte, Altablagerungen und Altlasten bei den diffusen Quellen allerdings nur eine untergeordnete Rolle für die Belastung von Oberflächengewässern.

3.1 Belastungen der Oberflächengewässer

Sonstige diffuse Belastungen


Neben der diffusen Hauptbelastungsquelle Landwirtschaft treten die sonstigen potentiellen Belastungen aus diffusen Quellen zurück, sie bilden höchstens lokal eng begrenzte Belastungsschwerpunkte.

Unter die sonstigen diffusen Belastungen werden unter anderem die Belastungen von Gewässern durch Schießstände gefasst. Im Bereich der Oberen Ems/NRW wurden insgesamt 33 Schießanlagen hinsichtlich der potentiellen Gefährdung von Oberflächengewässern überprüft. Konkrete Hinweise auf Einträge von typischen Stoffbelastungen (Pb, As, Sb) oder andere signifikante Beeinträchtigungen ergaben sich nicht. Im Rahmen eines Pilotprojekts in NRW wurden zwei Schießplätze

intensiver untersucht und in beiden Fällen erhebliche Belastungen von Boden und Grundwasser durch PAK (Wurfscheiben) und Blei (Schrotmunition) festgestellt. Einer dieser Schießplätze liegt im Kreis Warendorf und damit im Bearbeitgebiets Obere Ems.

Ein weiteres lokales diffuses Gefährdungspotenzial existiert durch belastetes Sediment in der Ibbenbürener Aa. Die Ibbenbürener Aa ist im Bearbeitungsgebiet das mit Schwermetallen am stärksten befrachtete Gewässer. Hier finden sich die größten industriellen Emittenten von Schwermetallen. Das Sediment ist in der Vergangenheit durch Einleitungen von schwermetallhaltigen Abwässern erheblich belastet worden. Durch Rücklösung und feststoffgebundenen Transport stellt das Gewässersediment bis heute eine diffuse Schwermetallquelle dar.

3.1.4

Entnahmen und Überleitungen von Oberflächenwasser

Entnahmen und Überleitungen belasten in erster Linie den mengenmäßigen Zustand der Oberflächengewässer, ggf. jedoch auch die stofflichen Verhältnisse aufgrund ungünstigerer Mischungsverhältnisse.

Entnahmen

Grundsätzlich wurden sowohl in Niedersachsen als auch in Nordrhein-Westfalen im Rahmen der Belastungsanalyse Entnahmen ohne Wiedereinleitung größer als 50 l/s erfasst.

Diese Betrachtung hat ergeben, dass im niedersächsischen Teil des Bearbeitungsgebiets Obere Ems keine relevanten Entnahmen vorhanden sind. Im nordrhein-westfälischen Teil gibt es durch das Wasserwerk Dörenthe eine Entnahme aus der Glane, die mit 78,4 l/s über dem Grenzwert liegt (siehe Karte 3.1-7).

In Nordrhein-Westfalen wurden zusätzlich Entnahmen erfasst, die trotz Unterschreitung dieses Grenzwerts bezüglich der Wasserführung für das Gewässer bedeutsam sind. Hier wurde der Grenzwert Entnahmemenge ohne Wiedereinleitung größer 1/3 MNQ erfasst. Im Ergebnis zeigt sich mit einem Q/MNQ von 60 % eine relevante Entnahme aus dem Frischhofsbach durch das Wasserwerk St. Arnold/Neuenkirchen.

Bei keiner der genannten relevanten Entnahmen sind bisher nachteilige Auswirkungen auf den Zustand des Gewässers bekannt.

Entnahmen zur landwirtschaftlichen Bewässerung aus Oberflächengewässern werden zurzeit nicht systematisch erfasst, es sind aber keine Entnahmen zu Bewässerungszwecken bekannt, die sich signifikant auf den mengenmäßigen Zustand des betroffenen Gewässers auswirken. Als Besonderheit wird hier noch auf die zahlreichen Kulturstaue verwiesen, welche in den Sommermonaten dazu führen, dass die Niedrigwasserabflüsse zur Erhöhung des Grundwasserspiegels in den Auenbereichen genutzt werden. Der Effekt kann an besonders betroffenen Gewässern durch gewässerkundliche Zahlen belegt werden.

Über- und Umleitungen

Die Lippe speist das westdeutsche Kanalnetz über den Datteln-Hamm-Kanal (DHK) mit maximal 25 m³/s bis zu einer Mindestwasserführung der Lippe von 10 m³/s. Über das Wasserstraßenkreuz bei Datteln steht der u. a. im Bearbeitungsgebiet Obere Ems liegende Dortmund-Ems-Kanal (DEK) und dieser wiederum mit dem Mittellandkanal (MLK) ("Nasses Dreieck" bei Hörstel) in Verbindung. Im Sinne einer Überleitung verknüpft der DHK damit die Stromsysteme von Weser, Ems und Rhein (Lippe).

Die zum Ausgleich der Wasserverluste aus dem Kanalsystem durch Schleusungsvorgänge, Versickerung und Versorgung mit Wasser (ohne Trinkwasser) aus der Lippe eingespeiste Jahreswassermenge betrug 2001 264 Mio. m³. Die Speisung schwankt in weiten Grenzen, das Minimum der letzten 30 Jahre lag bei 120 Mio. m³ (1996), das Maximum bei 470 Mio. m³ (1981). Aber auch umgekehrt wird bei Unterschreiten der Niedrigwasserführung von 10 m³/s die Lippe mit Wasser aus dem DHK angereichert.

Im Bearbeitungsgebiet Obere Ems sind Entnahmen aus dem DEK zur Grundwasseranreicherungen in der öffentlichen Trinkwasserversorgung sowie zur Gewinnung von Kühlwasser für Kraftwerke und Industriebetriebe von Bedeutung. In Münster kann dem DEK pro Jahr eine erlaubte Jahresmenge von bis zu 16,5 Mio. m³ als Kühlwasser für das Kraftwerk Ibbenbüren entnommen werden. Ein Teil davon (rund 1 Mio. m³ im Jahr 2002) wird nach Durchlaufen des Kühlprozesses über die Ibbenbürener Aa/Grosse Aa in die Ems (Niedersachsen) wieder eingeleitet.

Auch der Dortmund-Ems-Kanal mündet außerhalb des Bearbeitungsgebiets in die Ems. Ingesamt führt aber die Überleitung von Lippewasser über den Datteln-Hamm-Kanal in den Dortmund-Ems-Kanal und von dort (teilweise über die Ibbenbürener Aa) in die Ems zu keiner signifikanten mengenmäßigen oder stofflichen Veränderung der Ems.

3.1 Belastungen der Oberflächengewässer

3.1.5

Hydromorphologische Beeinträchtigungen

Der gesamte Lauf der Ems im Bearbeitungsgebiet Obere Ems ist durch Begradigung, Ausbau im Trapezprofil und Befestigung der Böschung bis zur Mittelwasserlinie technisch ausgebaut. Diese Maßnahmen wirken sich auch erheblich negativ auf die Abfluss- und Fließdynamik aus. Ausnahmen bilden die renaturierte Gewässerstrecke von 4 km Länge bei Münster-Dorbaum

Abb. 3.1.5-1 Renaturierter Bereich der Ems bei Münster-Dorbaum (angebundener Altarm)

und die sich anschließende nicht ausgebaute Strecke von etwa 3,5 km Länge.

Diese Streckenlängen stehen in einem starken Missverhältnis zu den 186 km Fließstrecke der Ems im Bearbeitungsgebiet, auch wenn durch das nordrhein-westfälische Ems-Auen-Schutzkonzept bereits zahlreiche positive Einzelmaßnahmen in Nordrhein-Westfalen initiiert wurden.

Auch die größeren Nebengewässer im Emseinzugsgebiet (>10 km² EZG) wurden mit Ausnahme von wenigen längeren naturnahen Fließstrecken, ausgebaut. Derartige Ausnahmen bilden z. B. der Frischhofsbach und der Eltingmühlenbach. Insgesamt befinden sich nach den Daten der Gewässerstrukturkartierung weniger als 10 % der Gewässerstrecken noch in einem guten morphologischen Zustand.

Anlass für den Gewässerausbau war das Bestreben, die landwirtschaftliche Nutzung durch Beschleunigung des Hochwasserabflusses zu erleichtern, Vorflut für die Drainagen zu schaffen und die Hochwassersicherheit für Bevölkerung und Landwirtschaft zu verbessern.

Abb. 3.1.5-3 Nicht passierbares Querbauwerk an der Ibbenbürener Aa (Dreierwalder Aa)

Hinzu kommt noch eine Vielzahl (> 1.300) von Querbauwerken im Bearbeitungsgebiet, von denen ein Großteil die Durchwanderbarkeit für die Fauna verschlechtert oder gänzlich unmöglich macht.

Gewässerstruktur

Daten zu morphologischen Veränderungen sind in **Niedersachsen** über die Strukturkartierung aufgenommen worden. In Niedersachsen wurde eine Übersichtskartierung durchgeführt, bei der jeweils 1000-Meter-Abschnitte erfasst wurden. Die Methoden der Strukturkartierung richteten sich nach einem vom NLÖ (Niedersächsisches Landesamt für Ökologie) in Anlehnung an die LAWA erarbeiteten Erhebungs- und Bewertungsverfahren (LAWA 2000, Rasper & Kairies 2000).

Die Erhebung der Gewässerstruktur erfolgte in **Nordrhein-Westfalen** durch detaillierte Geländeerhebungen entsprechend den LUA-Merkblättern (Landesumweltamt) 14 und 26. Die erforderlichen Gewässeruntersuchungen in den Oberflächengewässern mit einem Einzugsgebiet > 10 km² erfolgten in den Jahren 1998 bis 2002. Sämtliche Informationen zur Gewässerstruktur liegen in einer zentralen Datenbank vor.

Die intensive landwirtschaftliche Nutzung im Bearbeitungsgebiet Obere Ems führt vielerorts bis an die Gewässer heran. Die Uferbereiche sind dadurch insbesondere dann häufig stark geschädigt, wenn keine schützenden Gewässerrandstreifen vorhanden sind.

Auch Siedlungen und Gewerbeflächen liegen häufig in unmittelbarer Gewässernähe und führen durch umfangreiche Gewässerausbauten zu Schädigungen der Gewässerstruktur. Teilweise sind die Gewässer in den innerörtlichen Abschnitten über längere Strecken überbaut. Laufbegleitende und laufquerende Verkehrsinfrastrukturen stellen ebenfalls Zwangspunkte dar, die die Gewässerstruktur beeinträchtigen.

Die Beeinträchtigung der hydromorphologischen Verhältnisse durch nutzungsinitiierte wasserbauliche Veränderungen kann damit als eine wesentliche Belastung der Gewässer im Bearbeitungsgebiet Obere Ems benannt werden.

Abb. 3.1.5-4 Intensive landwirtschaftliche Nutzung bis an das Gewässer (Frankenbach)

Abb. 3.1.5-5 Ausgebauter Gewässerabschnitt (Fleckenbach)

Einen Überblick der zu berücksichtigenden Nutzungen, im Wesentlichen die Siedlungslagen und landwirtschaftlichen Nutzflächen, vermittelt die Darstellung der Flächennutzungen in Kap. 1 (Abb. 1.5-1). Die lokalen Auswirkungen der Nutzungen werden durch die Bewertung der Gewässerstruktur widergespiegelt (Karte 2.1-3 und Tab. 2.1.3.4-5).

3.1 Belastungen der Oberflächengewässer

3.1.6

Abflussregulierungen

Als Abflussregulierungen werden hier Regulierungen durch Talsperren sowie durch Querbauwerke verstanden. Besondere Berücksichtigung findet hier bei letzteren der Aspekt der Durchgängigkeit für Fließgewässerorganismen. Hierbei sind insbesondere die Auswirkungen auf die Fischfauna zu nennen, die unmittelbar durch unpassierbare Querbauwerke in ihren Wanderungen beeinträchtigt werden (s. Kap. 2.1.3.4).

Querbauwerke

Mit dem Ausbau der Fließgewässer wurden die Fließstrecken verkürzt um nutzbare Flächen zu gewinnen. Die damit verbundene Sohlgefälleerhöhung hatte wiederum verstärkte Sohlerosion und ein Absinken des Wasserspiegels aufgrund des schnelleren Abflusses zur Folge. Um eine übermäßige Sohlerosion und das Absinken des Wasserspiegels zu verhindern, wurden Absturzbauwerke errichtet, die in den dazwischenliegenden Strecken ein geringeres Gefälle ermöglichten. Meist wurden die Bauwerke als senkrechte Abstürze oder in mehreren Kaskaden errichtet.

Die ungehinderte Durchgängigkeit der Fließgewässer ist eine grundlegende Voraussetzung für die Etablierung sich selbst erhaltender Fischpopulationen. Dies betrifft sowohl Fischarten, die kleinräumige Wanderungen durchführen, als auch vor allem die Wanderfische wie Lachs oder Meerforelle, die auf eine ungehinderte Wanderung zwischen den Laichgewässern in den Äschenregionen und den marinen Aufwuchsgebieten angewiesen sind.

Die stromaufwärtsgerichtete Durchgängigkeit der Querbauwerke hängt zum einen von der Konstruktionsweise des Bauwerks ab und zum anderen auch davon, ob funktionsfähige Fischaufstiegsanlagen vorhanden sind. Zur Funktionsfähigkeit eines Fischaufstieges ist die Auffindbarkeit des Einstieges für die Fische entscheidend. Dazu sind die Orientierung an der Hauptströmung des Gewässers, die Entfernung vom Fuß des Querbauwerkes und der Einmündungswinkel der Leitströmung für die Fische maßgebend.

In **Niedersachsen** wurden die Querbauwerke mit Hilfe der Unterhaltungsverbände aufgenommen und durch die jeweiligen Bezirksregierungen in eine Datenbank integriert. Als wesentliche Hindernisse in Hinblick auf die biologische Durchgängigkeit sind die Sohlbauwerke mit einer Absturzhöhe ≥ 30 cm, die Düker und die Durchlässe mit einer Länge größer 100 m benannt worden.

In Nordrhein-Westfalen wurden die Querbauwerke und ihre jeweilige Aufwärtspassierbarkeit im Querbauwerk-Informationssystem (QUIS) des Landes NRW erfasst. Die Erhebungen erfolgten ab Mitte der 1990er Jahre bis 2003 für Querbauwerke an Oberflächengewässern mit einem Einzugsgebiet von ≥ 20 km². Die Querbauwerke in den Oberläufen der Fließgewässer mit einem Einzugsgebiet ≥ 20 km² sowie in den Gewässern mit einer Einzugsgebietsgröße zwischen 10 und 20 km2 sind aus der Gewässerstrukturdatenbank ergänzt und bewertet worden und werden erst für zukünftige Auswertungen berücksichtigt. Sie werden ab einer Absturzhöhe von 20 cm als gravierendes Wanderungshindernis angesehen, welches den Wasserkörper oberhalb signifikant belastet.

Die vielfältige Nutzung der Gewässer im Bearbeitungsgebiet führt zu einer Vielzahl von Wanderungshindernissen, insbesondere auch an den kleineren Nebengewässern. Insgesamt existieren im Bearbeitungsgebiet gemäß den o.g. niedersächsischen und nordrhein-westfälischen Datenbanken 1.354 Querbauwerke verschiedener Größenordnung und Funktion, von denen ein Großteil die Durchgängigkeit für die Fischfauna verschlechtert oder gänzlich unmöglich macht.

Als größte Stauanlagen sind zu nennen:

- Ems: Antfängers Mühle (Westerwiehe), Rhedaer Tor (Wiedenbrück), Schlossmühle (Rheda), Pavenstädt (Herzebrock), Neue Mühle (Greffen), Warendorf, Telgte*, Rheine, Listrup
- Werse: Drensteinfurt, Pleistermühle*, Sudmühle, Havichorster Mühle
- Münstersche Aa: Münsterscher Aasee, Stau Pellengahr
- Dreierwalder Aa (Ibbenbürener Aa): Reiningsmühle, Ibbenbürener Aasee
- Glaner Bach: Mühle der Freundschaft, Dallmühle, Merschmühle
- Große Aa: Wehr Hesselte
- Speller Aa: Stau Venhaus, Stau Schulten, Stau Otting
- · Hessel: Stau Sassenberg
- Bever: Haus Langen*
- · Hemelter Bach: Stau Kordesmeier
- * Stauwehre mit funktionierender Fischtreppe

Für das Hauptgewässer, die Ems, haben in den letzten Jahren im Bereich zwischen Rheine und Warendorf umfangreiche Maßnahmen zur Verbesserung der Durchgängigkeit auch bei Niedrigwasser stattgefunden. Sie haben einen Verbund von mehr als 100 Kilometern Fließgewässerstrecke entstehen lassen. Ein weiterer wichtiger Schritt muss nun der Umbau des derzeit nicht funktionsfähigen Fischaufstiegs am Wehr in Rheine sein, da nur so die Verbindung von Ober- und Unterlauf der Ems möglich wird. Die nahezu flächendeckende Verbreitung der Wanderungshindernisse in den Nebengewässern stellt weiterhin ein signifikantes Belastungsmerkmal im Bearbeitungsgebiet dar.

In Abhängigkeit von der Absturzhöhe beeinträchtigen die Querbauwerke die Durchgängigkeit der Gewässer und führen zu unterschiedlich ausgedehnten Rückstaubereichen mit entsprechend nachteiligen Auswirkungen auf die Fließgewässerbiozönosen.

Abb. 3.1.6-1 Umgehungsgerinne am Kleinen Wehr in Telgte

Abb. 3.1.6-2 Wehranlage Reinings Mühle an der Dreierwalder Aa

Nur wenige der über 1.300 Querbauwerke sind bisher als gut passierbar einzustufen. Abbildung 3.1.6-1 zeigt beispielhaft das Umgehungsgerinne am Kleinen Wehr in Telgte.

Der Großteil der Bauwerke ist allerdings als nur eingeschränkt oder nicht passierbar einzustufen und beeinflusst so die ökologischen Funktionen der Fließgewässer im Bearbeitungsgebiet nachhaltig (siehe Abb. 3.1.6-2).

Die Querbauwerke, die in den o.g. Datenbanken Niedersachsens und Nordrhein-Westfalens für das Bearbeitungsgebiet Obere Ems geführt werden, sind in Karte 3.1-11 dargestellt. Für NRW werden für diese Darstellung auch die Einstufung der Aufwärtspassierbarkeit sowie die Rückstaustrecken (siehe dazu folgenden Abschnitt "Rückstau") dargestellt.

Querbauwerke, Aufwärtspassierbarkeit und Rückstaubeeinflussung im Bearbeitungsgebiet Obere Ems

	Gravasser (Finzugsgebiet = 10 km²)	
	Kanal	
опполи	Staatsgrenze	
MARKAN.	Nundeslandgrenze	
Fluss	sgebietseinheit Ems	
	Bearbeitungsgebiet Übere Ems	
	Bearbeitungsgebiete Hase, Ems / Nordradde	
	chbarte Flussgebietseinheiten	
шш	Hussgebietseinheiten Rhein, Weser	
	rbauwerke (Stand 08/2003) :hgängigkeit (Aufwärtspassierbarkeit)	
	nicht beeintrachtigend	
	moglicherweise beeintrachtigend	
•	beeinträchtigend	
	 Ştaustrecken (Ştand 08/2003) 	
	Staustrecken (Stand 08/2003)	

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Novinghell 22, 4814T Münster

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Ohere Ems

Beiblatt zu K 3.1 - 11: Querbauwerke, Aufwärtspassierbarkeit und Rückstaubeeinflussung im Bearbeitungsgebiet Obere Ems

Belastungen der Oberflächengewässer

Rückstau

Neben der Behinderung bei der Durchwanderbarkeit der Gewässer sind die Erwärmung und die vom Aufstau begünstigte Eutrophierung als Belastung für die Gewässer im Bearbeitungsgebiet Obere Ems durch Querbauwerke zu nennen.

Im Bereich der Bauwerke findet in der Regel ein Fließwechsel vom strömenden zum schießenden Abfluss statt, der sich unmittelbar unterhalb in einem Wechselsprung wieder umkehrt. In diesen Bereichen findet in der Regel ein erhöhter Sauerstoffeintrag statt. Unterhalb vieler Bauwerke befinden sich Kolke im Gewässer mit entsprechend ruhigen Fließbereichen. Ob und in wie weit sich diese lokalen Veränderungen signifikant im Sinne von negativ auf den Gewässerzustand auswirken, ist nach dem jetzigen Stand der Diskussion noch nicht geklärt.

Es werden durch den Stau und die damit verbundene z.T. extreme Verlangsamung des Wasserabflusses seenartige Verhältnisse geschaffen. Die vorhandenen, für Stillgewässer als Vergleichsmaßstab sehr hohen Nährstoffgehalte, führen zusammen mit der mangelnden Beschattung, stark reduzierter Fließgeschwindigkeit und der damit einhergehenden Erwärmung zu starken Eutrophierungserscheinungen. Der heterotrophe Sauerstoffverbrauch beim Abbau der entstandenen Pflanzenbiomasse verschärft die Situation noch weiter. Die durch Photosynthese und

heterotrophen Abbau im Tagesgang stark

Abb. 3.1.6-3 Rückstaubereich der Ems bei Telgte

schwankenden Messgrößen pH und Sauerstoffgehalt haben in der Vergangenheit, vor allem im Zusammenhang mit sommerlichen Starkregen, immer wieder zu Fischsterben geführt. Gleichzeitig versickert ein Teil des Wassers aus dem Gewässer in die Aue, was unter dem Stichwort "Kulturstau" z.T. auch erwünscht ist, da so der Grundwasserspiegel der Aue angehoben wird. In Nordrhein-Westfalen wurden deshalb zusätzlich die Rückstaubereiche der Querbauwerke betrachtet. Für Niedersachsen liegen vergleichbare Daten nicht vor.

Nach dem Stand der Erhebung in der NRW-Datenbank QuIS aus 01/2003 sind fast 100 km von 1.885 km Gesamtfließlänge (rd. 5 %) der Gewässer mit einem AEo > 10 km² im Bearbeitungsgebiet Obere Ems/NRW rückstaubeeinflusst. Der längste Rückstaubereich liegt mit 6.500 m vor dem Klappenwehr Sudmühle an der Werse. Bei diesen Daten sei daraufhin hingewiesen, dass noch keine abschließende Verifizierung der QuIS-Daten stattgefunden hat.

Talsperren

Im Bearbeitungsgebiet Obere Ems existieren keine Talsperren.

Sonstige Abflussregulierungen

Unter die sonstigen Abflussregulierungen mit Auswirkungen auf die Fließeigenschaften fallen in erster Linie Gewässerausbaumaßnahmen wie Strömungsregulierungen, Profil- und Laufveränderungen.

Melioration

Die unter dem Stichwort Melioration zusammengefassten, historischen wasserbaulichen Maßnahmen dienten zur Verbesserung der Bodennutzbarkeit. Um eine Steigerung der landwirtschaftlichen Erträge zu erreichen und die Auennutzungen auch vor Sommerhochwässern zu schützen, wurden bis 1980 die Gewässer ausgebaut, begradigt und vertieft (siehe Abb. 3.1.6-4).

Im Rahmen der Emslanderschließung ("Beschluss des Deutschen Bundestages zur Erschließung der Ödländereien des Emslandes" vom 5.5.1950, so genannter Emslandplan) wurde in den Nachkriegsjahren durch die Kultivierung von Ödland

Belastungen der Oberflächengewässer

und Moor eine Vergrößerung der nutzbaren Flächen und durch verbesserte Landbaumethoden eine Steigerung der landwirtschaftlichen Erträge erreicht. Gleichzeitig wurde die Flurbereinigung begonnen. Dieses Maßnahmenbündel beinhaltete eine grundlegende Veränderung der Wasserverhältnisse im niedersächsischen Teil des Bearbeitungsgebiets Obere Ems.

Ein Höhepunkt der Regulierungsmaßnahmen im Oberlauf der Ems war der große Emsausbau in den 30er Jahren im Bereich Rietberg. Durch die Schaffung eines völlig neuen, einheitlichen Flussbettes ist die heutige Ems nahezu ohne Bezug zu dem früher sehr dynamischen Flussverlauf.

Um den Grundwasserspiegel zu halten, wurde beim Ausbau eine Verbreiterung des Querprofils bei gleichbleibender Gewässertiefe angestrebt. Die Ems hat seit dem Ausbau gegenüber ihrem natürlichen Zustand eine zwei- bis dreifache Breite.

Durch die vergrößerte Gewässerbreite des neuen Flussprofils bestand im Bereich um Rietberg die Gefahr, dass in trockenen Zeiten die Wassertiefe sehr gering würde. Um die hierdurch bedingte Senkung des Grundwasserspiegels der umliegenden Auenbereiche zu vermeiden, wurde der Wasserspiegel mit Hilfe von Staustufen künstlich hochgehalten. Die in Niedrigwasserzeiten nahezu zum Stillstand kommende Fließbewegung der Ems ist auf diese Staustufen zurückzuführen.

3.1.7

Andere Belastungen

Im Bearbeitungsgebiet Obere Ems spielen neben den in den bisherigen Kapiteln erfassten anthropogenen Belastungen auch Belastungen durch Fischteiche und durch Versauerung eine Rolle.

Belastungen durch Fischteiche

Fischteiche belasten die Gewässer stofflich, morphologisch und mengenmäßig. Die stofflichen Auswirkungen bestehen in einer ungünstigen Veränderung von Temperatur und pH-Wert, Sauerstoff- und Nährstoffhaushalt sowie in organischen Belastungen und einer erhöhten Schwebstoffbelastung.

Bei Teichen im Hauptschluss ist die lineare Durchgängigkeit des Gewässers in der Regel unterbrochen, aber auch bei Teichen im Nebenschluss ist die Wasserentnahme in der Mehrzahl der Fälle mit einem Aufstau verbunden, der ebenfalls nur in wenigen Fällen passierbar ist.

Vor allem die am Fuß der Erhebungen des Münsterlandes entspringenden Quellen, bzw. die sie speisenden Oberläufe werden häufig zur Anlage von Fischteichen genutzt. Dies ist insbesondere am Teutoburger Wald, den Beckumer Bergen und den Baumbergen der Fall, gilt aber auch für die übrigen Oberläufe.

Allein im Teileinzugsgebiet von Großer Aa und Düte (NRW) wurden 55 Erlaubnisbescheide mit dem Zweck von Wasserentnahme und -gebrauch in Fischteichen ausgesprochen. Dieses Gebiet

Belastungen der Oberflächengewässer

umfasst mit 391,30 km² knapp 10 % des Bearbeitungsgebiets Obere Ems. Die Zahl der nicht genehmigten Anlagen ist nicht bekannt.

Generell ist es nicht möglich, aus den Eintragungen im Wasserbuch auf den konkreten Umfang der Wasserentnahme zu schließen, weil nur die maximalen Mengen eingetragen sind.

Belastung durch Versauerung

Am Süd-Westhang des Teutoburger Waldes (Osning) sind Versauerungserscheinungen in Quellen bekannt geworden. Der Osning stellt die erste Gebirgsschranke für Luftmassen aus der Hauptwindrichtung Süd-West dar. Die Stauniederschläge führen zu erhöhten Depositionsraten von Luftschadstoffen aus den Emissionen der süd-westlich gelegenen Regionen. Vor allem in den Bereichen, in denen der Kalkstein nicht kammbildend ist, also im Nord-Westen des Osnings, führt die geringe Pufferkapazität des anstehenden Sandsteins zu räumlich eng begrenzten Versauerungserscheinungen, die sich wie auch in der Senne bei empfindlichen Nutzungen wie der Forellenzucht negativ auswirken. Im so genannten Riesenbecker Osning sind zehn mehr oder weniger stark versauerte Quellen bekannt.

Auch in der Senne sind einige Quellbäche auf der Grundlage der Untersuchung des Makrozoobenthos als permanent sauer bewertet worden. Die Versauerungserscheinungen in den kleinen Fließgewässern des Bearbeitungsgebietes beschränken sich auf schwach gepufferte Oberläufe ohne Abwassereinleitungen. Mit der Verbesserung des Puffervermögens verschwinden auch die Versauerungserscheinungen.

3.1.8

Zusammenfassende Analyse der Hauptbelastungen der Oberflächengewässer

Die Belastungsanalyse im Bearbeitungsgebiet Obere Ems lässt drei Problembereiche klar erkennen. Diese Belastungsbereiche sind der diffuse Nährstoffeintrag aus der Landwirtschaft, der Eintrag von Nähr- und Schadstoffen aus der Trennkanalisation (im nordrhein-westfälischen Teil des Bearbeitungsgebiets) sowie die stark geschädigte Morphologie der Gewässer.

Die Belastungssituation wird durch den in Kapitel 2 dargestellten Gewässerzustand widergespiegelt. Gering oder kaum belastete Gewässerabschnitte sind auf die Oberläufe bzw. auf kleine Gewässer in waldwirtschaftlich und extensiv landwirtschaftlich genutzten Bereichen beschränkt.

Mit zunehmender Intensivierung der Flächennutzung im Gewässerumfeld und den Einzugsgebieten der einzelnen Gewässer nehmen die Belastungen zu.

Diffuser Nährstoffeintrag aus der Landwirtschaft

Da die Fläche des Bearbeitungsgebiets Obere Ems zu 69 % landwirtschaftlich genutzt wird, stellt die Auswaschung von Nährstoffen, vor allem von Stickstoff als Nitrat, eine wesentliche flächendeckende Belastung dar. Diese diffuse Nitratbelastung wird hauptsächlich durch den Zwischenabfluss (interflow) und das Grundwasser in die Gewässer eingetragen. Die wegen der hohen Grundwasserstände erforderlichen landwirtschaftlichen Drainagen beschleunigen den Zwischenabfluss erheblich und stellen einen mangels Daten bisher nicht quantifizierbaren Anteil an den Stickstoffeinträgen dar.

Vor allem in den Wintermonaten lassen sich erhebliche Stickstofffrachten in den Gewässern verzeichnen.

Eintrag von Nähr- und Schadstoffen aus punktuellen Quellen

Als signifikante anthropogene Belastungen durch Punktquellen im nordrhein-westfälischen Teil des Bearbeitungsgebietes sind die Einleitungen von Regenwasser insbesondere aus der Trennkanalisation zu nennen. Fundierte Messdaten liegen dazu zur Zeit noch nicht vor, es haben sich aber aufgrund von Frachtabschätzungen relevante flächendeckende Belastungen durch die Schwermetalle Kupfer, Chrom, Blei, Quecksilber, Nickel und vor allem Zink, sowie durch Gesamtphosphor und TOC gezeigt. Diese Einschätzung beruht auf einer in Nordrhein-Westfalen durchgeführten Abschätzung mit Literaturwerten, die noch mit großen Unsicherheiten behaftet ist.

Eine untergeordnete Rolle stellen die Punktquellen kommunaler Kläranlagen und Industriekläranlagen dar. Diese sind in der Mehrzahl hinsichtlich ihrer Reinigungsleistung in einem guten Zustand und führen nur punktuell zu Grenzwertüberschreitungen bei Schadstoffen.

Für abflussschwache Gewässer kann es durch punktuelle Einleitungen zu hydraulischen Problemen kommen.

Morphologie der Gewässer

Der gesamte Lauf der Ems im Bearbeitungsgebiet Obere Ems sowie ein Großteil ihrer größeren Nebengewässer (>10 km² EZG) sind durch Begradigung, Ausbau im Trapezprofil und Befestigung der Böschung bis zur Mittelwasserlinie technisch ausgebaut. Nur wenige Gewässerabschnitte befinden sich in einem naturnahen Zustand. Bei der Ems sind lediglich etwa 7,5 km der 186 km langen Fließstrecke als mehr oder weniger dem hydromorphologischen Leitbild entsprechend anzusehen.

Nach den Daten der Gewässerstrukturkartierung befinden sich im Bearbeitungsgebiet Obere Ems weniger als 10 % der Gewässerstrecken noch in einem guten morphologischen Zustand.

Hinzu kommt eine Vielzahl (> 1300) von Querbauwerken, von denen ein Grossteil die Durchwanderbarkeit für die Fauna verschlechtert oder gänzlich unmöglich macht.

3.2

Belastungen des Grundwassers

Zur Einschätzung, ob die Zielerreichung der WRRL wahrscheinlich ist (s. Kap. 4), wird im vorliegenden Kapitel für alle Grundwasserkörper geprüft, ob diese als Einheit durch die einzelnen Belastungsquellen signifikant beeinflusst werden. Dazu müssen die Auswirkungen, z. B. von Altlasten oder landwirtschaftlichen Aktivitäten, jeweils einen Flächenanteil zwischen einem Drittel und der Hälfte des Grundwasserkörpers beeinträchtigen.

Folgende Belastungsquellen werden getrennt analysiert:

- Belastungen aus punktuellen Schadstoffquellen
- Belastungen aus diffusen Schadstoffquellen (Besiedlung und Landwirtschaft)
- Mengenmäßige Belastungen
- Belastungen durch sonstige anthropogene Einwirkungen (sowohl aus punktuellen als auch aus diffusen Quellen)

In der Bestandsaufnahme für das Grundwasser wurde gemäß WRRL differenziert zwischen einer erstmaligen und einer weitergehenden Beschreibung der hydrogeologischen Verhältnisse und der Belastungen. In Kapitel 3.2 des Ergebnisberichtes werden die Auswertungen der erstmaligen und weitergehenden Beschreibung zusammenfassend dokumentiert.

Bezüglich der grenzüberschreitenden Grundwasserkörper 3_01, 3_02, 3_03, 3_05, 3_06 und 3_15 wurde für die Flächenanteile in Nordrhein-Westfalen und Niedersachsen zunächst der Zustand des Grundwassers nach den länderspezifischen Methoden ermittelt. Im Rahmen der abschließenden Betrachtungen zu den einzelnen Belastungspotenzialen wurden für die genannten Grundwasserkörper zwischen Nordrhein-Westfalen und Niedersachsen einheitliche Beurteilungen abgestimmt. Grundsätzlich war bei vonein-

* HUDEC, B. (2003): Erfassung und Bewertung von Grundwasserkontaminationen durch punktuelle Schadstoffquellen - Konkretisierung von Anforderungen der EG-WRRL, F+E-Vorhaben ander abweichenden Einschätzungen, die Einschätzung des Landes mit dem größeren Flächenanteil für die Gesamtbewertung maßgebend. Zusätzlich wurden die entsprechenden Beurteilungskriterien noch einmal geprüft und gewichtet.

3.2.1

Punktuelle Belastungen des Grundwassers

Eine Belastung des Grundwassers durch punktuelle Schadstoffquellen kann durch folgende Vorgänge verursacht werden (s.a. UBA 2003*):

- · unkontrollierte Ablagerung von Schadstoffen
- längerfristig unsachgemäßer Umgang mit wassergefährdenden Stoffen
- Unfälle und Havarien mit wassergefährdenden Stoffen
- Rüstungsaltlasten

Eine punktuelle Schadstoffquelle wird dadurch charakterisiert, dass sie in der Regel lokalisiert, jedoch nicht immer einem Verursacher zugeordnet werden kann und dass die resultierende Belastung des Grundwassers durch Schadstoffe an der Eintragsstelle vergleichsweise hoch ist (UBA 2003).

Unter Verwendung der landesweiten Datenbanksysteme zu punktuellen Schadstoffquellen sowie unter Beteiligung der unteren Wasser- und Bodenbehörden wurden in Nordrhein-Westfalen und Niedersachsen aktuelle Datensätze grundwasserrelevanter punktueller Schadstoffquellen erstellt. Diese dienten als Basis für die Auswertungen hinsichtlich der Belastungen der Grundwasserkörper.

Sanierte und gesicherte Altablagerungen und Altstandorte stellen im Sinne der WRRL keine signifikante Belastung der Grundwasserkörper dar und werden aus diesem Grund hier nicht weiter betrachtet.

des Umweltbundesamts im Rahmen des Umweltforschungsplans des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, (UFOPLAN) 202 23 219 Die Ermittlung der Grundwasserkörper, bei denen durch punktuelle Schadstoffquellen eine signifikante Belastung vorliegt, erfolgte in folgenden Arbeitsschritten:

Vorgehensweise in Nordrhein-Westfalen

- Jeder punktuellen Schadstoffquelle wird ein Wirkungsradius von 500 m zugeordnet (entspricht einem Wirkungsbereich von rd. 0,8 km²).
- Für jeden Grundwasserkörper wurde eine Flächenbilanz der Überlagerungsfläche der Wirkungsbereiche zur Gesamtfläche des Grundwasserkörpers erstellt.
- Wenn der Flächenanteil der Wirkungsbereiche
 33 % der Gesamtfläche des Grundwasserkörpers beträgt wird die Belastung des Grundwasserkörpers durch punktuelle Schadstoffquellen als signifikant angesehen.

Da eine Plausibilitätsprüfung hinsichtlich der Belastung durch punktuelle Schadstoffquellen bereits Bestandteil der Vorgehensweise im Rahmen der erstmaligen Beschreibung war, wird auf weitere Untersuchungsschritte in der weitergehenden Beschreibung verzichtet. Für die nach dem o.g. Schema als "signifikant belastet" angesehenen Grundwasserkörper wird dementsprechend die Zielerreichung (Stand 2004) als "unwahrscheinlich" angesehen (s. Kap. 4).

Vorgehensweise in Niedersachsen

- Jeder punktuellen Schadstoffquelle wird eine Wirkungsfläche von 1 km² zugeordnet, ausgenommen Rüstungsaltlasten des Blocks A₁¹⁾, für diese wird ein Wirkungsradius von 2 km (entspricht einem Wirkungsbereich von rd. 12,6 km²) angenommen. Besiedlungsflächen werden als potenzielle Belastung berücksichtigt.
- Für jeden Grundwasserkörper wurde eine Flächenbilanz der Überlagerungsfläche der Wirkungsbereiche zur Gesamtfläche des Grundwasserkörpers erstellt. Bei Flächenanteilen > 12 % wurde eine weitergehende Beschreibung durchgeführt.

- Für die Grundwasserkörper, bei denen ein Flächenanteil > 12 % ermittelt worden ist, ist für jede einzelne Punktquelle das standortund stoffspezifische Ausbreitungspotenzial bestimmt worden. Entsprechend des Ausbreitungspotentials wurden die Wirkflächen der Punktquellen vergrößert bzw. verkleinert.
- Wenn der Flächenanteil der Wirkungsbereiche
 > 33 % der Gesamtfläche des Grundwasserkörpers beträgt, wird die Belastung des Grundwasserkörpers durch punktuelle Schadstoffquellen als signifikant angesehen.

Die im Bearbeitungsgebiet Obere Ems für jeden Grundwasserkörper berücksichtigte Anzahl von punktuellen Schadstoffquellen, die Größe der ihnen zugeordneten Wirkungsbereiche und deren Überdeckungsgrad bezogen auf den jeweiligen Grundwasserkörper ist in Tabelle 3.2-1 dargestellt.

Gemäß der erstmaligen Beschreibung betragen die Wirkungsbereiche der punktuellen Schadstoffquellen im niedersächsischen Flächenanteil des Grundwasserkörpers 3_01 mehr als 12 %. Nach der verfeinerten Flächenbilanz der weitergehenden Beschreibung war jedoch nicht von einer signifikante Belastung auszugehen.

Karte 3.2-1 zeigt die Verteilung punktueller Schadstoffquellen im Bearbeitungsgebiet Obere Ems sowie die Grundwasserkörper, bei denen eine Belastung durch punktuelle Schadstoffquellen vorliegen kann.

Im Bearbeitungsgebiet Obere Ems liegt bei keinem Grundwasserkörper der Flächenanteil punktueller Schadstoffquellen über dem Signifikanzkriterium von 33 %, sodass für die gesamte Grundwasserkörpergruppe keine Belastung durch punktuelle Schadstoffquellen gegeben ist.

dungsabschätzung mit einer gesicherten Empfehlung abschließen zu können. Die Fortführung der Untersuchungen auf diesen Standorten besitzt Priorität.

¹⁾ A₁ sind Rüstungsaltlasten, bei denen aufgrund der bisher festgestellten Belastungen bzw. aufgrund ihrer Historie ein hohes Gefährdungspotenzial zu vermuten ist. Der Kenntnisstand über diese Standorte ist aber noch nicht ausreichend, um die Gefähr-

► Tab. 3.2-1 Punktuelle Belastungen der Grundwasserkörper im Bearbeitungsgebiet Obere Ems

GWK- Nummer	Grundwasserkörperbezeichnung	Wirkungsbei wasserrelev	ung durch reiche grund- ranter punk- dstoffquellen	Anzahl punktueller Schadstoffquellen	
		ha	(%)	gw-relevant	gesamt
3_01	Plantlünner Sandebene (West)	1.484	15,09	9	21
3_02	Plantlünner Sandebene (Mitte)	464	3,65	7	70
3_03	Plantlünner Sandebene (Ost)	158	0,87	2	40
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	909	2,46	15	162
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	917	2,04	14	123
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	154	0,43	2	56
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	4.079	9,25	90	284
3_08	Niederung der Oberen Ems (Rietberg/Verl)	2.454	6,64	49	193
3_09	Sennesande (Nordost)	1.590	11,01	30	73
3_10	Münsterländer Kiessandzug (Süd)	0	0	0	81
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	354	1,07	6	69
3_12	Münsterländer Oberkreide (Sendenhorst/Beckum)	448	0,78	7	250
3_13	Münsterländer Oberkreide (Altenberge/Aschenberg)	270	0,76	4	174
3_14	Teutoburger Wald (Südost)	607	8,66	12	54
3_15	Teutoburger Wald (Nordwest)	129	2,1	2	23
3_16	Südhang des Schafberges	50	2,37	1	37
3_17	Karbon des Schafberges	70	1,33	1	52
3_18	Nordosthang des Schafberges	56	1,17	1	16
3_19	Nordosthang der Baumberge	0	0	0	2
3_20	Thieberg bei Rheine	42	1,75	1	36

► Beiblatt 3.2-1

Belastungen der Grundwasserkörper durch punktuelle Schadstoffquellen im Bearbeitungsgebiet Obere Ems

	(sewasser (Einzugsgebiet > 10 km·)
	Seen und Talsperren (Wassertläche > 0,5 km²)
	Kanal
60000000	Staatsgrenze
400000	Bundeslandgrenze
Fluss	gebietseinheit Ems
	Bearbeitungsgebiet Obere Ems
	Bearbeitungsgebiete Hase, Erns / Nordradde
Benad	chbarte Flussgebietseinheiten
	Flussgebietseinheiten Rhein, Weser
	berücksichtigte punktuelle Schadstoffquellen
	Grundwasserkörper mit GWK - Nummer
	Belastungen durch punktuelle Schadstoffquellen
	keine Belastungen durch punktuelle Schadstoffquellen

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Novemphol 122, 48147 Mühnler

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgehietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.2 - 1: Belastungen der Grundwasserkörper durch punktuelle Schadstoffquellen im Bearbeitungsgebiet Obere Ems

3.2.2

Diffuse Belastungen des Grundwassers

Für die Belastung des Grundwassers durch diffuse Schadstoffquellen sind Schadstoffeinträge aus folgenden Nutzungen relevant:

- Schadstoffeinträge aus Besiedlungsflächen (undichte Abwasserkanäle, lokale Häufung punktueller Belastungen etc.), die in ihrer Gesamtheit als diffuser Schadstoffeintrag wirken (nur NRW); in Niedersachsen wurden Besiedlungsflächen im Zusammenhang mit den Punktquellen betrachtet.
- Schadstoffeinträge aus landwirtschaftlicher Nutzung.

Die diffusen Schadstoffeinträge aus der landwirtschaftlichen Nutzung beinhalten in der Summe sowohl die gezielte Stickstoffdüngung als auch die gasförmige Stickstoffdeposition aus Viehställen, der Güllelagerung und der Gülleaufbringung.

Aufgrund der guten Datenlage in Nordrhein-Westfalen und Niedersachsen (s. Kap. 2.2.2) werden bei der Analyse der Belastungen durch diffuse Schadstoffquellen bereits frühzeitig Emissions- und Immissionsdaten miteinander verknüpft.

Die Identifizierung signifikanter Belastungen durch diffuse Schadstoffquellen erfolgte in Nordrhein-Westfalen und Niedersachsen nach jeweils landeseinheitlichen Kriterien in zwei Schritten, einer **erstmaligen** und einer **weitergehenden Beschreibung.**

Vorgehensweise in Nordrhein-Westfalen

► Tab. 3.2.2-1

Signifikanzkriterien zu den Risikopotenzialen diffuser Schadstoffquellen (NRW)

Erstmalige Beschreibung	Klassifikation
Die Gesamtfläche des Grundwasserkörpers ist zu mehr als 33 % der Fläche städtisch geprägt.	Zielerreichung unwahrscheinlich (Stand 2004)
 liegt der Stickstoffauftrag¹⁾ > 170 kg/ha/a (bezogen auf die landwirtschaftliche Fläche des Grundwasserkörpers) und/oder 	weitergehende Beschreibung erforderlich
 die gemittelten Nitratgehalte im Grundwasser bezogen auf den gesamten Grundwasserkörper liegen über 25 mg/l. 	weitergehende Beschreibung erforderlich

¹⁾ Der Stickstoffauftrag aus Wirtschaftsdünger wird aus den landwirtschaftlichen Statistiken des Landes NRW (Landesamt für Datenverarbeitung und Statistik, LDS) ermittelt.

Der Mittelwert der Nitratbelastung wird an den Messstellen über den Zeitraum 1996 bis 2002 bestimmt und dann auf insgesamt ca. 3,5 Mio. Rasterpunkte in NRW übertragen, wobei für jeden Rasterpunkt der Mittelwert der nächstgelegenen Messstelle übertragen wird. Der Bezug zur Fläche (Mittelwert der Nitratkonzentration eines Grundwasserkörpers) erfolgt dann durch Mittelwertbildung aller Rasterpunkte eines Grundwasserkörpers. Der Wert von 25 mg/l leitet sich unter der Prämisse eines vorsorgenden Gewässerschutzes als 50 % der gängigen Rechtsvorschriften (Nitratrichtlinie) ab.

Im Rahmen der weitergehenden Beschreibung erfolgte hinsichtlich der landwirtschaftlichen Einflüsse für die Grundwasserkörper eine Bewertung aufgrund der Gebietskenntnis der Fachbehörden. Das Ergebnis dieser Prüfung führt schließlich zur Einstufung, ob ein Grundwasserkörper in die Kategorie "Zielerreichung unwahrscheinlich (Stand 2004)" eingestuft wird (s. Kap. 4).

Vorgehensweise in Niedersachsen

In Niedersachsen basiert die erstmalige Beschreibung auf einer umfangreichen Emissionsauswertung in Form einer Berechnung des N-Flächenbilanzsaldos der Grundwasserkörper. Im Rahmen der weitergehenden Beschreibung wurden die gemessenen Nitratgehalte im Grundwasser (Immissionswerte) berücksichtigt.

► Tab. 3.2.2-2

Signifikanzschwellen in Abhängigkeit von den N-Bilanzsalden und der langjährigen mittleren Gesamtabflusshöhe (NI)

Langjähriger mittlerer Gesamtabfluss [mm/a]	< 50	50 - 150	150 - 250	250 - 350	> 350
N-Saldo [kg N/ha·a]	10	10	20	30	40

► Tab. 3.2.2-3

Bewertungsmatrix zur Gesamtsignifikanzabschätzung der diffusen Nitrateinträge in Niedersachsen

Erstmalige Beschreibung		Weitergehende Beschreib	ung
Emission ¹⁾ [kg N/ha·a]	Immission ²⁾ [mg NO ₃ /I]	potenzielle Nitratkonzentration im Sickerwasser [mg/l]	Klassifikation
< 10 40	< 25		G (guter Zustand)
		< 25	G (guter Zustand)
10 = 50 - 150 mm	25 - 50	25 - 40	G (guter Zustand)
20 = 150 - 250 mm		> 40	U (Intensiver zu untersuchen)
30 = 250 - 350 mm		< 25	
40 = > 350 mm	> 50	25 - 40	U (Intensiver zu untersuchen)
		> 40	
		< 25	G (guter Zustand)
		25 - 50	G (guter Zustand)
	< 25	50 - 65	U (Intensiver zu untersuchen)
		65 - 80	U (Intensiver zu untersuchen)
> 10 40		> 80	U (Intensiver zu untersuchen)
		< 25	G (guter Zustand)
	25 - 50	25 - 40	G (guter Zustand)
		40 - 60	U (Intensiver zu untersuchen)
	> 50	> 60	U (Intensiver zu untersuchen)
			U (Intensiver zu untersuchen)

 $^{^{\}scriptscriptstyle{1)}}$ N-Flächenbilanzsaldo inkl. Deposition bezogen auf GWK

Die Anwendung dieser Bewertungsmatrix führt im Rahmen der weitergehenden Beschreibung zu einer Klassifikation der Grundwasserkörper in die beiden Klassen "guter Zustand" und "intensiver zu untersuchen".

Im Weiteren werden zunächst die nordrheinwestfälischen Ergebnisse der erstmaligen Beschreibung dargestellt. Anschließend folgt die niedersächsische Gesamtsignifikanzabschätzung (erstmalige und weitergehende Beschreibung) sowie die zusammenfassende Ergebnisdarstellung der sogenannten Einzelfallprüfung.

Die Tabelle 3.2.2-4 enthält für die Grundwasserkörper im Bearbeitungsgebiet Obere Ems/NRW eine Auflistung der Flächenanteile hinsichtlich der Nutzungen Besiedlung und

²⁾ Nitratkonzentration im Grundwasser

Landwirtschaft, des vorliegenden Stickstoffauftrags gemäß Daten des LDS sowie des gewichteten Mittelwerts der Nitratgehalte. Die Gesamtzahl der berücksichtigten Grundwassermessstellen ist der Tabelle 3.2.2-4 ebenso zu entnehmen

wie die Anzahl der Messstellen mit einem Nitratmittelwert > 25 mg/l sowie dem gewichteten Nitratmittel bezogen auf den Grundwasserkörper.

► Tab. 3.2.2-4

Diffuse Belastungen: Besiedlungsanteil, Anteil landwirtschaftlich genutzter Fläche, organischer Stickstoffauftrag, gewichtetes Nitratmittel (NRW)

GWK- Nummer	Grundwasserkörper- bezeichnung	Flächenar	nteile (%)	Au Niti	Organi- scher		
		Besiedlung	landwirt- schaftlich genutzte Fläche	Anzahl MS	MS > 25 mg/l	gewichte- tes NO ₃ -Mittel (mg/l)	Stickstoff- auftrag (kg/ha)
3_01	Plantlünner Sandebene (West)	21,8	63,2				163,2
3_02	Plantlünner Sandebene (Mitte)	17,3	67,3	2		13,5	146,4
3_03	Plantlünner Sandebene (Ost)	7,7	82,9	3	1	53,8	148,8
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	11,5	72,2	51	10	25,8	148
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	10,2	73,3	36	7	20,2	132,8
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	10,4	72,9	82	21	30	136,8
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	19,3	66	167	49	19,5	117,6
3_08	Niederung der Oberen Ems (Rietberg/Verl)	17,8	72,9	105	44	58,2	137,6
3_09	Sennesande (Nordost)	19,2	32,9	243	52	28,7	91,2
3_10	Münsterländer Kiessandzug (Süd)	53,6	22,2	8	3	32,4	124
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	10,6	74,1				128,8
3_12	Münsterländer Oberkreide (Sendenhorst/Beckum)	15,2	72,3	5	1	51,1	128
3_13	Münsterländer Oberkreide (Altenberge/Aschenberg)	14,6	67,4	2	2	33,4	129,6
3_14	Teutoburger Wald (Südost)	11,2	21	13	2	16,5	87,2
3_15	Teutoburger Wald (Nordwest)	12,2	38,4	2		0,8	124
3_16	Südhang des Schafberges	34,1	52,1				132
3_17	Karbon des Schafberges	21,4	49				140,8
3_18	Nordosthang des Schafberges	12,5	71,6	1		0,5	107,2
3_19	Nordosthang der Baumberge	4,5	51,7	1	1	32,8	138,4
3_20	Thieberg bei Rheine	31,4	61,8				161,6

Karte 3.2-2 enthält eine Darstellung der Grundwasserkörper, die die zuvor genannten Signifikanzkriterien der erstmaligen Beschreibung bezogen auf diffuse Schadstoffquellen überschreiten sowie die zur Auswertung herangezogenen Grundwassermessstellen.

Die Grundwasserkörper 3_10 (Stadtgebiet Münster) und 3_16 (Stadtgebiet Ibbenbüren) sind auf Grund der hohen Besiedlungsgrade von 53,6 % und 34,1 % der jeweiligen Gesamtfläche als signifikant belastet einzustufen. Für den Grundwasserkörper 3_10 deckt sich diese Einschätzung mit den Auswertungen bezüglich der landwirtschaftlichen Einflüsse sowie der sonstigen anthropogenen Einwirkungen (s. Kap. 3.2.4).

Annähernd alle Grundwasserkörper im Bearbeitungsgebiet Obere Ems weisen einen signifikanten Anteil landwirtschaftlich genutzter Fläche auf (s. Tab. 3.2.2-4). Bei 17 der 20 Grundwasserkörper betragen die landwirtschaftlich genutzten Flächen (vorwiegend Ackerland) mehr als 33 % der

jeweiligen Gesamtfläche; bei 13 Grundwasserkörpern beträgt der landwirtschaftliche Flächenanteil sogar mehr als 60 %. Nach der erstmaligen Beschreibung resultiert hieraus nicht notwendigerweise eine signifikante Belastung durch landwirtschaftlich bedingte Schadstoffeinträge, zumal im nordrhein-westfälischen Teil des Bearbeitungsgebiets der Stickstoffauftrag bei 14 Grundwasserkörpern mit < 140 kg N/ha deutlich unter dem Schwellenwert von 170 kg N/ha liegt.

Die Auswertung der Nitratmittelwerte zeigte, dass in Nordrhein-Westfalen die Grundwasserkörper 3_02, 3_04, 3_06, 3_08, 3_09, 3_10, 3_12, 3_13 und 3_19 hinsichtlich diffuser Schadstoffeinträge aus landwirtschaftlichen Nutzungen den guten Zustand wahrscheinlich nicht erreichen.

Die in Niedersachsen durchgeführte Gesamtsignifikanzabschätzung weist für die dortigen Flächenanteile der betroffenen Grundwasserkörper z. T. erhebliche Stickstoffüberschüsse aus (s. Tab. 3.2.2-5).

► Tab. 3.2.2-5 Gesamtsignifikanzabschätzung diffuser Quellen (NI)

GWK- Nummer	Grundwasserkörper- bezeichnung	Erstmalige Beschreibung		Weitergeh	ende Beschre	ibung
		Emission ¹⁾ [kg N/ha·a]	Immission [mg NO ₃ /I]	Emission ²⁾ [kg N/ha·a]	potenzielle Nitratkon- zentration ³⁾ [mg NO ₃ /l]	Klassifikation
3_01	Plantlünner Sandebene (West)	64	keine Daten	70	65	intensiver zu untersuchen
3_02	Plantlünner Sandebene (Mitte)	73	115	70	64	intensiver zu untersuchen
3_03	Plantlünner Sandebene (Ost)	76	7	80	65	intensiver zu untersuchen
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	83	16	87	38	intensiver zu untersuchen
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	74	98	77	43	intensiver zu untersuchen
3_15	Teutoburger Wald (Nordwest)	42	38	46	30	intensiver zu untersuchen

- 1) Emission "Erstmalige Beschreibung": (Summe N-Saldo + atm. Deposition 15 kg N/ha Denitrifikation)
- ²⁾ Emission "Weitergehende Beschreibung": (N-Saldo + atm. Deposition)
- 3) Berücksichtigt Emission, Immobilisation, Denitrifikation und Gesamtabfluss

► Beiblatt 3.2-2

Belastungen der Grundwasserkörper durch diffuse Schadstoffquellen im Bearbeitungsgebiet Obere Ems

	Gewasser (Einzugsgebiel > 10 km²)
	Seen und Talsperren (Wasserfläche > 0,5 km²)
	Kanal
66636300	Staatsgrenze
400000	Bundeslandgrenze
Fluss	gebietseinheit Ems
	Bearbeitungsgebiet Obere Ems
	Bearbeitungsgebiete Hase, Ems / Nordradde
Bena	chbarte Flussgebietseinheiten
	Flussgebietseinheiten Rhein, Weser
	Fideegaviatealiiliakati Palaili, Yyasai
Mess	stellen des Landesgrundwasserdienstes
	Nitratmittel ≤ 25 mg / I
	Nitratmittel > 25 mg / I
	Grundwasserkörper mil GWK - Nummer
	Belastungen durch diffuse Schadstoffquellen
	Siedlungsflache > 33 %
	Isndwirtschaftlich genutzte Fläche > 33 %
	und Nitratmittel > 25 mg / I
	und / oder Nährstoffauftrag > 170 kg / ha / a
	Siedlungsfläche > 33 % und
	landwirtschaftlich genutzte Flache > 33 %
	und Nitratmittel > 25 mg / I
	und / oder Nahrstoffauftrag :- 170 kg / ha / a

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Normgholf 22, 49147 Milnelor

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

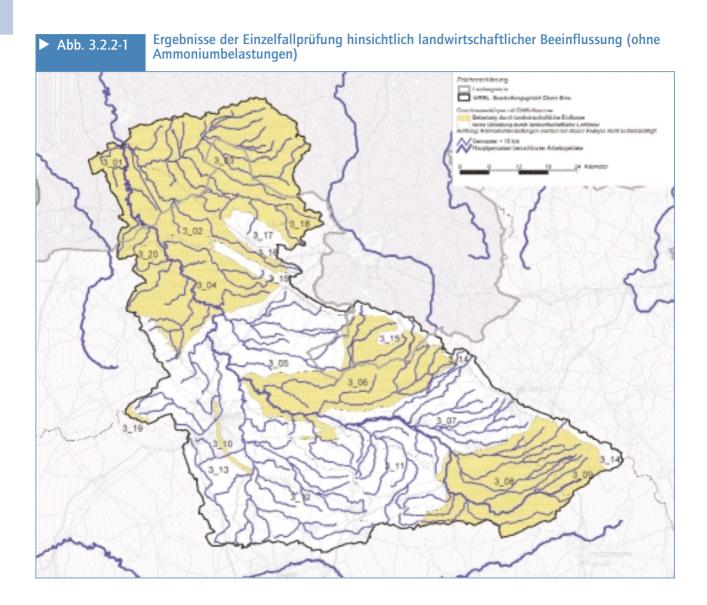
Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.2 - 2: Belastungen der Grundwasserkörper durch diffuse Schadstoffquellen im Bearbeitungsgebiet Obere Ems

► Tab. 3.2.2-6

Ergebnisse der Einzelfallprüfung hinsichtlich landwirtschaftlicher Beeinflussung

GWK- Nummer	Grundwasserkörper- bezeichnung	Ergebnis der Prüfung
3_01	Plantlünner Sandebene (West)	Auf Grund der erheblichen Stickstoffüberschüsse im niedersächsischen Flächenanteil sowie des vergleichsweise hohen Stickstoffauftrags von rd. 163 kg N/ha*a bei landwirtschaftlichem Flächenanteil von > 60 % in NRW ist, in Verbindung mit der mäßig bis hohen Durchlässigkeit des Untergrunds, eine signifikante Belastung anzunehmen.
3_02	Plantlünner Sandebene (Mitte)	Auf Grund der erheblichen Stickstoffüberschüsse im niedersächsischen Flächenanteil dieses GW- Körpers ist eine signifikante Belastung anzunehmen.
3_03	Plantlünner Sandebene (Ost)	Insbesondere wegen der erheblichen Stickstoffüberschüsse im niedersächsischen Flächenanteil die ses GW-Körpers sowie erhöhter Nitratmittelwerte von rd. 29,0 bzw. 38,4 und 34,9 mg/l, die sich aus Analysenergebnissen des Gesundheitsamts des Kreises Steinfurt für die private Eigenwasserversorgung der Gemeindegebiete Westerkappeln, Mettingen und Recke ergeben (rd. 50% der GW Körperfläche in NRW), ist eine signifikante Belastung anzunehmen.
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	Signifikante Belastung bezüglich Nitrat gemäß erstmaliger Beschreibung.
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	Keine signifikante Belastung.
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	Signifikante Belastung bezüglich Nitrat gemäß erstmaliger Beschreibung.
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	Keine signifikante Belastung.
3_08	Niederung der Oberen Ems (Rietberg/Verl)	Signifikante Belastung bezüglich Nitrat gemäß erstmaliger Beschreibung.
3_09	Sennesande (Nordwest)	Signifikante Belastung bezüglich Nitrat gemäß erstmaliger Beschreibung.
3_10	Münsterländer Kiessandzug (Süd)	Signifikante Belastung bezüglich Nitrat gemäß erstmaliger Beschreibung.
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	Keine signifikante Belastung.
3_12	Münsterländer Oberkreide (Sendenhorst/Beckum)	Keine signifikante Belastung.
3_13	Münsterländer Oberkreide (Altenberge/Ascheberg)	Keine signifikante Belastung.
3_14	Teutoburger Wald (Südost)	Keine signifikante Belastung.
3_15	Teutoburger Wald (Nordwest)	Keine signifikante Belastung.
3_16	Südhang des Schafberges	Keine signifikante Belastung.
3_17	Karbon des Schafberges	Keine signifikante Belastung.
3_18	Nordosthang des Schafberges	Wegen erhöhter Nitratmittelwerte von rd. 29,0 bzw. 34,9 mg/l, die sich aus Analysenergebnissen des Gesundheitsamts des Kreises Steinfurt für die private Eigenwasserversorgung der Gemeindegebiete Westerkappeln und Recke ergeben (rd. 95% der GW-Körperfläche), ist eine signifikante Belastung anzunehmen.
3_19	Nordosthang der Baumberge	GW-Körper ist Einzugsgebiet der Lasbecker Quelle, Analysenergebnisse weisen erhöhte Nitratwerte auf; eine signifikante Belastung ist anzunehmen.
3_20	Thieberg bei Rheine	Auf Grund des vergleichsweise hohen Stickstoffauftrags von rd. 162 kg N/ha*a bei landwirtschaftlichem Flächenanteil von > 60% in ist in Verbindung der mäßig bis hohen Durchlässigkeit des Untergrunds eine signifikante Belastung anzunehmen.


3.2

Auf Basis der in Nordrhein-Westfalen und Niedersachsen durchgeführten Auswertungen erfolgte im Rahmen der weitergehenden Beschreibung (unter Einbeziehung der spezifischen Gebietskenntnisse und z. T. weiterer Daten Dritter, s. Kap. 2.2.3.2) eine einzelfallbezogene Beurteilung der Belastungen aus der landwirtschaftlichen Nutzung. Diese Prüfung hatte zur Folge, dass für die Grundwasserkörper 3 12 und 3_13 die Belastungseinschätzung gegenüber der erstmaligen Beschreibung zurückgenommen und für die Grundwasserkörper 3_01, 3_02, 3_18 und 3_20 eine signifikante Belastung angenommen werden musste. Die Ergebnisse dieser Einzelfallprüfungen werden in der Tabelle 3.2.2-6 zusammengefasst; die z. T. erheblichen Stickstoffüberschüsse der niedersächsischen Flächenanteile wurden gemäß der länderübergreifenden Abstimmungsvereinbarung berücksichtigt.

Für den Grundwasserkörper 3_02 ist aufgrund deutlicher Hinweise auf diffuse Belastungen durch die in Niedersachsen erhobenen Immissionsdaten – unabhängig vom Flächenanteil (s. Kap. 3.2) – die niedersächsische Einschätzung als Gesamtergebnis übernommen worden.

Im Rahmen der Ermittlungen sonstiger anthropogener Belastungen (s. Kap. 3.2.4) wurden für mehrere Grundwasserkörper weitere signifikante Stickstoffbelastungen in Form von erhöhten Ammoniumkonzentrationen im Grundwasser nachgewiesen. Zwar sind diese Belastungen im Wesentlichen auch den landwirtschaftlichen Einflüssen zuzuordnen, sie werden aber innerhalb der Beurteilung nach den Signifikanzkriterien im vorliegenden Bericht erst in den Kap. 3.2.4 und 3.2.5 berücksichtigt.

Abb. 3.2.2-1 zeigt das Ergebnis der Einzelfallprüfung hinsichtlich landwirtschaftlicher Einflüsse, ohne Berücksichtigung der signifikanten Ammoniumbelastungen. Die Gesamtbetrachtung der signifikanten Belastungen aus landwirtschaftlichen Einflüssen wird in Kap. 3.2.5, Abb. 3.2.5-1 dargestellt.

3.2.3

Mengenmäßige Belastung des Grundwassers

Gemäß WRRL soll im Hinblick auf die mengenmäßige Belastung der Grundwasserkörper im Rahmen der erstmaligen Beschreibung eine Benennung aller Grundwasserkörper erfolgen, aus denen eine Entnahme > 10 m³/d erfolgt bzw. aus denen mehr als 50 Personen versorgt werden. Aufgrund der hydrogeologischen und wasserwirtschaftlichen Verhältnisse in Nordrhein-Westfalen und Niedersachsen kann davon ausgegangen werden, dass alle Grundwasserkörper mindestens in diesem Umfang genutzt werden. Separate Auswertungen wurden aus diesem Grund diesbezüglich nicht durchgeführt, d. h. auf eine Erfassung und Darstellung der Grundwasserentnahmen und künstlicher Anreicherungen wurde im Rahmen der Bestandsaufnahme verzichtet.

Mengenmäßige Belastungen des Grundwassers resultieren in Nordrhein-Westfalen und Niedersachsen in erster Linie aus Grundwasserentnahmen zu öffentlichen oder privaten Zwecken. Aus quantitativer Sicht von vorherrschender Bedeutung sind die Grundwasserentnahmen zum Zwecke der öffentlichen Trinkwasserversorgung sowie Beeinträchtigungen des Grundwasserhaushalts aufgrund des Abbaus meist oberflächennaher Rohstoffe.

Vorgehensweise in Nordrhein-Westfalen

Die Analyse der mengenmäßigen Belastung der Grundwasserkörper in Nordrhein-Westfalen erfolgte durch Trendanalysen von Grundwasserganglinien. Hierzu werden alle Grundwassermessstellen herangezogen, die beim Landesgrundwasserdienst digital verfügbar sind und folgende Kriterien erfüllen:

- Messzeitraum 1971 bis 2000
- keine zusammenhängenden Messlücken von mehr als 400 Tagen
- mindestens halbjährlicher Messturnus
- Messstellen aus tieferen Grundwasserstockwerken bzw. ohne Stockwerkszuordnung werden nicht berücksichtigt.

Zur Analyse der mengenmäßigen Belastung der Grundwasserkörper wurde in Nordrhein-Westfalen zunächst untersucht, ob ein signifikanter negativer Trend der Grundwasseroberfläche in gebietsrelevanten Teilen festzustellen ist. Die Trendanalyse an den einzelnen Messstellen wird auf die Fläche übertragen (Einflussbereich je Messstelle von 50 km², d.h. Radius von ca. 4 km).

Sofern bei einem Drittel der Fläche eines Grundwasserkörpers ein negativer Trend (Abfall von mehr als 1 cm/a) festzustellen ist, wird dieser im Hinblick auf den mengenmäßigen Zustand als signifikant belastet eingestuft. Bereits bei einem Anteil der Fläche mit negativem Trend von 20-33 % wurden weitergehende Betrachtungen durchgeführt.

Werden durch die Wirkungsflächen der Messstellen weniger als 50 % einer Grundwasserkörperfläche abgedeckt, reicht die Messstellendichte für eine Einstufung nicht aus. Diese Grundwasserkörper werden dann bei einer entsprechenden wasserwirtschaftlichen Bedeutung (gemäß den Steckbriefen aus der Beschreibung der Grundwasserkörper, s. Kap. 2.2.1) einer weitergehenden Beschreibung unterzogen.

Für Grundwasserkörper – vor allem im Festgestein –, deren wasserwirtschaftliche Bedeutung als gering eingestuft wird, kann die Ganglinienanalyse zur Bestimmung des mengenmäßigen Zustands entfallen.

Für die Grundwasserkörper mit signifikantem negativem Trend oder keiner ausreichenden Datenbasis bei mindestens mittlerer wasserwirtschaftlicher Bedeutung, wurde im Rahmen der weitergehenden Beschreibung eine überschlägige Wasserbilanz erstellt. Auf Basis dieser Daten sowie zusätzlicher gebietsspezifischer Kenntnisse der örtlich zuständigen Behörden erfolgte dann eine abschließende Einstufung vor der Frage, ob eine signifikante Belastung vorliegt.

Vorgehensweise in Niedersachsen

In Niedersachsen wurde die Beurteilung des mengenmäßigen Zustands weitestgehend durch die Gegenüberstellung der zugelassenen und tatsächlichen Grundwasserentnahmen mit der ermittelten Grundwasserneubildung eines Grundwasserkörpers vorgenommen. Sofern die zugelassenen Entnahmen mehr als 10 % der Grundwasserneubildung betragen, ist eine weitergehende Beschreibung erforderlich. Diese basiert auf der

Bilanz der tatsächlichen mittleren Entnahmen und Einleitungen (z. B. Grundwasseranreicherungen) sowie ggf. auf der Ermittlung der Trends langjähriger Grundwasserstandsganglinien (1971-2000). Jeder Grundwassermessstelle wird auch hier ein Repräsentationsbereich von rd. 50 km² zugeordnet. Von einer ausreichenden Messstellendichte wird ausgegangen, wenn ein Grundwasserkörper zu mehr als 50 % von den Wirkungsbereichen abgedeckt ist. Weisen mindestens 2/3 der Messstellen eines Grundwasserkörpers keinen stark fallenden Trend (≥ -1 %/Jahr) auf, ist keine signifikante Belastung gegeben. Bei mehr als 1/3 der Messstellen mit stark fallendem Trend (< -1 %/Jahr) sind weitere Betrachtungen erforderlich.

Eine ausführliche Beschreibung zum Umfang der Grundwassernutzung durch die öffentliche Wasserversorgung im Bearbeitungsgebiet Obere Ems findet sich in Kapitel 2.2.1. In den Tabellen 3.2.3-1 bis 3.2.3-4 sind die Ergebnisse der erstmaligen und der weitergehenden Beschreibung nach den nordrhein-westfälischen und niedersächsischen Methoden dokumentiert.

Tabelle 3.2.3-1 enthält je Grundwasserkörper (NRW) Angaben zu den Kenndaten der Trendanalyse wie z. B. Anzahl der verwendeten Messstellen, Anzahl von Messstellen mit negativem Trend etc. sowie zur wasserwirtschaftlichen Bedeutung der Grundwasserkörper. Die letzte Spalte enthält das Ergebnis der erstmaligen

► Tab. 3.2.3-1 Ergebnisse der Trendanalysen für die Grundwasserkörper im Bearbeitungsgebiet Obere Ems (NRW)

GWK-	Grundwasserkörper-	Ke	nndaten de	r Trendanaly	/se	Wasser-	Erfordernis
Nummer	Nummer bezeichnung		Überde- ckungsgrad repr. Mess- stellen (%)	stellen mit	Flächen- anteil mit neg. Trend (%)	wirt- schaft- liche Bedeutung	einer über- schlägigen Wasser- bilanz
3_01	Plantlünner Sandebene (West)	7	97,73	2	15,12	mittel	nein
3_02	Plantlünner Sandebene (Mitte)	31	100	4	11,92	mittel	nein
3_03	Plantlünner Sandebene (Ost)	28	99,61		0	hoch	nein
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	121	99,02	17	13,76	hoch	nein
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	121	99,6	17	11,18	hoch	nein
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	70	98,71	32	23,26	hoch	ja
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	330	100	70	2,3	hoch	nein
3_08	Niederung der Oberen Ems (Rietberg/Verl)	232	97,08	20	10,62	hoch	nein
3_09	Sennesande (Nordost)	279	100	37	23,39	hoch	ja
3_10	Münsterländer Kiessandzug (Süd)	8	100		0	hoch	nein
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	57	99,7	7	14,29	gering	nein
3_12	Münsterländer Oberkreide (Sendenhorst/Beckum)	85	98,84	14	19,36	gering	nein
3_13	Münsterländer Oberkreide (Altenberge/Aschenberg)	48	89,41	10	19,74	gering	nein
3_14	Teutoburger Wald (Südost)	2	41,22		0	hoch	ja
3_15	Teutoburger Wald (Nordwest)	4	64,47		0	hoch	nein
3_16	Südhang des Schafberges	3	78,91	1	27,71	gering	ja
3_17	Karbon des Schafberges	11	100	1	9,93	mittel	nein
3_18	Nordosthang des Schafberges	23	100	5	21,39	gering	ja
3_19	Nordosthang der Baumberge					gering	ja
3_20	Thieberg bei Rheine	6	100		0	gering	nein

3.2

Tab. 3.2.3-2

Mengenmäßige Belastung der Grundwasserkörper: Ergebnis der überschlägigen Wasserbilanzen (NRW) (Teil 1)

GWK- Nummer	Bezeichnung	Grund- wasserneu- bildung [Mio. m³/a]	nahme- rechte	Tatsäch- liche Ent- nahmen (2002) [Mio. m³/a]	Bemerkungen	Bilanz [positiv/ negativ]
3_06	Niederung der Oberen Ems (Sassenberg / Versmold)	95,8	5,6	4,7	Die überschlägige Grundwasserbilanz ist eindeutig positiv, so dass bezüglich des mengenmäßigen Zustands die Zielerreichung wahrscheinlich ist (Stand 2004). Flächenanteil RegBez. Münster 55%: GW-Neubildung 220 mm/a, Angabe basiert auf Daten aus Wasserrechtsanträgen und der Ausarbeitung von D. Wyrwich "Wasserwirtschaftliche Gesamtdarstellung der Uremsrinne", 1980 Flächenanteil RegBez. Detmold 45%: GW-Neubildung 330 mm/a Ermittlung der Grundwasserneubildung (Mittelwert der Zeitreihe 1961-1990) nach einem flächendifferenzierten Verfahren in Anlehnung an DÖRHÖFER & JOSOPAIT (Geologisches Jahrbuch 1980, Reihe C, Heft 27). Grundlage ist die im Bearbeitungsmaßstab 1:50.000 digitalisierte Ausgabe der Karte Grundwasserneubildung für den Regierungsbezirk Detmold, herausgegeben vom Landesumweltamt NRW, 1. Auflage 1992. (Neubildungskarte hat einen Deckungsgrad von 45% des Gesamtkörpers)	positiv
3_09	Sennesande (Nordost)	56,3	28,9	16,2	Die überschlägige Grundwasserbilanz ist eindeutig positiv, so dass bezüglich des mengenmäßigen Zustands die Zielerreichung wahrscheinlich ist (Stand 2004). Die zugelassenen Entnahmemengen haben einen Anteil von 51% und die tatsächlichen Entnahmen einen Anteil von 29% des ermittelten Dargebots. Ermittlung der Grundwasserneubildung (Mittelwert der Zeitreihe 1961–1990) nach einem flächendifferenzierten Verfahren in Anlehnung an DÖRHÖFER & JOSOPAIT (Geologisches Jahrbuch 1980, Reihe C, Heft 27). Grundlage ist die im Bearbeitungsmaßstab 1:50.000 digitalisierte Ausgabe der Karte Grundwasserneubildung für den Regierungsbezirk Detmold, herausgegeben vom Landesumweltamt NRW, 1. Auflage 1992.	positiv
3_14	Teutoburger Wald (Südost)	30,3	2	1,4	Die überschlägige Grundwasserbilanz ist eindeutig positiv, so dass bezüglich des mengenmäßigen Zustands die Zielerreichung wahrscheinlich ist (Stand 2004). Der Anteil der zugelassenen und tatsächlichen Entnahmen liegt unter 7 % des ermittelten Dargebots. Ermittlung der Grundwasserneubildung (Mittelwert der Zeitreihe 1961–1990) nach einem flächendifferenzierten Verfahren in Anlehnung an DÖRHÖFER & JOSOPAIT (Geologisches Jahrbuch 1980, Reihe C, Heft 27).	positiv

► Tab. 3.2.3-2

Mengenmäßige Belastung der Grundwasserkörper: Ergebnis der überschlägigen Wasserbilanzen (NRW) (Teil 2)

GWK- Nummer	Bezeichnung	Grund- wasserneu- bildung [Mio. m³/a]	nahme- rechte	Tatsäch- liche Ent- nahmen (2002) [Mio. m³/a]	Bemerkungen	Bilanz [positiv/ negativ]
					Grundlage ist die im Bearbeitungsmaßstab 1:50.000 digitalisierte Ausgabe der Karte Grundwasserneubildung für den Regierungsbezirk Detmold, herausgegeben vom Landesumweltamt NRW, 1. Auflage 1992.	
3_16	Südhang des Schafberges	2,1			Für diesen GW-Körper sind keine signifikanten GW-Entnahmen bekannt, sodass von einer positiven Grundwasserbilanz ausgegangen wird (Stand 2004). Die Grundwasserneubildungsrate von rd. 100 mm/a wurde geschätzt. Wegen der geringen wasserwirtschaftlichen Bedeutung dieses GW-Körpers wird von weitergehenden Untersuchungen abgesehen.	positiv
3_18	Nordosthang des Schafberges	4,8			Für diesen GW-Körper sind keine signifikanten GW-Entnahmen bekannt, sodass von einer positiven Grundwasserbilanz ausgegangen wird (Stand 2004). Die Grundwasserneubildungsrate von rd. 100 mm/a wurde geschätzt. Wegen der geringen wasserwirtschaftlichen Bedeutung dieses GW-Körpers wird von weitergehenden Untersuchungen abgesehen.	positiv
3_19	Nordosthang der Baumberge	8,0			Für diesen GW-Körper sind keine signifikanten GW-Entnahmen bekannt, sodass von einer positiven Grundwasserbilanz ausgegangen wird (Stand 2004). Die Grundwasserneubildungsrate von rd. 120 mm/a wurde auf Basis der Antragsunterlagen zum Wasserrecht der Gemeindewerke Nottuln geschätzt. Wegen der geringen wasserwirtschaftlichen Bedeutung dieses GW-Körpers wird von weitergehenden Untersuchungen abgesehen.	positiv

Beschreibung als Hinweis, ob in der weitergehenden Beschreibung eine Wasserbilanz zu erstellen war oder nicht.

Für die Grundwasserkörper 3_06; 3_09, 3_14; 3_16, 3_18 und 3_19 war nach diesem Ergebnis eine weitergehende Beschreibung, d. h. die Erstellung überschlägiger Wasserbilanzen not-

wendig. Die Auswertung der überschlägigen Wasserbilanzen führt zu dem Ergebnis, dass in allen betrachteten Grundwasserkörpern eine positive Wasserbilanz vorliegt, d. h. dass die Grundwasserentnahmen die Grundwasserneubildung nicht überschreiten. Die Wasserbilanzen für die betrachteten sechs Grundwasserkörper sind in Tabelle 3.2.3-2 im Überblick dargestellt.

Die Ergebnisse der für den niedersächsischen Teil des Bearbeitungsgebietes im Rahmen der erstmaligen Beschreibung erstellten Wasserbilanzen auf Basis der Wasserrechte sind in Tab. 3.2.3-3 dargestellt. Für die Grundwasserkörper 3_01, 3_02 und 3_03 wurde der gute mengenmäßige Zustand festgestellt.

► Tab. 3.2.3-3

Ergebnisse der Bilanz auf Basis der Wasserrechte für die Grundwasserkörper im Bearbeitungsgebiet Obere Ems (NI)

GWK- Nummer	Grundwasserkörper- bezeichnung	Grundwasser- neubildung [Mio m³/a]	Entnahmerechte [Mio m³/a]	Entnahmeanteil [%]	Weitergehende Beschreibung
3_01	Plantlünner Sandebene (West)	15,5	0,158	1	nein
3_02	Plantlünner Sandebene (Mitte)	19,2	0,164	1	nein
3_03	Plantlünner Sandebene (Ost)	89,5	6,0	7	nein
3_05	Niederung der Oberen Ems				
	(Greven/Ladbergen)	7,1	1,1	15	ja
3_06	Niederung der Oberen Ems				
	(Sassenberg/Versmold)	23,4	5,2	22	ja
3_15	Teutoburger Wald				
	(Nordwest)	8,3	1,7	20	ja

Für die übrigen Grundwasserkörper wurde eine weitere Überprüfung auf Basis der tatsächlichen Entnahmen durchgeführt (Tab. 3.2.3-4). Für den Grundwasserkörper 3_05 ergab sich bezogen auf den niedersächsischen Flächenanteil hiernach keine signifikante Belastung, wohl aber für die Grundwasserkörper 3_06 und 3_15. Bezüglich

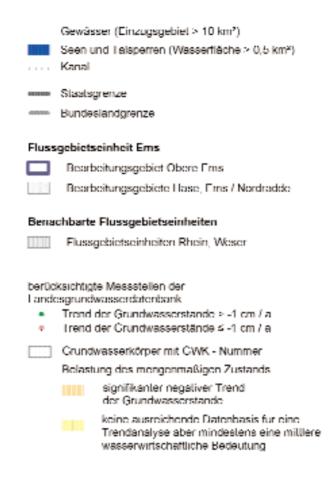
weiterer Betrachtungen auf Basis einer Ganglinienauswertung war die Anzahl geeigneter Grundwassermessstellen für den Flächenanteil des Grundwasserkörpers 3_06 nicht ausreichend. Defizite hinsichtlich der Gesamtbeurteilung dieses Grundwasserkörpers ergeben sich daraus aber nicht.

Tab. 3.2.3-4

Ergebnisse der Bilanz auf Basis der tatsächlichen Entnahmen im Bearbeitungsgebiet Obere Ems (NI)

GWK- Nummer	Grundwasserkörper- bezeichnung	Grundwasser- neubildung [Mio m³/a]	Entnahmerechte [Mio m³/a]	Entnahmeanteil [%]	Signifikante Belastung
3_01	Plantlünner Sandebene (West)	15,5	0	0	nein
3_02	Plantlünner Sandebene (Mitte)	19,2	0	0	nein
3_03	Plantlünner Sandebene (Ost)	89,5	3,1	3	nein
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	7,1	0	0	nein
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	23,4	2,8	12	ja
3_15	Teutoburger Wald (Nordwest)	8,3	1,3	15	ja

Die abschließende Beurteilung des mengenmäßigen Zustands des Grundwassers aller Grundwasserkörper wird in der Tabelle 3.2.3-5 als


Ergebnis der weitergehenden Beschreibungen in Nordrhein-Westfalen und Niedersachsen zusammengefasst.

Tab. 3.2.3-5 Ergebnisse der weitergehenden Beschreibung im Bearbeitungsgebiet Obere Ems

GWK- Nummer	Grundwasserkörper- bezeichnung	Signifikante Belastung
3_01	Plantlünner Sandebene (West)	nein
3_02	Plantlünner Sandebene (Mitte)	nein
3_03	Plantlünner Sandebene (Ost)	nein
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	nein
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	nein
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	nein
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	nein
3_08	Niederung der Oberen Ems (Rietberg/Verl)	nein
3_09	Sennesande (Nordost)	nein
3_10	Münsterländer Kiessandzug (Süd)	nein
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	nein
3_12	Münsterländer Oberkreide (Sendenhorst/Beckum)	nein
3_13	Münsterländer Oberkreide (Altenberge/Aschenberg)	nein
3_14	Teutoburger Wald (Südost)	nein
3_15	Teutoburger Wald (Nordwest)	nein
3_16	Südhang des Schafberges	nein
3_17	Karbon des Schafberges	nein
3_18	Nordosthang des Schafberges	nein
3_19	Nordosthang der Baumberge	nein
3_20	Thieberg bei Rheine	nein

Eine signifikante mengenmäßige Belastung liegt damit bei keinem Grundwasserkörper im Bearbeitungsgebiet Obere Ems vor, die Zielerreichung ist wahrscheinlich. In Karte 3.2-3 sind die Ergebnisse der Auswertungen zur erstmaligen Beschreibung sowie der Verteilung der berücksichtigten Messstellen graphisch dargestellt.

Beiblatt 3.2-3 Mengenmäßige Belastungen der Grundwasserkörper im Bearbeitungsgebiet Obere Ems

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Novempholf 22, 48147 Müneler

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.2 - 3: Mengenmäßige Belastungen der Grundwasserkörper im Bearbeitungsgebiet Obere Ems

3.2.4

Andere Belastungen des Grundwassers

Neben den bereits genannten Belastungen der Grundwasserkörper aus punktuellen und diffusen Schadstoffquellen sowie bezogen auf den mengenmäßigen Zustand gibt es Belastungen, die nicht eindeutig einer dieser Belastungsquellen zugeordnet werden können.

Für den niedersächsischen Flächenanteil wird davon ausgegangen, dass keine relevanten sonstigen anthropogenen Einwirkungen auf den Zustand des Grundwassers vorhanden sind. Demzufolge beziehen sich die weiteren Ausführungen dieses Kapitels zur Datenauswertung ausschließlich auf den nordrhein-westfälischen Flächenanteil des Bearbeitungsgebiets.

Hier beschränkt sich die Analyse weiterer Belastungen auf hydrochemische Belastungen des Grundwassers, da relevante zusätzliche mengenmäßige Eingriffe im Bezug auf den Wasserhaushalt (großräumige Versickerung etc.) nicht vorliegen. Wie zu erwarten zeigten die Auswertungen dabei, dass auch diese Belastungen mit anderen Stoffen über punktuelle und/oder diffuse Eintragspfade in den Grundwasserleiter gelangen.

Die Beurteilung der sonstigen anthropogenen Einwirkungen auf den chemischen Zustand des Grundwassers erfolgt grundwasserkörperbezogen auf Basis von Auswerteergebnissen für Indikatorstoffe sowie der Gebietskenntnisse der jeweiligen Staatlichen Umweltämter. In Abstimmung mit den niedersächsischen Stellen wurden bei den grenzüberlagernden Grundwasserkörpern mit kleinerem niedersächsischen Flächenanteil die nordrhein-westfälischen Einschätzungen jeweils für den gesamten Grundwasserkörper übernommen (s. Kap. 3.2.5, Tab. 3.2.5-1).

Als Indikatorstoffe wurden die Parameter Ammonium, Chlorid, Sulfat, pH-Wert, Nickel, PSM und Leichtflüchtige Halogenierte Kohlenwasserstoffe (LHKW) ausgewählt. Diese können einerseits typisch sein für die bereits auf anderem Wege festgestellten Stoffeinträge durch diffuse Quellen (Landwirtschaft, Siedlungsgebiete) oder durch punktuelle Schadstoffquellen (Altlasten), können aber andererseits auch auf andere Ursachen zurückzuführen sein. Der NRW-Leitfaden enthält eine ausführliche Erläuterung möglicher Ursachen für erhöhte Konzentrationen der o.g. Parameter.

Hinsichtlich einer potenziellen Belastung des Grundwassers durch die vorgenannten Stoffe werden - in Analogie zum Nitrat (s. Kap. 3.2.2) – die Grundwasserkörper als signifikant belastet eingestuft, bei denen folgende Schwellenwerte vom räumlich gewichteten Mittelwert über- bzw. beim pH-Wert unterschritten werden:

Parameter	Schwellenwert	Anzahl der zur Auswertung herangezogenen Messstellen
Ammonium	0,2 mg/l	693
Chlorid	125 mg/l	722
Sulfat	125 mg/l	654
Nickel	10 μg/l	468
PSM	0,05 μg/l	211
LHKW	5 μg/l	376
pH-Wert	6,5	721

Die Vorgehensweise zur Bestimmung der räumlich gewichteten Mittelwerte wurde bereits in Kap. 3.2.2 ausführlich erläutert.

Die Auswertungen werden anhand der lokalen Kenntnisse der zuständigen Behörden sowie durch Daten Dritter (s. Kap. 2.2.3.2) ergänzt und abschließend beurteilt. Die Ergebnisse der Auswertungen und Beurteilungen werden in der Landesgrundwasserdatenbank dokumentiert.

Tabelle 3.2.4-1 enthält für die Grundwasserkörper im Bearbeitungsgebiet Obere Ems die Ergebnisse der Analyse bezüglich der sonstigen anthropogenen Belastungen. In Karte 3.2-4 sind die Ergebnisse graphisch dargestellt. Karte 3.2-4 zeigt auch die Lage der für die Auswertungen

herangezogenen Messstellen, deren Anzahl je Grundwasserkörper und Parameter der Tabelle 2.2.3.2-1 (s. Kap. 2.2.3.2) zu entnehmen ist.

► Tab. 3.2.4-1

Ergebnisse der Analyse im Hinblick auf sonstige anthropogene Einwirkungen (Teil 1)

GWK- Nummer	Grundwasserkörperbezeichnung	Signi- fikante sonstige Belastun- gen	Indikator- parameter (Schwellen- wertüber- schreitung)	Erläuterung
3_01	Plantlünner Sandebene (West)	nein	-	Indikator: keine. Aus der Rohwasserüberwachung der WGA Haddorf ergeben sich keine Hinweise auf eine großflächige Belastung (Stand 2004).
3_02	Plantlünner Sandebene (Mitte)	nein	Ammonium, PSM, pH- Wert	Indikator: Ammonium (0,63 mg/l), pH-Wert (6,28), PSM (1,26 µg/l). Lokale Einwirkungen werden angenommen, Hinweise auf großflächige Belastungen liegen nicht vor (Stand 2004).
3_03	Plantlünner Sandebene (Ost)	nein	Ammonium, pH-Wert	Indikator: Ammonium (0,78 mg/l), pH-Wert (5,56). Lokale Einwirkungen werden angenommen, Hinweise auf großflächige Belastungen liegen nicht vor (Stand 2004).
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	ja	Ammonium	Indikator: Ammonium (0,42 mg/l). Eine großflächige Belastung wurde nachgewiesen; es ist anzunehmen, dass landwirtschaftliche Einflüsse ursächlich dafür sind (Stand 2004).
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	ja	Ammonium	Indikator: Ammonium (0,36 mg/l). Eine großflächige Belastung wurde nachgewiesen; es ist anzunehmen, dass landwirtschaftliche Einflüsse ursächlich dafür sind (Stand 2004).
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	ja	Ammonium, PSM	Indikator: Ammonium (0,28 mg/l), PSM (0,10 µg/l). Bezüglich Ammonium wird eine Belastung infolge landwirtschaftlicher Einflüsse angenommen; die PSM-Nachweise sind lokalen Einwirkungen zuzuordnen (Stand 2004).

► Tab. 3.2.4-1 Ergebnisse der Analyse im Hinblick auf sonstige anthropogene Einwirkungen (Teil 2)

Linwirkungen (len 2)						
GWK- Nummer	Grundwasserkörperbezeichnung	Signi- fikante sonstige Belastun- gen	Indikator- parameter (Schwellen- wertüber- schreitung)	Erläuterung		
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	ja	Ammonium, Nickel	Indikator: Ammonium (1,02 mg/l), Nickel (8,93 µg/l). Eine großflächige Ammonium-Belastung wurde nachgewiesen; es ist anzunehmen, dass landwirtschaftliche Einflüsse ursächlich dafür sind. Die vereinzelten hohen Nickelwerte werden lokalen Einwirkungen zugeordnet (Stand 2004).		
3_08	Niederung der Oberen Ems (Rietberg/Verl)	nein	-	Indikator: keine. Lokale Versauerungstendenzen im oberen Bereich des Grundwas-serleiters sind bekannt (Stand 2004).		
3_09	Sennesande (Nordost)	nein	pH-Wert	Indikator: pH-Wert (6,49). Eine Belastung des GW-Körpers wird nicht angenommen, da von 61 gemessenen Schwellenwert-unterschreitungen 38 Ergebnisse nur 8 Messstellenstandorten (Multilevel-Messstellen) zuzuordnen sind, führt die Mehrfachberücksichtigung zu einer Fehleinschätzung. Lokale Versauerungstendenzen im oberen Bereich des Grundwasserleiters sind nachweisbar (Stand 2004).		
3_10	Münsterländer Kiessandzug (Süd)	ja	Sulfat, PSM, pH-Wert	Indikator: pH-Wert (6,44), PSM (0,07 µg/l), Sulfat (136,26 mg/l). Versauerung ist lokal begrenzt, großflächig erhöhte PSM- und Sulfatwerte sind nachgewiesen und weisen auf eine Belastung hin (Stand 2004).		
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	ja	-	Indikator: Ammonium. Aufgrund der insgesamt mit 3_13 vergleichbaren Verhältnisse wird eine Belastung des Grundwasser- körpers bezüglich Ammonium infolge landwirt- schaftlicher Einflüsse angenommen (Stand 2004).		
3_12	Münsterländer Oberkreide (Sendenhorst/Beckum)	ja	Ammonium	Indikator: Ammonium (0,46 mg/l). Die Auswertung von Analysenergebnissen des Gesundheitsamts Münster zeigen im Gebiet der Stadt Münster erhebliche Schwellenwertüberschreitungen für Ammonium auf. Aufgrund der insge-		

3.2 ◀

► Tab. 3.2.4-1

Ergebnisse der Analyse im Hinblick auf sonstige anthropogene Einwirkungen (Teil 3)

GWK- Nummer	Grundwasserkörperbezeichnung	Signi- fikante sonstige Belastun- gen	Indikator- parameter (Schwellen- wertüber- schreitung)	Erläuterung
				samt mit 3_13 vergleichbaren Verhältnisse wird eine Belastung des Grundwasserkörpers infolge landwirtschaftlicher Einflüsse angenommen (Stand 2004).
3_13	Münsterländer Oberkreide (Altenberge/Aschenberg)	ja	Ammonium, Sulfat, Nickel	Indikator: Ammonium (0,24 mg/l), Nickel (24,8 μg/l), Sulfat (218,97 mg/l). Die Auswertungen von Analysenergebnissen der UWB Coesfeld und des Gesundheitsamtes Münster zeigen erhebliche Schwellenwertüberschreitungen für Ammonium auf, sodass diesbezüglich eine Belastung des Grundwasserkörpers anzunehmen ist (Stand 2004). Ursächlich hierfür sind überwiegend die Einflüsse der intensiven Landwirtschaft. Für Sulfat und Nickel zeigen die Auswertungen nur lokale Belastungen.
3_14	Teutoburger Wald (Südost)	nein	-	Indikator: keine. Hinweise auf großflächige Belastungen liegen nicht vor. (Stand 2004)
3_15	Teutoburger Wald (Nordwest)	ja	pH-Wert	Indikator: pH-Wert (6,48). Die Rohwasserüberwachung der WGA Ibbenbüren- Lehen weist auf niedrige pH-Werte im GW-Körper hin. Als Ursache werden die Auswirkungen saurer Niederschläge in Verbindung mit der geringen Pufferkapazität des Osning angenommen (Stand 2004).
3_16	Südhang des Schafberges	nein	-	Indikator: keine. Hinweise auf großflächige Belastungen liegen nicht vor. Wegen der geringen Durchlässigkeit des Untergrunds ist eine signifikante Belastung unwahrscheinlich (Stand 2004).
3_17	Karbon des Schafberges	nein	-	Indikator: keine. Hinweise auf großflächige Belastungen liegen nicht vor. Wegen der geringen Durchlässigkeit des Untergrunds ist eine signifikante Belastung unwahrscheinlich (Stand 2004).

► Tab. 3.2.4-1 Ergebnisse der Analyse im Hinblick auf sonstige anthropogene Einwirkungen (Teil 4)

GWK- Nummer	Grundwasserkörperbezeichnung	Signi- fikante sonstige Belastun-	Indikator- parameter (Schwellen- wertüber-	Erläuterung
3_18	Nordosthang des Schafberges	gen nein	schreitung) Nickel, pH-Wert	Indikator: Nickel (15,21 µg/l), pH-Wert (5,82). Bezüglich der Nickel und pH-Wert-Unterschreitungen sind keine Hinweise auf großflächige Belastungen bekannt, es werden lokale Belastungen angenommen (Stand 2004).
3_19	Nordosthang der Baumberge	nein	PSM	Indikator: PSM (0,35 μg/l). Nach Auswertung der Analysenergebnisse der Lasbecker Quelle (GW-Körper ist zu rd. 1/3 Einzugsgebiet) ist großflächig keine PSM-Überschreitung nachweisbar, lokale Belastungen werden angenommen (Stand 2004).
3_20	Thieberg bei Rheine	nein	-	Indikator: keine. Hinweise auf großflächige Belastungen liegen nicht vor (Stand 2004).

Tabelle 3.2.4-1 zeigt, dass für die Grundwasserkörper 3_04, 3_05, 3_06, 3_07, 3_10, 3_11, 3_12, 3_13, 3_15 signifikante sonstige Belastungen festgestellt wurden. In den genannten Grundwasserkörpern wurden erhöhte Konzentrationen von Ammonium, Sulfat, PSM sowie zu niedrige pH-Werte festgestellt. Die Belastungen für Ammonium werden nach derzeitiger Ein-

schätzung überwiegend auf diffuse landwirtschaftliche Einflüsse zurückgeführt.

Weitere grundwasserkörperbezogene Informationen über die lokal und großflächig festgestellten Stoffkonzentrationen bzw. Schwellenwertüberschreitungen sind den Erläuterungen der Tabelle 3.2.4-1 zu entnehmen.

▶ Beiblatt 3.2-4

Belastungen der Grundwasserkörper durch sonstige anthropogene Einwirkungen im Bearbeitungsgebiet Obere Ems

	Gewässer (Einzugsgebiet > 10 km²)
	Seen und Talsperren (Wassertläche > 0,5 km²)
	Kanal
000000	Staatsgrenze
400000	Bundeslandgrenze
Fluss	gebietseinheit Ems
	Bearbeitungsgebiet Obere Ems
15	Bearbeitungsgebiete Hase, Erns / Nordradde
Bena	chbarte Flussgebietseinheiten
	Flussgebietseinheiten Rhein, Weser
٠	berücksichtigte Messstellen der Landesgrundwasserdatenbank
	Crundwasserkörper mit GWK - Nummer
	Relastungen durch sonstige anthropogene Einwirkungen

Bezirksregierung Weser - Ems

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 3.2 - 4: Belastungen der Grundwasserkörper durch sonstige anthropogene Einwirkungen im Bearbeitungsgebiet Obere Ems

3.2.5

Analyse der Belastungsschwerpunkte des Grundwassers

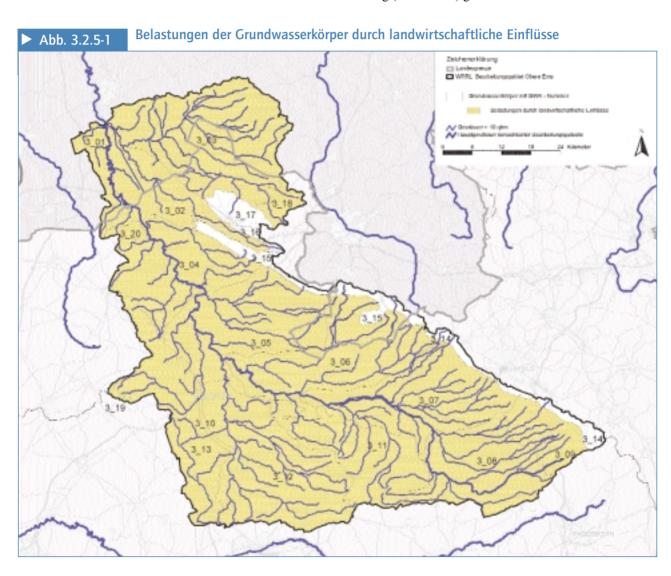
Die im Bearbeitungsgebiet Obere Ems vorliegenden Nutzungen führen im Grundwasser zu Belastungen des chemischen Zustands, im

Wesentlichen durch diffuse Schadstoffeinträge aus der Siedlungsnutzung und aus landwirtschaftlicher Nutzung (einschließlich der ermittelten Ammoniumbelastungen, s. Kap. 3.2.4 "Andere Belastungen des Grundwassers"). Eine zusammenfassende Übersicht über die Relevanz der oben im Detail beschriebenen Belastungsarten zeigt Tabelle 3.2.5-1.

▶ Tab. 3.2.5-1 Übersicht Belastungsschwerpunkte

GWK- Nummer	Grundwasserkörperbezeichnung	Signifikante Belastung durch Punktquellen	Signifikante Belastung durch diffuse Quellen	~	Signifikante sonstige Belastungen
3_01	Plantlünner Sandebene (West)	nein	ja	nein	nein
3_02	Plantlünner Sandebene (Mitte)	nein	ja	nein	nein
3_03	Plantlünner Sandebene (Ost)	nein	ja	nein	nein
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	nein	ja	nein	ja
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	nein	nein	nein	ja
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	nein	ja	nein	ja
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	nein	nein	nein	ja
3_08	Niederung der Oberen Ems (Rietberg/Verl)	nein	ja	nein	nein
3_09	Sennesande (Nordost)	nein	ja	nein	nein
3_10	Münsterländer Kiessandzug (Süd)	nein	ja	nein	ja
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	nein	nein	nein	ja
3_12	Münsterländer Oberkreide (Sendenhorst/Beckum)	nein	nein	nein	ja
3_13	Münsterländer Oberkreide (Altenberge/Aschenberg)	nein	nein	nein	ja
3_14	Teutoburger Wald (Südost)	nein	nein	nein	nein
3_15	Teutoburger Wald (Nordwest)	nein	nein	nein	ja
3_16	Südhang des Schafberges	nein	ja	nein	nein
3_17	Karbon des Schafberges	nein	nein	nein	nein
3_18	Nordosthang des Schafberges	nein	ja	nein	nein
3_19	Nordosthang der Baumberge	nein	ja	nein	nein
3_20	Thieberg bei Rheine	nein	ja	nein	nein

Signifikante stoffliche Belastungen wurden somit bei 18 der 20 Grundwasserkörper in zwei Belastungsschwerpunkten festgestellt. Die Schwerpunkte liegen in den Einflüssen der diffusen Quellen und den sonstigen anthropogenen Belastungen, wobei es sich in der Summe überwiegend um Stickstoffüberschüsse in Form von erhöhten Nitrat- und Ammoniumkonzentrationen handelt. Als Ursache ist hier besonders die intensive landwirtschaftliche Nutzung anzuführen.


Wie Abb. 3.2.5-1 zeigt, sind nach derzeitiger Einschätzung 16 Grundwasserkörper sowohl im Lockergestein als auch im Festgestein durch sig-

nifikante Belastungen infolge der intensiven landwirtschaftlichen Nutzung betroffen (Stand 2004).

Das Grundwasser im Bearbeitungsgebiet Obere Ems kann im Vergleich mit anderen Bearbeitungsgebieten als durchschnittlich belastet angesehen werden.

Eine signifikante Belastung des mengenmäßigen Zustands wurde in keinem Grundwasserkörper festgestellt.

Für die einzelnen Grundwasserkörper im Bearbeitungsgebiet Obere Ems erfolgt im anschließenden Kapitel 4 eine Analyse im Hinblick auf die Auswirkungen der Belastungen für den Grad der Zielerreichung (Stand 2004) gemäß WRRL.

)4

► 4.1 Integrale Betrachtung des Zustands der Oberflächenwasserkörper

Die in Kapitel 3 beschriebenen menschlichen Tätigkeiten haben mittelbare und unmittelbare Auswirkungen auf die Gewässer. Häufig wirken dabei verschiedene Effekte zusammen. Dies sei am Beispiel Phosphor erläutert. Der Eintrag von Phosphor bewirkt insbesondere in gestauten, also hydromorphologisch veränderten Gewässerabschnitten eine Eutrophierung. Diese führt im Sommer zu starkem Algenwuchs, d.h. zu einer Veränderung des Phytobenthos. Die absterbenden Algen vermindern den Sauerstoffgehalt des Gewässers und verändern den pH-Wert.

Die Zusammenhänge und Wechselwirkungen zwischen den biologischen Komponenten stellen sich noch wesentlich komplexer dar und sind nur bedingt modellierbar und vorhersagbar.

Ungeachtet dessen hat die Wasserrahmenrichtlinie das Ziel eines ganzheitlichen Gewässerschutzes und verlangt konsequenterweise die Betrachtung der innerhalb des Ökosystems "Gewässer" bestehenden Zusammenhänge und aller Zusammenhänge zwischen den verschiedenen auf die Gewässer einwirkenden Belastungen.

Diesem Anspruch kann nur durch eine integrale Betrachtung der verschiedenen, das Ökosystem Gewässer bestimmenden Komponenten und durch eine Verknüpfung von Immissions- und Emissionsdaten entsprochen werden. Hierzu sind umfassendes Vor-Ort-Wissen sowie ausgewiesener wasserwirtschaftlicher Sachverstand und Expertenwissen unabdingbar. Eine allgemeingültige Modellierung ist nicht möglich.

Die umfangreich vorliegenden Daten sind in den Kapiteln 2 und 3 ausführlich beschrieben und analysiert worden. In Niedersachsen und Nordrhein-Westfalen war mit diesen für viele Komponenten flächendeckend und mit hoher Qualität erhobenen Daten eine gute Ausgangssituation zur Durchführung der Bestandsaufnahme nach Wasserrahmenrichtlinie gegeben.

Dennoch werden an vielen Stellen – insbesondere mit Blick auf die biologischen Qualitätskomponenten, aber auch bezüglich einiger chemischer Komponenten – noch Daten- und Wissenslücken bezüglich der Zusammenhänge im Ökosystem zu füllen sein. Dies führt dazu, dass die Bestandsaufnahme noch keine abschließende Bewertung darstellt, sondern den Charakter einer ersten Einschätzung des Gewässerzustands nach den

Regeln der WRRL hat und im anschließenden Monitoring noch verifiziert werden muss.

Die für die integrale Betrachtung des Gewässerzustands angewandten Verfahren, sowohl im Oberflächenwasser wie im Grundwasser, folgen einem pragmatischen Ansatz, der die vorhandenen Daten in Niedersachsen und Nordrhein-Westfalen bestmöglich verwendet und die Ist-Situation mit maximaler Transparenz beschreibt. Die Ergebnisse der integralen Betrachtung und die ihr zugrunde liegenden Daten, die erstmals derart umfassend zusammengetragen wurden, bilden künftig die Basis für den wasserwirtschaftlichen Vollzug.

In der nächsten Phase, dem Monitoring, werden die zutage getretenen Datenlücken sowohl auf der Belastungsseite als auch immissionsseitig gefüllt. Damit beginnt die Fortschreibung der Basisdaten, die als kontinuierliche Aufgabe das unverzichtbare Element für den künftigen Vollzug sowie für die wiederkehrenden Berichtspflichten darstellt.

4.1

Integrale Betrachtung des Zustands der Oberflächenwasserkörper

Die Wasserrahmenrichtlinie sieht im Rahmen der Bestandsaufnahme eine Überprüfung der Auswirkungen menschlicher Tätigkeiten vor. Hierzu sind die in Kapitel 2 beschriebenen Daten aus der Umweltüberwachung, die in Kapitel 3 beschriebenen Belastungen sowie "andere einschlägige Informationen" ganzheitlich – integral – zu betrachten, um zu beurteilen, wie wahrscheinlich es ist, dass die Oberflächenwasserkörper die Umweltziele erreichen bzw. nicht erreichen. Demnach ist mindestens zu unterscheiden zwischen Wasserkörpern, die das Umweltziel "guter Zustand" wahrscheinlich erreichen und Wasserkörpern, die den "guten Zustand" wahrscheinlich nicht erreichen. Zusätzlich wurden Wasserkörper identifiziert, bei denen aufgrund fehlender Daten oder Bewertungsgrundlagen unklar ist, ob sie die Ziele der WRRL erreichen.

Die Ausnahmeregelungen in Artikel 4 der WRRL finden bei der erstmaligen Einschätzung des

Integrale Betrachtung des Zustands der Oberflächenwasserkörper

4.1

Gewässerzustands in der Bestandsaufnahme keine Berücksichtigung, da diese sich ausschließlich auf bestehende wasserwirtschaftliche Daten stützt und keine abschließenden Zielformulierungen trifft. Letztere sind Gegenstand der weiteren Umsetzung der WRRL.

Die gemäß Kap. 4.2 vorgenommene vorläufige Ausweisung von Wasserkörpern, die aufgrund hydromorphologischer Veränderungen in ihrem Wesen stark verändert sind, hat in **Nordrhein-Westfalen** keinen Einfluss auf das Ergebnis der integralen Betrachtung. Der Bewertungsmaßstab ist für alle Wasserkörper gleich.

In Niedersachsen werden ebenfalls für alle Wasserkörper die betrachteten Einzelkomponenten nach gleichem Bewertungsmaßstab für den ökologischen Zustand eingestuft. Wurde aber ein Wasserkörper als vorläufig erheblich verändert ausgewiesen, so wurde aufgrund des hierfür noch nicht vorliegenden Maßstabs für das "ökologische Potenzial" die Zielerreichung im Gesamtergebnis immer als vorläufig unklar eingestuft und damit nicht abschließend bewertet, es sei denn bereits die Bewertung des "ökologischen Zustands" hätte zur Einstufung "Zielerreichung wahrscheinlich" geführt.

Das Ergebnis der integralen Betrachtung wird in die Bewertungsstufen

- · Zielerreichung wahrscheinlich
- · Zielerreichung unklar
- · Zielerreichung unwahrscheinlich

eingeteilt.

Wasserkörper, für die die Zielerreichung unklar oder unwahrscheinlich ist, werden im Rahmen des an die Bestandsaufnahme anschließenden Monitorings intensiv (operativ) überwacht, um eine abschließende Bewertung zu ermöglichen.

4.1.1

Methodisches Vorgehen

Anforderungen

Die Wasserrahmenrichtlinie sieht vor, künftig – d. h. nach Durchführung eines WRRL-konformen Monitorings – den Gewässerzustand in fünf Stufen (sehr gut, gut, mäßig, unbefriedigend und schlecht) zu beschreiben. Der zu beschreibende Zustand der Gewässer setzt sich aus dem "ökologischen Zustand" und dem "chemischen Zustand" zusammen.

Der "ökologische Zustand" wird dabei durch biologische Qualitätskomponenten, unterstützende hydromorphologische Qualitätskomponenten, unterstützende allgemeine chemisch-physikalische Komponenten sowie spezifische synthetische und nicht-synthetische Schadstoffe beschrieben, soweit letztere nicht unter dem "Chemischen Zustand" abzuhandeln sind (s. a. Kap. 2.1.3.1).

Der "Chemische Zustand" wird durch bestimmte, in den Anhängen IX und X genannte spezifische synthetische und nicht-synthetische Schadstoffe definiert. Zurzeit sind dies 33 prioritäre und prioritär gefährliche Stoffe, für die die EU kurzfristig flächendeckend gültige Umweltqualitätsnormen festsetzen muss.

Bei der integralen Betrachtung der verschiedenen biologischen Qualitätskomponenten und der spezifischen Schadstoffe geht die Wasserrahmenrichtlinie von einem "Worst-case-Ansatz" aus, d. h. wenn nur eine Komponente die Anforderungen an den guten Zustand nicht erfüllt, wird der Wasserkörper unabhängig von den anderen Komponenten maximal als "mäßig" eingestuft. Die Bewertung der unterstützenden Qualitätskomponenten (Hydromorphologie und allgemeine chemisch-physikalische Komponenten) erfolgt indirekt über deren Auswirkungen auf die Gewässerbiozönose, also auf die biologischen Komponenten. Im Rahmen der Bestandsaufnahme wird eine Zustandsbeschreibung nach diesen künftigen Anforderungen noch nicht erwartet und ist zudem nicht leistbar, da die Voraussetzungen, wie z.B. europaweit nach vergleichbaren Verfahren erhobene Immissionsdaten, noch nicht vorliegen. Die Systematik der integralen Betrachtung der Wasserkörper orientiert sich dennoch möglichst eng an den künftigen Anforderungen der Wasserrahmenrichtlinie.

5

► 4.1 Integrale Betrachtung des Zustands der Oberflächenwasserkörper

Datenlage

Die biologischen Qualitätskomponenten, die bei einer zukünftigen Bewertung der Gewässer im Binnenland nach WRRL zu betrachten sind, sind

- Phytoplankton
- · Makrophyten
- benthische wirbellose Fauna (Makrozoobenthos)
- · Fischfauna

Wie in Kapitel 2.1.3 beschrieben, liegen in Nordrhein-Westfalen zum Phytoplankton, zum Phytobenthos und zu den Makrophyten derzeit keine ausreichenden Daten vor.

Für das Makrozoobenthos existieren in Nordrhein-Westfalen und Niedersachsen (allerdings nur zu den für die Saprobie entscheidenden Organismen) belastbare Daten. Defizite in der Gewässerbiologie, die durch leicht abbaubare, organische Substanzen und bestimmte weitere stoffliche Belastungen verursacht werden, werden hiermit abgebildet, Defizite, die auf strukturelle Einflüsse zurückzuführen sind, jedoch nur bedingt.

Daten zur Fischfauna sind in beschränktem Umfang verfügbar, können für die integrale Betrachtung im Hinblick auf die Zielerreichung der Wasserkörper allerdings mit Daten zu Querbauwerken und Expertenwissen verknüpft werden, so dass eine erste Einschätzung der Fischfauna im Rahmen der Bestandsaufnahme möglich ist.

Die Gewässerstrukturgüte ist in Nordrhein-Westfalen und Niedersachsen flächendeckend erfasst und dokumentiert. Ebenso existieren für eine erste Einschätzung des ökologischen Zustands umfangreiche Daten zu den allgemeinen chemisch-physikalischen Komponenten. Zu spezifischen synthetischen und nicht-synthetischen Schadstoffen sind Daten aus der Immissions-überwachung verfügbar.

Dieser Datenlage entsprechend wird der Zustand der Fließgewässer für den Stand 2004 durch die vorhandenen Komponenten

- · Gewässergüte,
- · Gewässerstruktur,
- Fische,
- · die chemisch-physikalischen Parameter,
- die chemischen Stoffe des Anhangs VIII sowie AOX, TOC, Nitrit, Sulfat sowie
- die chemischen Stoffe der Anhänge IX und X

beschrieben.

Systemvorgaben der WRRL zur integralen Bewertung des Zustands der Oberflächenwasserkörper Integrale Betrachtung des Zustands der Oberflächenwasserkörper (Fileßgewasser) Okologischer Zustand Chemischer Zustand Behrachten Unterstützende Unterstützende Unterstützende Springering und Propositionen Unterstützende Unterst

4.1

Das konkrete methodische Vorgehen zur integralen Betrachtung der Oberflächenwasserkörper unterscheidet sich im Detail zwischen Nordrhein-Westfalen und Niedersachsen. Dies ist durch die unterschiedlichen Datenlagen und die generell bestehende Unsicherheit bezüglich der erstmalig überhaupt durchgeführten integralen Betrachtungsweise begründet. Materielle Unterschiede ergeben sich hierdurch nicht, da die Ergebnisse der Bestandsaufnahme in beiden Ländern im anschließenden Monitoring validiert werden und erst dann ggf. in konkrete Maßnahmenplanungen umgesetzt werden.

Konkretes methodisches Vorgehen in Nordrhein-Westfalen

Abbildung 4.1.1-1 veranschaulicht, welche Schritte nach den Systemvorgaben der Wasserrahmenrichtlinie und auf Basis des künftig durchzuführenden WRRL-konformen Monitorings von den Eingangskomponenten hin zu der Bewertung führen, ob ein Wasserkörper die Ziele der WRRL erfüllt oder nicht.

Eingangskomponenten und ihre Klassifizierung

Basis für die integrale Betrachtung bilden die Einzelkomponenten biologische Gewässergüte, Gewässerstruktur, Fische, sieben allgemeine chemisch-physikalische Qualitätskomponenten sowie die spezifischen synthetischen und nichtsynthetischen Schadstoffe der Anhänge VIII bis X der Wasserrahmenrichtlinie.

Diese Komponenten sind bereits in Kapitel 2.1.3 einer eingehenden Analyse unterzogen und – soweit Klassifizierungsregeln vorhanden – klassifiziert, ansonsten hinsichtlich der Einhaltung von Qualitätskriterien überprüft worden. Um alle auf einen Wasserkörper wirkenden Belastungen überlagern zu können, müssen im ersten Schritt die Ergebnisse der Klassifizierung gemäß Kapitel 2.1.3 in die Ergebnisklassen "Zielerreichung wahrscheinlich", "Zielerreichung unwahrscheinlich" eingestuft werden.

Hierbei kommen folgende Regeln zur Anwendung:

• Biologische Gewässergüte:

Gewässergüteklasse II und besser = Zielerreichung für diese Komponente wahrscheinlich

Güteklasse II-III und schlechter = Zielerreichung für diese Komponente unwahrscheinlich

Gewässerstruktur:

Gewässerstrukturklassen 1 - 5 =

Zielerreichung für diese Komponente wahrscheinlich

Gewässerstrukturklassen 6 und 7 = Zielerreichung für diese Komponente unwahrscheinlich

• Fischfauna:

gemäß Einstufung in Kap. 2.1.3

• allgemeine chemisch-physikalische Komponenten:

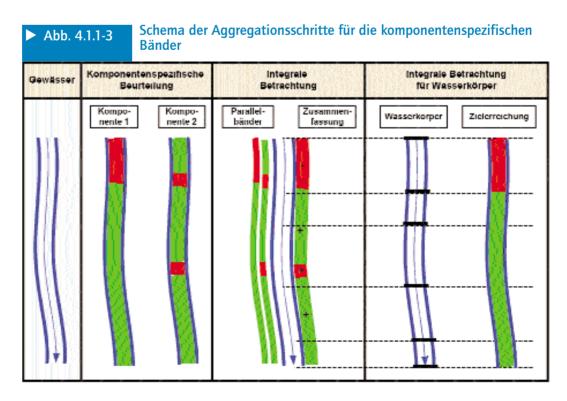
Gewässergüteklasse II und besser =

Zielerreichung für diese Komponente wahrscheinlich

Güteklasse II-III =

Zielerreichung für diese Komponente unklar **Güteklasse III und schlechter** = Zielerreichung unwahrscheinlich

 spezifische synthetische und nicht-synthetische Schadstoffe:


Wert < 1/2 Qualitätskriterium =

Zielerreichung für diese Komponente wahrscheinlich

¹/₂ Qualitätskriterium < Wert ≤ Qualitätskriterium =

Zielerreichung für diese Komponente unklar **Qualitätskriterium überschritten** = Zielerreichung unwahrscheinlich

4.1

Integrale Betrachtung

Abbildung 4.1.1-2 gibt wieder, wie die einzelnen Komponenten in die integrale Betrachtung eingehen und schrittweise analog dem Schema der Wasserrahmenrichtlinie zusammengeführt werden.

Im **Schritt 1** werden, wie in Abbildung 4.1.1-3 schematisch dargestellt, die aus der Beschreibung der Ausgangssituation vorliegenden Bän-

der für die Eingangskomponenten (Stand 2004) wie folgt zusammengefasst:

- Biologische Gewässergüte + Gewässerstruktur
- Fischfauna
- die sieben chemisch-physikalischen Parameter
- alle spezifischen Schadstoffe nach Anhang VIII und
- alle prioritären Stoffe nach Anhang IX und X

► Tab. 4.1.1-1 Regeln zur integralen Betrachtung von Oberflächenwasserkörpern (Schritt 1)

	Einzelkompone	enten (Eing	angsdaten des Auswertet	ools)	Betrachtung der E	inzelkomponenten
	Komponente	Kon	nponentenspezifischer Gewässerzustand	Symbol	Regel	Zielerreichung
		Klasse				
	Gewässergüte (GG)	 - 	Qualitätskriterium eingehalten	+	beide Komponenten hal- ten Qualitätskriterium ein	
		II-III III III-IV IV	Qualitätskriterium nicht eingehalten	-	eine Komponente hält Qualitätskriterium ein und die andere Kompo- nente ist ohne Daten	wahrscheinlich (+)
Stufe I	Gewässerstruktur (GSG)	Ø 1 2	keine Daten vorhanden Qualitätskriterium eingehalten	?	mindestens eine Komponente hält Qualitäts- kriterium nicht ein	unwahrscheinlich (-)
	(455)	3 4 5		+	zu beiden Komponenten keine Daten	unklar (?)
	5: 16	6 7 Ø	Qualitätskriterium nicht eingehalten keine Daten vorhanden	- ?	E. 16 12h	
=	Fischfauna	Qualitätsk eingehalte	en	+	Fischfauna hält Qualitätskriterium ein	wahrscheinlich (+)
Stufe II		Qualitätsk nicht eing	ehalten	-	Fischfauna hält Qualitäts- kriterium nicht ein	unwahrscheinlich (-)
		-	Daten vorhanden)	?	Fischfauna nicht einstufbar	unklar (?)
	Temperatur, Sauerstoff, Chlorid, pH-Wert, Phosphor, Ammonium-N, N _{ges}	Wert ≤ ¹ / ₂	QK	+	alle vorhandenen Kompo- nenten halten mind. hal- bes Qualitätskriterium ein alle Komponenten ohne Daten	wahrscheinlich (+)
Stufe III		Wert > QI	(-	eine oder mehrere Kom- ponenten halten Quali- tätskriterium nicht ein	unwahrscheinlich (-)
51		Datenlage tungen au Informatio	Vert ≤ QK e nicht ausreichend, Belas- ufgrund emissionsseitiger onen zu vermuten, Auswir- eich auch nicht grob lokali-	?	eine oder mehrere Kom- ponenten mit unzureichen- der Datenlage, aber keine Komponente mit nicht eingehaltenem Qualitäts- kriterium	unklar (?)

Bei dieser Zusammenfassung wird der "Worstcase"-Ansatz der WRRL angewandt, d.h. wenn
für eine Komponente die Zielerreichung unwahrscheinlich ist, wird dieses Ergebnis für den ganzen Wasserkörper angenommen. Diese Betrachtung ist insoweit konform mit den bisherigen
wasserwirtschaftlichen Annahmen in NordrheinWestfalen und Niedersachsen, bei denen zum
Beispiel bei einer biologischen Gewässergüteklasse > II das Ziel der allgemeinen Güteanforderungen nicht erreicht war, unabhängig davon,
wie sich die strukturelle Situation darstellte.

Die Regeln zur Durchführung der integralen Betrachtung sind nachfolgend tabellarisch aufgelistet. Aus Gründen der Übersichtlichkeit sind im jeweils linken Tabellenteil die möglichen Eingangswerte und deren Betrachtung bzgl. der Qualitätsziele, im rechten Tabellenteil die Regeln beschrieben.

Die Regeln für die Zusammenfassung der Einzelkomponenten in den Stufen "Öko-Chemie" (synthetische und nicht-synthetische Schadstoffe des Anhangs VIII einschließlich TOC, AOX und Sulfat) sowie für die Stoffe der "Chemie" (Anhänge IX und X) sind mit denen für die chemisch-physikalischen Parameter identisch.

Nach Durchlaufen des Schritts 1 unter Anwendung der obigen Regeln liegt die Betrachtung der Zielerreichung für jede Stufe in Gewässerabschnitten vor. Durch die anschließende Aggregation der Gewässerabschnitte auf die Wasserkörper mittels der 30/70-Regel (siehe Tab. 4.1.1-2), liegt die integrale Betrachtung zu Stufe I, Stufe II, Stufe III, Ökochemie und Chemie vor.

Regel für die Aggregation auf den Wasserkörper Tab. 4.1.1-2 Betrachtung des Längenanteil am resultierende Einschätzung der Abschnitts Wasserkörper Zielerreichung des Wasserkörpers > 30 % Zielerreichung unwahrscheinlich > 70 % \rightarrow Zielerreichung wahrscheinlich sonstige Fälle \rightarrow Zielerreichung unklar

Im folgenden **Schritt 2** werden die auf Wasserkörperebene vorliegenden Einschätzungen zur Zielerreichung der Stufen I bis III zusammengefasst, um so zu einer Einschätzung der Zielerreichung "Ökologischer Zustand Biologie" zu kommen. Hierbei werden folgende Regeln angewandt:

► Tab. 4.1.1-3	Regeln für Schritt 2								
	Eingangs- komponenten	Regel	Zielerreichung Ökologischer Zustand Biologie						
Ökologischer Zustand Biologie (Ökobiologie)	Zielerreichung von: • Stufe I • Stufe II • Stufe III	alle drei Komponenten mit Zielerreichung wahrscheinlich (+) zwei Komponenten mit Zielerreichung wahrscheinlich (+) und eine Komponente mit Zielerreichung unklar (?)	wahrscheinlich (+)						
		eine oder mehrere Komponenten mit Zielerreichung unwahrscheinlich (-)	unwahrscheinlich (-)						
		eine Komponente mit Zielerreichung wahrscheinlich (+) und zwei Komponenten mit Zielerreichung unklar (?) drei Komponenten mit Zielerreichung unklar (?)	unklar (?)						

4.1

Die Ergebnisse des Schritts 2, d. h. die Einschätzung der Zielerreichung "Ökologischer Zustand Biologie", werden in **Schritt 3** mit der Einschätzung der Zielerreichung der "Ökochemie" nach folgenden Regeln zur Ermittlung der Zielerrei-

chung "Ökologischer Zustand" zusammengeführt. Dieser wird mit den Ergebnissen der Betrachtung "Chemie" im letzten **Schritt 4** zur Gesamtbetrachtung nach den identischen Regeln aggregiert.

► Tab. 4.1.1-4	Regeln für Schri	tte 3 und 4	
	Eingangs- komponenten	Regel	Zielerreichung Ökologischer Zustand (Schritt 3) Zustand der Wasser- körper (Schritt 4)
Ökologischer	Zielerreichung von:	beide Komponenten mit Zielerreichung	wahrscheinlich (+)
Zustand (3)	 Ökobiologie 	wahrscheinlich (+)	
(Ökologie)	Ökochemie	eine oder beide Komponenten	unwahrscheinlich (-)
bzw.		mit Zielerreichung unwahrscheinlich (-)	
Gesamtzustand (4)	bzw.	eine Komponente mit	unklar (?)
		Zielerreichung wahrscheinlich (+) und	
	 Ökologie 	eine Komponente mit Zielerreichung unklar (?)	
	Chemie	beide Komponenten	
		mit Zielerreichung unklar (?)	

Die Eingangskomponenten sowie die Regeln zur integralen Betrachtung und zur Aggregation auf den Wasserkörper wurden in ein Auswertetool übertragen. Es wurde so programmiert, dass – ausgehend von geographischen Informationen über die komponentenspezifischen Klassifizierungen (gewässerparallele Bänder für Einzelkomponenten) und die Grenzen der Wasserkörper –

alle Integrations- und Aggregationsschritte automatisiert durchgeführt werden können. Zur näheren Erläuterung der abstrakten Regeln werden nachfolgend am Beispiel der Stufe I die Vorgehensweise zur integralen Betrachtung und die Ergebnisse derselben mit Daten zur konkreten Gewässersituation im Bearbeitungsgebiet Obere Ems verdeutlicht.

Beispiel "Umsetzung der Stufe I"

Die oben beschriebene Vorgehensweise wird nachfolgend exemplarisch dargestellt. In Stufe I werden die Ergebnisse der biologischen Gewässergüteklassifizierung und der Strukturkartierung miteinander verschnitten.

Bei einer Gewässergüteklasse II und besser wird davon ausgegangen, dass die Zielerreichung nach WRRL für diese Komponente wahrscheinlich ist. Bei Güteklasse II-III und schlechter wird dagegen angenommen, dass die Ziele wahrscheinlich nicht erreicht werden.

Für die Betrachtung der Gewässerstruktur wird gemäß den auf LAWA-Ebene getroffenen Vereinbarungen bei den Gewässerstrukturklassen 1-5 angenommen, dass trotz der Veränderungen in der Gewässerstruktur eine Zielerreichung wahrscheinlich ist, bei den Klassen 6 und 7 wird angenom-

men, dass eine signifikante Einschränkung der biozönotischen Entwicklungsmöglichkeiten zum guten ökologischen Zustand gegeben ist.

- a) Mit diesen Regeln werden die Ergebnisse der bisherigen siebenstufigen Güte- und Strukturklassifizierung gemäß der Fragestellung der Wasserrahmenrichtlinie zusammengefasst, ob die Zielerreichung wahrscheinlich oder unwahrscheinlich ist.
- b) Danach erfolgt, wie in Abbildung 4.1.1-4 dargestellt, die Zusammenfassung der Ergebnisse der Gewässergüte- und Gewässerstrukturbetrachtung nach der "Worst-case"-Regel zu einer integralen Aussage für den jeweiligen Gewässerabschnitt.
- c) Als letzter Schritt werden die Ergebnisse der vorangegangenen Zusammenfassung nach der 30/70-Regel auf den Wasserkörper aggregiert und damit gleichzeitig das Ergebnis der Stufe I erzielt.

Schematische Darstellung der integralen Betrachtung Stufe I Abb. 4.1.1-4 Betrachtung der Zielerreichung Stufe I Gewässergüte Gewässerstruktur Abschnittsweise Betrachtung Wasserkörper Betrachtung Stufe I **→ → → →** I-II Zielerreichung **→ →** wahrscheinlich **→ → → →** \rightarrow II \rightarrow **→** Zielerreichung **→** \rightarrow 2 unwahrscheinlich **→ → →** ← Fließrichtung **→ → → → → →** Zielerreichung II-III **→ →** 3 unwahrscheinlich **→ → → → → → → → → →** Zielerreichung 4 **→ →** wahrscheinlich П **→ →**

Die Karte 4.1-1 zeigt die Anwendung der Regeln auf das Gewässernetz des Bearbeitungsgebiets Obere Ems.

a) Zunächst werden die jeweiligen Ergebnisse der Gewässergüte- und Gewässerstrukturkartierung anhand der für die Betrachtung der Zielerreichung anzuwendenden Regeln in "Qualitätskriterium eingehalten" (grün) und "Qualitätskriterium nicht eingehalten" (rot) transformiert.

Die folgenden Tabellen zeigen das Ergebnis dieser Transformation getrennt für Nordrhein-Westfalen und Niedersachsen sowie für das gesamte Bearbeitungsgebiet.

Wie Tabelle 4.1.1-5 zeigt, halten 43,6 % der Gewässerstrecken im Bearbeitungsgebiet das Qualitätskriterium (Güteklasse II und besser) für die Biologische Gewässergüte ein, 49,7 % halten das Qualitätskriterium nicht ein.

► Beiblatt 4.1-1

Darstellung der Ergebnisse der Einzelschritte für Stufe I im Bearbeitungsgebiet Obere Ems

Biologische Gewässergüte / Zielerreichung Biologische Gewässergüte

unbelastet bis sehr gering belastet

III genng belastet
III mäßig belastet
IIIIII kritisch belastet
IIIIII stark verschmut

III stark verschmutzt
III - IV sehr stark verschmutzt
IV ubermaßig verschmutzt

Sonstige
Trocken

Gewässerstrukturgüte / Zielerreichung Gewässerstrukturgüte

Cüteklasse 1

Güteklasse 2

Cüteklasse 3

Guteklasse 4

Güleklasse 5

Guteklasse 6

cocco Güteklasse 7

Einschätzung Zustand Fließgewässer (Stand 2004)

Zielerreichung wahrscheinlich

Zielerreichung unwahrscheinlich

Zielerreichung unklar

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Novemphoti 22, 48147 Milastor

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1. Bestandsaufnahme

Flussyschretsembert Eins, Bearbeitungsyschiet Obere Eins

Beiblatt zu K 4.1 - 1:

Darstellung der Ergebnisse der Einzelschritte für Stufe I im Bearbeitungsgebiet Obere Ems

Ergebnis Gewässergüte Tab. 4,1.1-5

Einhaltung des Qualitätkriteriums	Länge Anteil NRW	prozentuale Einstufung Anteil NRW	Einstufung		Länge Obere Ems	prozentuale Einstufung Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	922	51,9	141	39,0	1.063	49,7
unklar	26	1,5	117	32,3	143	6,7
wahrscheinlich	828	46,6	104	28,7	932	43,6
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Tah 411-6 Ergebnis Gewässerstruktur

P Tub. 4.1.1 0						
Einhaltung des Qualitätkriteriums	Länge Anteil NRW	prozentuale Länge Einstufung Anteil NRW Anteil NI		prozentuale Einstufung Anteil NI	Länge Obere Ems	prozentuale Einstufung Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	1.217	68,6	168	46,4	1.385	64,8
unklar	22	1,2	103	28,6	125	5,9
wahrscheinlich	536	30,2	90	25,0	627	29,3
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

b) Danach werden die Bänder für Gewässergüte und -struktur zusammengeführt, wobei dann, wenn mindestens eine Komponente das Qualitätskriterium nicht einhält, die Zielerreichung für den fraglichen Gewässerabschnitt nach der in Tabelle 4.1.1-1 wiedergegebenen Regel als unwahrscheinlich angesehen wird.

Während für die Beurteilung der Gewässergüte die Festlegung von Messstellen und damit die Untergliederung der Gewässer in Abschnitte nach naturräumlichen, wasserwirtschaftlichen oder probenahmetechnischen Kriterien erfolgt ist, wurden für die Gewässerstrukturkartierung generell 100-m-Abschnitte betrachtet. Insofern unterscheidet sich die Abgrenzung von Gewässerabschnitten bei den Ausgangskomponenten.

Die vergleichende Betrachtung der Karten 2.1-2 und 2.1-3 in Kapitel 2 verdeutlicht, dass Gewässergüte- und Gewässerstrukturdefizite vielfach nicht dieselben Gewässerstrecken betreffen, d. h. mehrere Gewässerabschnitte, für die das Qualitätskriterium für die Gewässergüte eingehalten ist, erreichen dennoch

- nicht die Ziele für Stufe I, da in diesem Gewässerabschnitt die Strukturgüte das entsprechende Qualitätskriterium nicht einhält (dieser Zwischenschritt ist auf Karte 4.1-1 nicht dargestellt).
- c) Als letztes erfolgt die Aggregation auf den Wasserkörper, Alle Wasserkörper, bei denen mehr als 30 % der Gewässerstrecke die Ziele wahrscheinlich nicht erreichen, werden als Wasserkörper identifiziert, für die die Zielerreichung unwahrscheinlich ist. Hiervon sind bezogen auf die Stufe I der integralen Betrachtung 77,4 % der betrachteten Gewässerstrecke im Bearbeitungsgebiet Obere Ems betroffen.

Die Gesamtdarstellung über alle Schritte der integralen Betrachtung erfolgt in der "Ergebnistabelle" in Kapitel 4.1.2.

4.1

Konkretes methodisches Vorgehen in Niedersachsen

Wie wahrscheinlich es ist, dass die Oberflächenwasserkörper die gemäß Artikel 4 der WRRL aufgestellten Umweltqualitätsziele nicht erreichen, wird in Niedersachsen vorrangig aufgrund von Immissionsdaten beurteilt. Diese Wirkungsdaten werden integral bewertet und, falls erforderlich, mit erhobenen Belastungsdaten verschnitten, um so zu einer vorläufigen integralen Beurteilung zu kommen. In jedem Fall sind die Vor-Ort-Kenntnisse für die Beurteilung heranzuziehen.

Ergibt die Beurteilung der Auswirkungen nach Anh. II 1.5 anhand von Immissionsdaten, dass der gute Zustand eines Oberflächenwasserkörpers wahrscheinlich nicht erreicht wird und kann dies im Wesentlichen wegen möglicherweise bestehender Datendefizite nicht auf die in der Bestandsaufnahme erfassten Belastungen zurückgeführt werden oder erfordert die Planung von Maßnahmen eine genauere Datenbasis, so ist, soweit angezeigt, eine zusätzliche Beschreibung anhand detaillierterer Daten zusammenzustellen. Hierfür sind dann entsprechende Daten im Einzelfall zusätzlich zu erfassen. Der Umfang dieser vertieften Betrachtung wird sehr stark von den spezifischen Verhältnissen des Gebiets abhängen.

Für Oberflächenwasserkörper, bei denen die Zielerreichung unwahrscheinlich bzw. unklar ist, besteht gem. Anh. II 1.5 Abs. 3 weiterer Handlungsbedarf durch eine zusätzliche Beschreibung nach 2004, um die nach Artikel 8 der Richtlinie aufzustellenden Überwachungsprogramme wie auch die nach Artikel 11 aufzustellenden Maßnahmenprogramme optimal zu gestalten.

Es wird eine Einschätzung vorgenommen, wie sich die einzelnen Belastungen sowohl stofflicher als auch morphologischer Art auf Oberflächenwasserkörper auswirken und wie wahrscheinlich es ist, dass durch diese Belastungen der geforderte gute ökologische Zustand verfehlt wird. Bei der Einstufung der Zielerreichung wird auch eine Feststellung der Empfindlichkeit der Oberflächenwasserkörper gegenüber den festgestellten anthropogenen Einflüssen einbezogen. Sie erfordert folgende Schritte:

- Es werden Immissions- und Gütedaten zusammengestellt, die die Ist-Situation beschreiben.
- Die Daten werden integral (komponentenübergreifend) bewertet und auf einen Wasserkörper oder ggf. eine Wasserkörpergruppe aggregiert.
- Sofern Veränderungen bekannt sind, die ohne weitere Maßnahmen zu einer Veränderung des Zustands des Wasserkörpers bis 2015 führen werden, wird diese Prognose verbal beschrieben. Die Abschätzung bezieht sich dabei auf den aktuellen Gewässerzustand und zieht künftige Maßnahmen bis 2015 nicht in die Betrachtung mit ein.

In Niedersachsen liegen flächendeckend Immissionsdaten vor, die bereits zu Gütebewertungen herangezogen wurden. Diese wurden für eine erste Einschätzung verwendet.

Für das Umweltziel "guter ökologischer Zustand" sind im Wesentlichen zwei Qualitätskomponenten zu betrachten:

- die biologischen Komponenten (Fische, Benthos und Gewässerflora) und
- die spezifischen Schadstoffe des Anhangs VIII Nr. 1.9 WRRL.

Fehlende biologische Daten werden zunächst hilfsweise durch die unterstützenden Bewertungskomponenten aus den Gütemessungen und der Strukturerhebung ersetzt:

- Daten zum saprobiellen und trophischen Zustand der Gewässer
- Morphologische Strukturdaten und/oder Daten zur biologischen Durchgängigkeit

Mit den bisher vorliegenden Daten zu spezifischen Schadstoffen und den Daten der unterstützenden Komponenten (einschließlich der Durchgängigkeitsdaten) sowie ggf. weiteren regional spezifischen Kenntnissen zu sonstigen chemisch-physikalischen Belastungsbesonderheiten wurde die Einstufung der Zielerreichung vorgenommen und ein vorläufiges Urteil über Wahrscheinlichkeit eines Verfehlens des "guten ökologischen Zustands" der Gewässer abgegeben.

Das Umweltziel "guter chemischer Zustand" wird anhand der spezifischen Schadstoffe nach Anhang IX und X WRRL bewertet. Eine Zielerreichung liegt vor, wenn die Qualitätsnormen eingehalten sind. Daten zu einigen der prioritären und prioritär gefährlichen Schadstoffe sind teilweise über die Berichtspflichten zur Richtlinie 76/464/EWG vorhanden, wenngleich meist nur über das grobe LAWA-Messnetz so-wie über die der EPER-Liste der IVU-Richtlinie (Richtlinie zur Integrierten Vermeidung und Verminderung der Umweltverschmutzung).

Die Einschätzung, wie sich die anthropogenen Belastungen auf die Oberflächenwasserkörper auswirken und welche Zielerreichung derzeit vorliegt, wird anhand einer dreistufigen Beurteilung der vorgenannten biologischen und chemischen Qualitätskomponenten vorgenommen. Es wird zwischen einer Zielerreichung wahrscheinlich, unklar oder unwahrscheinlich unterschieden. Liegt eine Überschreitung einer Qualitätskomponente vor, ist die Zielerreichung unwahrscheinlich.

Fehlen Daten oder liegen keine validen Daten vor, ist die Zielerreichung unklar. Ebenfalls unklar ist die Zielerreichung, wenn die Bewertungskriterien nicht eindeutig sind. Für "erheblich veränderte" Wasserkörper muss gemäß WRRL nicht der "gute ökologische Zustand" sondern das "gute ökologische Potenzial" erreicht werden. Da zum jetzigen Zeitpunkt die Kriterien für das "gute ökologische Potenzial" noch nicht festgelegt sind, wird die Zielerreichung der als "vorläufig erheblich verändert" ausgewiesenen Wasserkörper damit als "unklar" eingestuft.

Werden alle Qualitätskomponenten eingehalten, ist davon auszugehen, dass eine Zielerreichung wahrscheinlich ist.

Im Rahmen der Monitoringprogramme werden die Wasserkörper, bei denen die Zielerreichung unwahrscheinlich oder unklar ist, gleich behandelt, d.h. einer weitergehenden Beschreibung und einem operativen Monitoring unterzogen.

In Niedersachsen sind für die Einstufung der Zielerreichung der Oberflächenwasserkörper im Rahmen der Vorgaben der LAWA-Arbeitshilfe und auf der Grundlage der vorhandenen Daten verschiedene Komponenten untersucht worden.

Weiterführende detaillierte Methodenbeschreibungen zur Einstufung der Zielerreichung der Oberflächenwasserkörper sind den C-Berichten zu entnehmen.

Die niedersächsische Vorgehensweise wurde für die Erstellung des gemeinsamen Berichts für das Bearbeitungsgebiet Obere Ems der nordrhein-westfälischen Vorgehensweise angepasst, mit dem Ziel, eine grenzüberschreitende Darstellung der Ergebnisse zu ermöglichen. Dabei war im Gesamtergebnis die Einstufung, die im niedersächsischen Teilbericht zur Oberen Ems (Stand 22.12.2004) vorgenommen wurde, unabhängig von den im vorliegenden Bericht eingefügten Zwischenschritten ausschlaggebend.

4.1.2

Ergebnisse

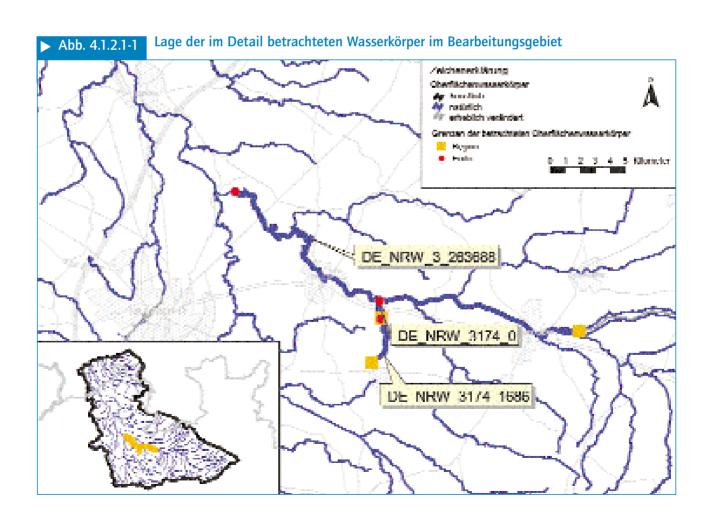
Nachfolgend werden für jeden der 266 Wasserkörper im Bearbeitungsgebiet Obere Ems die relevanten Daten zur Gewässersituation in tabellarischer Form dargestellt. Die tabellarische Zusammenstellung der Ausgangssituation, die im Jahr 2004 in jedem einzelnen Wasserkörper festgestellt wurde, und der auf den jeweiligen Wasserkörper wirkenden Belastungen bietet erstmalig die Möglichkeit, "auf einen Blick" alle relevanten wasserwirtschaftlichen Aspekte zu betrachten und transparent und im Zusammenhang zu kommunizieren. Mit dieser integralen Betrachtung wird eine Basis sowohl für die nächsten Schritte zur Umsetzung der Wasserrahmenrichtlinie als auch für den zukünftigen wasserwirtschaftlichen Vollzug geschaffen.

In Kapitel 4.1.2.1 sind die Ergebnisse der integralen Betrachtung für alle Wasserkörper dargestellt.

Im Kapitel 4.1.2.2 werden zusammenfassende Auswertungen über alle Wasserkörper im Bearbeitungsgebiet Obere Ems vorgestellt. Diese Auswertungen geben Hinweise auf Belastungsschwerpunkte.

Im Folgenden wird am Beispiel von zwei Gewässern (drei Wasserkörper) im Bearbeitungsgebiet explizit erläutert, welche Gewässerbelastungen zu den festgestellten Ergebnissen geführt haben und wie die Einschätzung der Gewässersituation erfolgt ist.

4.1.2.1


Wasserkörperspezifische Ergebnisdarstellung

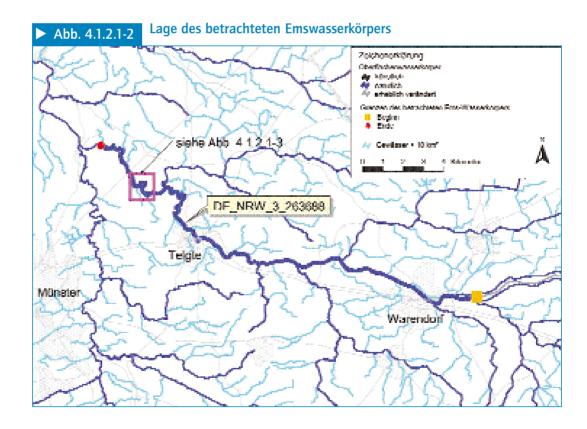
Die Ergebnisse der einzelnen Stufen der integralen Betrachtung werden für jeden Wasserkörper des Bearbeitungsgebiets in tabellarischer Form zusammengefasst (siehe Tabelle 4.1.2.1-1 am Ende des Kapitels) und karthographisch in den Karten 4.1-2a und 4.1-2b dargestellt.

Im oberen Teil der Tabelle 4.1.2.1-1 sind die Ergebnisse der komponentenspezifischen Klassifizierung entsprechend Kap. 2 aufgeführt. Zur Vereinfachung der Darstellung wurde hierbei eine Aggregation der komponentenspezifischen Klassifizierung auf den Wasserkörper entsprechend der 30/70-Regel (siehe Tabelle 4.1.1-2) vorgenommen. Zudem sind die Ergebnisse der integralen Betrachtung dargestellt. Im unteren Teil der Tabelle sind die auf den jeweiligen Wasserkörper wirkenden Belastungen qualitativ dargestellt. Quantitative Informationen zu den Belastungen finden sich im Kap. 3.

Die wasserkörperspezifische Ergebnisdarstellung wird im Folgenden anhand zweier ausgewählter Beispiele erläutert.

Bei den ausgewählten Beispielen handelt es sich um die in Abb. 4.1.2.1-1 dargestellten Wasserkörper DE_NRW_3_263688 des Hauptgewässers Ems und die beiden Wasserkörper DE_NRW_ 3174_0 und DE_NRW_3174_1686 der Maar-

Wasserkörper


EMS VON WARENDORF BIS MÜNSTER (Wasserkörper DE NRW 3 263688)

Die Ems ist im Bearbeitungsgebiet Obere Ems in sieben Wasserkörper unterteilt. Im Folgenden soll der Wasserkörper DE_NRW_3_263688 besonders betrachtet werden.

Der Wasserkörper erstreckt sich über die Länge von 33,1 km und verläuft innerhalb der Gemeindegebiete von Telgte und Warendorf. Er reicht von der Mündung des Axtbaches bis an den Rand der Fuestruper Berge. Flussaufwärts der

Axtbachmündung befindet sich ein als "erheblich verändert" eingestufter Wasserkörper. Die untere Wasserkörpergrenze wurde aufgrund einer wesentlichen Änderung der Belastungssituation festgelegt – sie markiert den Übergang eines vergleichsweise naturnahen Emsabschnitts zu einem durchweg stark ausgebauten Emswasserkörper.

Typänderungen mussten bei der Abgrenzung des Wasserkörpers nicht berücksichtigt werden, da die Ems mit Ausnahme ihres Oberlaufs im gesamten Bearbeitungsgebiet als "sandgeprägter Fluss des Tieflands" klassifiziert ist.

4.1

Bewertung des ökologischen Zustands

Die Gewässergüte der Ems liegt im betrachteten Wasserkörper bei Güteklasse II. Entlang der Fließstrecke leiten ausschließlich die kommunalen Kläranlagen der Städte Telgte und Warendorf gereinigte Abwässer direkt bzw. über den Hellegraben (KA Warendorf) in die Ems ein. Eine signifikante Verschlechterung der Gewässergütesituation wird dadurch nicht verursacht. Auch die signifikant höher als die Ems belasteten Zuflüsse Maarbecke und Holzbach, die in ihrem Unterlauf jeweils die Gewässergüteklasse II-III aufweisen, führen nicht zu einer Verschlechterung der Gewässergüte. Somit entspricht der betrachtete Wasserkörper auf voller Länge den Gewässergüteanforderungen.

Die Gewässerstruktur ist überwiegend als "sehr stark verändert" klassifiziert (Strukturklasse 6). Ursächlich dafür ist im Wesentlichen die Begradigung und die durch massive Steinpackungen gestützte Festlegung der Ems in einem starren Trapezprofil. Kennzeichnend ist das Vorherrschen monotoner und naturferner Strukturen sowie die starke Eintiefung der Gewässersohle gegenüber der Aue. Ausnahmen finden sich lediglich innerhalb eines 7,5 km langen Flussabschnitts vor der unteren Wasserkörpergrenze. Im Bereich des Standortübungsplatzes Münster-Dorbaum und der oberhalb liegenden, wieder aktivierten Altarme ist die Struktur deutlich besser. Hier konnte wegen der fehlenden Ufersicherung eine eigendynamische Entwicklung einsetzen, die zu einer deutlichen Erhöhung der Strukturdiversität führte. Die Abbildung 4.1.2.1-3 zeigt die wiederangebundene Emsschleife "Ringemanns Hals" bei Westbevern.

Insgesamt gesehen entspricht der Wasserkörper jedoch nicht den Qualitätsanforderungen hinsichtlich der Gewässerstruktur.

Aufgrund der Ergebnisse aus der Strukturklassifizierung muss für den Wasserkörper bereits in Stufe I die Zielerreichung als unwahrscheinlich angesehen werden.

In der **fischfaunistischen Betrachtung** des Wasserkörpers ergab sich, dass auf Grund des Fehlens der historisch hier verbreiteten Langdistanzwanderfische wie Lachs und Flussneunauge das Qualitätskriterium nicht eingehalten wurde. Flussabwärts des Wasserkörpers befinden sich meh-

rere, nur eingeschränkt passierbare Querbauwerke (z.B. Wehr Rheine), die einen Aufstieg entsprechender Arten bis in den betrachteten Emswasserkörper verhindern. Innerhalb des Wasserkörpers stellt das Mühlenwehr in Warendorf ein absolutes Wanderhindernis für Fische dar.

Abb. 4.1.2.1-3 Wieder angebundene Emsschleife "Ringemanns Hals" bei Westbevern

Hauptverantwortlich für die festzustellenden deutlichen Abweichungen der aktuellen von der potenziell natürlichen Fischfauna ist die starke morphologische Degradation des Gewässerlaufs. Beispielsweise haben Verluste und die Veränderungen der ehemals durch kiesige Substrate geprägten Laichhabitate nachhaltig negative Auswirkungen auf das Vorkommen lithophiler Arten. Unter den Vertretern dieser Gruppe sind neben Lachs und Flussneunauge auch die für den größten Teil des Wasserkörpers typspezifische Leitfischart sowie wichtige Begleitfischarten betroffen. So kommen Barbe sowie Quappe und Zährte nicht mehr in mengenmäßig prägenden Beständen im betrachteten Wasserkörper vor.

Damit muss die Zielerreichung hinsichtlich der Fischfauna (Stufe II) ebenfalls als unwahrscheinlich eingeschätzt werden.

Bei den **chemisch-physikalischen Parametern** sind für Chlorid, pH-Wert, Sauerstoff, Temperatur und Ammonium keine Überschreitungen der Qualitätskriterien zu verzeichnen.

Für den Parameter Gesamt-Stickstoff wurde auf mehr als einem Drittel der Wasserkörperlänge das Qualitätskriterium überschritten. Die restliche Strecke weist eine Überschreitung des hal-

22

► 4.1 Integrale Betrachtung des Zustands der Oberflächenwasserkörper

ben Qualitätskriteriums auf. Als Ursache sind in erster Linie diffuse Einträge aus der Landwirtschaft zu nennen.

Für den Parameter Phosphor ist abschnittsweise eine Qualitätskriteriumüberschreitung zu verzeichnen. Der überwiegende Teil des Wasserkörpers ist durch Überschreitungen des halben Qualitätskriteriums gekennzeichnet.

Die punktuellen Einträge aus Kläranlagen und der Niederschlagswasserbeseitigung führen weder für Stickstoff noch für Phosphor zu einer signifikanten Verschlechterung des Gewässerzustands.

Da bei den chemisch-physikalischen Parametern auf einem signifikanten Anteil der Wasserkörperstrecke die Qualitätskriterien nicht eingehalten werden, wird die Zielerreichung für die Stufe III als unwahrscheinlich angesehen.

In der Zusammenfassung der Stufen I, II und III zum "ökologischen Zustand Biologie" spiegeln sich die Einzelergebnisse mit "Zielerreichung unwahrscheinlich" wider.

Für die Bewertung des "ökologischen Zustands Chemie" sind synthetische und nicht-synthetischen Schadstoffe des Anhangs VIII und die Summenparameter TOC und AOX relevant.

Für den Summenparameter TOC wird auf 29 % der Wasserkörperstrecke das Qualitätskriterium überschritten, die übrige Strecke ist durch eine Überschreitung des halben Qualitätskriteriums gekennzeichnet. Neben einer standort- und nutzungsabhängigen Belastung aus der Fläche sind als Ursache insbesondere punktuelle Einträge aus kommunalen Kläranlagen zu nennen, wobei ein erheblicher Teil der TOC-Fracht schon oberhalb des betrachteten Wasserkörpers eingetragen wird.

Für den Summenparameter AOX wird durchgehend das halbe Qualitätskriterium überschritten. Auch hier liegen die Belastungsquellen im Wesentlichen oberhalb des betrachteten Wasserkörpers. Im Vergleich der Fracht von 428 kg/a, die mit der Einleitung des Abwasserverbands Obere Lutter der Ems zugeführt wird, sind die Frachten aus den Einleitungen der beiden Kläranlagen Telgte (30,95 kg/a) und Warendorf (121,5 kg/a) eher als geringfügig einzustufen. Unter den Metallen aus Stoffgruppe des Anhangs VIII liegt für Zink über den gesamten Wasserkör-

per eine Überschreitung des Qualitätskriteriums vor. Für Kupfer wurde auf einer Streckenlänge von etwa 29 km eine Überschreitung des halben Qualitätskriteriums festgestellt. Beide Stoffe weisen schon oberhalb des betrachteten Wasserkörpers entsprechend überhöhte Konzentrationen auf. Als Hauptemissionsquelle sind Regenwassereinleitungen in die Oberflächengewässer zu nennen.

Überschreitungen des Qualitätskriteriums sind für die PCB-Kongenere 138 und 153 gegeben, eine Überschreitung des halben Qualitätskriteriums ist für das Kongener 180 zu verzeichnen. Die Belastungsquellen sind im oberhalb des Wasserkörpers gelegenen Einzugsgebiet zu vermuten.

Für die Stoffe Bor, Nitrit und das PCB-Kongener 52 lassen die vorhandenen Daten aus der Gewässergüteüberwachung bzw. die Kenntnis über die punktuellen und diffusen Einleitungen die Aussage zu, dass derzeit keine signifikanten Belastungen des betrachteten Wasserkörpers gegeben sind. Für Selen liegt ein Anfangsverdacht auf eine Belastung vor, der aus einer Überschreitung des Qualitätskriteriums innerhalb des nachfolgenden Wasserkörpers resultiert. Für AMPA liegen derzeit zwar keine Untersuchungsdaten innerhalb des Wasserkörpers vor ein Anfangsverdacht resultiert aber aus Belastungsbefunden oberhalb gelegener Emswasserkörper. Die ökotoxikologische Relevanz dieses Stoffs ist noch nicht abschließend geklärt.

Aus den übrigen Parametern des Anhangs VIII ist für das Detergentium EDTA eine Qualitätskriteriumüberschreitung im gesamten Wasserkörper zu verzeichnen. Die Konzentrationen überschreiten schon oberhalb des Wasserkörpers die Grenzwerte. Auf der betrachteten Strecke führen die kommunalen Kläranlagen Telgte und Warendorf Abwässer mit signifikanten Konzentrationen zu.

Als Ergebnis der Betrachtung der synthetischen und nicht-synthetischen Schadstoffe des Anhangs VIII und der Summenparameter TOC und AOX wird die Zielerreichung für den "Ökologischen Zustand Chemie" des Wasserkörpers als unwahrscheinlich angesehen. Die Zielerreichung für den "Ökologischen Zustand", der die drei vorangegangenen Stufen zusammenfasst, ist ebenfalls unwahrscheinlich.

4.1

Bewertung des chemischen Zustands

Bei Betrachtung der Stoffe der Anhänge IX und X der WRRL (prioritäre und prioritär gefährliche Schadstoffe) überschreiten die Schwermetalle Cadmium und Blei die Qualitätskriterien. Nickel und Quecksilber überschreiten jeweils das halbe Qualitätskriterium. Die vier Schwermetalle werden dem betrachteten Wasserkörper bereits in entsprechend erhöhten Konzentrationen aus dem oberhalb gelegenen Wasserkörper zugeführt. Während für Cadmium keine Belastungsquelle bekannt ist, tragen neben den kommunalen Kläranlagen nach bisherigen Kenntnissen vor allem die Regenwassereinleitungen direkt oder über kleine Nebengewässer signifikante Frachten an Blei in das Einzugsgebiet ein.

Das Totalherbizid Diuron wird vielfach auf befestigten Flächen zur Unkrautbeseitigung eingesetzt und über kommunale Kläranlagen in die Gewässer eingetragen. Im betrachteten Wasserkörper ist ab der Kläranlage Telgte das halbe Qualitätskriterium überschritten. Oberhalb davon liegen zwar keine Daten vor, eine Belastung ist jedoch anzunehmen, da die Kläranlage Warendorf ebenfalls Abwässer mit signifikant erhöhten Konzentrationen emittiert. Zusätzlich liegen schon in oberhalb des Wasserkörpers gelegenen Abschnitten Qualitätskriteriumüberschreitungen vor.

Für das im Getreideanbau verwendete Herbizid Isoproturon liegen nur auf einem kurzen Abschnitt Daten vor, die eine Überschreitung des halben Qualitätskriteriums beschreiben. Da von einem flächenhaften Einsatz auf den umliegenden, durch Getreideanbau geprägten landwirtschaftlichen Nutzflächen auszugehen ist, wird eine mögliche Belastung angenommen.

Unter den PAK liegen für Fluoranthen und Benzo(a)pyren jeweils Konzentrationen über dem halben Qualitätskriterium vor, weshalb die Zielerreichung für diese Stoffe im betrachteten Wasserkörper unklar bleibt. Bereits oberhalb davon ist das halbe Qualitätskriterium überschritten.

Die Einstufung des Chemischen Zustands ergibt damit das gleiche Ergebnis wie die des Ökologischen Zustands Chemie. Die Zielerreichung muss als unwahrscheinlich angesehen werden.

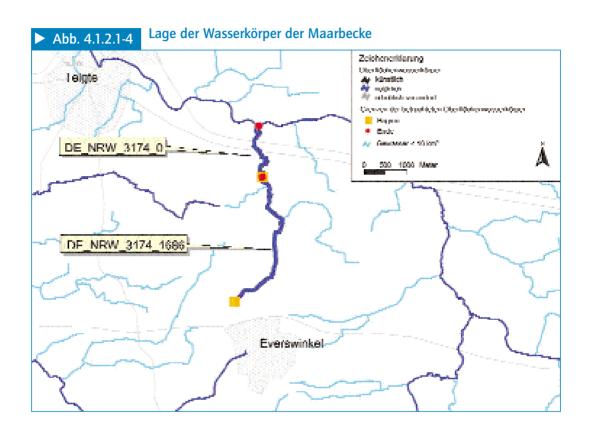
Bewertung des Gesamtzustands

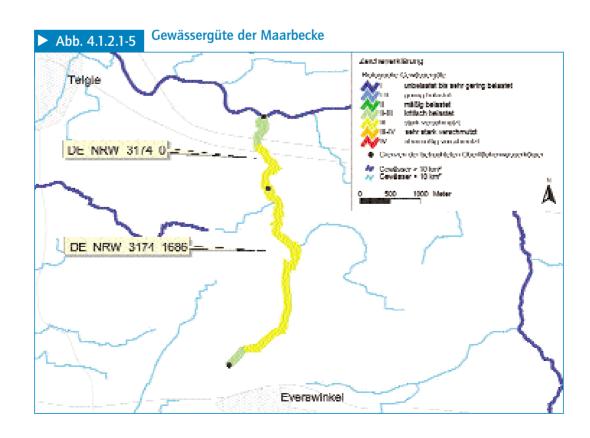
In der Gesamtzusammenfassung wird die Zielerreichung des Wasserkörpers als unwahrscheinlich eingestuft, wobei in keiner Zustands-Stufe die Qualitätskriterien eingehalten werden.

Wasserkörper

MAARBECKE (Wasserkörper DE_NRW_3174_0 und DE_NRW_3174_1686)

Die Maarbecke ist ein direkter Nebenfluss der Ems; sie entspringt nördlich der Stadt Everswinkel und mündet nach 5,8 km in die Ems. Das Einzugsgebiet umfasst 10,77 km². Bei Kilometer 2 mündet ein namenloses Gewässer (< 10 km²) und weiter oberhalb bei Kilometer 3 der Voßbach (< 10 km²) in die Maarbecke.

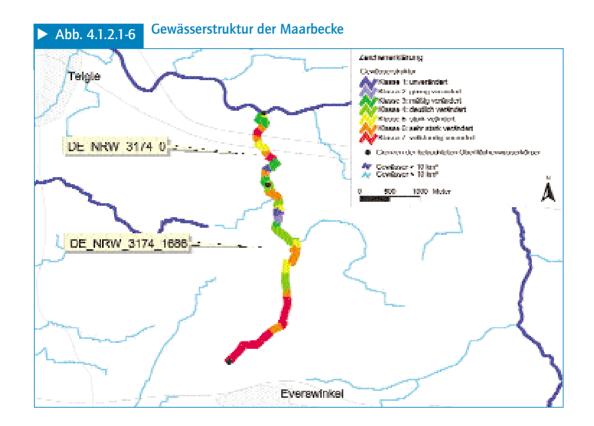

Die Maarbecke ist in zwei Wasserkörper unterteilt:


- Wasserkörper DE_NRW_3174_0
- Wasserkörper DE_NRW_3164_1686

Die Unterteilung der Wasserkörper beruht darauf, dass der Abschnitt kurz vor Einmündung in die Ems dem Gewässertyp 19 (Kleine Niederungsgewässer in Fluss- und Stromtälern) entspricht, oberhalb bis zur Quelle dem Typ 14 (Sandgeprägte Tieflandbäche).

Bewertung des ökologischen Zustands

Die Gewässergüte des oberen Wasserkörpers DE NRW 3164 1686 wird stark vom Einfluss der Einleitung der Firma Humana Milchunion geprägt. Trotz guter Reinigungsleistung bewirkt die Abwassereinleitung dieser Firma in den Gewässeroberlauf eine Verschlechterung der biologischen Gewässergüteklasse um eine Stufe von "kritisch belastet (Güteklasse II-III)" in "stark verschmutzt (Güteklasse III)". Neben einer starken organischen Belastung bei geringem Sauerstoffgehalt wurden deutliche Reduktionserscheinungen im Gewässer festgestellt. Unterhalb der Einleitungsstelle besteht der Abfluss der Maarbecke fast ausschließlich aus dem gereinigten Abwasser der Kläranlage. Bis kurz vor Einmündung in die Ems verbessert sich die Gewässergüte des Gewässers auf kritisch belastet (Güteklasse II-III).



4.1

Das Qualitätskriterium für die Gewässergüte liegt bei Güteklasse II, so dass für beide Wasserkörper der Maarbecke die Zielerreichung bezüglich der Gewässergüte als unwahrscheinlich eingestuft werden musste.

In Bezug auf die Gewässerstruktur ist insbesondere der Oberlauf der Maarbecke sehr stark verändert. Überwiegend herrscht hier die Strukturklasse 7 vor.

Auch wenn es weiter unterhalb Abschnitte gibt, die sich nur "mäßig verändert" bis hin zu "unverändert" darstellen, kann man die Maarbecke insgesamt als ein sehr stark strukturell verändertes Gewässer bezeichnen. Ausnahmen mit nur geringen strukturellen Veränderungen finden sich lediglich in reinen Waldgebieten. Vorwiegend wird das Umland der Maarbecke aber bis an die Gewässeroberkante heran intensiv landwirtschaftlich genutzt.

Das Qualitätskriterium für die Gewässerstruktur liegt bei Strukturklasse 5. Die Gewässerstruktur des Wasserkörper DE_NRW_3174_0 und DE_NRW_3174_1686 weist zwar einige Abschnitte mit nur geringer bis mäßiger Strukturveränderung auf, die Anteile mit Strukturklasse > 5 liegen aber in beiden Wasserkörpern über 30 %, so

dass entsprechend der Aggregationsregel für die Wasserkörper (siehe Tabelle 4.1.1-2) insgesamt die Zielerreichung hinsichtlich Gewässerstruktur für beide Wasserkörper unwahrscheinlich ist. Nach der Zusammenfassung von Gewässergüte und -strukturklassifizierung, d. h. mit dem Ergebnis der Stufe I der integralen Betrachtung, kann damit bereits nicht mehr von einer Gesamt-Zielerreichung der beiden Wasserkörper der Maarbecke ausgegangen werden.

Befischungsdaten für die Maarbecke liegen nicht vor. Auch mit dem Wissen der örtlichen Experten konnte nicht geklärt werden, ob die Qualitätskriterien für die Fischfauna eingehalten werden. Für beide Wasserkörper muss für Stufe II daher die Zielerreichung vorläufig als unklar angesehen werden.

Bei der Betrachtung der allgemeinen chemischphysikalischen Komponenten in Stufe III ist zu erkennen, dass sich die intensive landwirtschaftliche Nutzung im Umfeld der Maarbecke auch in einer merklichen Nährstoffbelastung (Überschreitungen des Qualitätskriteriums von Nges und P) des Gewässers niederschlägt. Fehlende Beschattung sowie die Einleitung der Fa. Humana führen außerdem zu einer Wärmebelastung des Gewässers. Die vorgenannten Belastungen führen häufig ein Sauerstoffdefizit mit sich. Im Fall der Maarbecke wurden bezüglich Sauerstoff in beiden Wasserkörpern Überschreitungen des halben Qualitätskriteriums festgestellt. Als Ergebnis wird die Zielerreichung in Stufe III für beide Wasserkörper als unwahrscheinlich eingestuft.

Damit ist auch in der Zusammenfassung aller drei Stufen zum "Ökologischen Zustand Biologie" die Zielerreichung für die beiden Wasserkörper der Maarbecke unwahrscheinlich.

Für die Bewertung des "Ökologischen Zustands Chemie" sind synthetische und nicht-synthetischen Schadstoffe des Anhangs VIII und die Summenparameter TOC und AOX relevant.

Für den Summenparameter TOC wurde in beiden Wasserkörpern das halbe Qualitätskriterium überschritten. Die Ursache für die Überschreitung wird in der Einleitung der Firma Humana Milchunion vermutet. Für den Summenparameter AOX liegen keine Messdaten vor. Diese Datenlücke muss im Monitoring geschlossen werden.

Von den Stoffen des Anhangs VIII wird für die Metalle Kupfer und Zink in der Maarbecke noch Untersuchungsbedarf gesehen. Die Datenlage reicht zurzeit nicht aus, um eine Einstufung vorzunehmen. Kupfer und Zink werden über Niederschlags- und Mischwassereinleitungen bereits im Oberlauf in die Gewässer transportiert. Außerdem wird Untersuchungsbedarf für die PCBs 138, 153 und 180 gesehen. Für diese Parameter aus dem Bereich der Industriechemikalien reicht die Datenlage für eine Einstufung noch nicht aus. Aus der Liste der übrigen Parameter des Anhangs VIII konnte EDTA nicht abschließend eingestuft werden. Für die genannten Parameter gilt die Zielerreichung damit noch als unklar.

Als Ergebnis für den Bereich "Ökologischer Zustand Chemie", d. h. der Betrachtung der synthetischen und nichtsynthetischen Schadstoffe des Anhangs VIII der WRRL sowie von TOC, wird die Zielerreichung für beide Wasserkörper der Maarbecke als unklar eingestuft. Grund dafür ist die nicht ausreichende Datenlage der oben beschriebenen Parameter. Auch wenn damit noch keine abschließende Aussage hinsichtlich einer Zielerreichung für den Bereich Ökochemie getroffen werden kann, muss die Zielerreichung für den ökologischen Zustand der Maarbecke aufgrund der oben beschriebenen biologischen Belastungssituation als unwahrscheinlich eingestuft werden.

Bewertung des chemischen Zustands

Für die Betrachtung des chemischen Zustands der Gewässer gemäß den Stoffen der Anhänge IX und X der WRRL werden u. a. weitere Metalle herangezogen. Für Blei gilt hier das bereits für Kupfer und Zink Beschriebene: Da auch Blei über die Regenwasserentlastung in die Gewässer gelangen kann, die vorhandenen Daten aber für eine abschließende Einstufung nicht ausreichen, wird die Einhaltung des Qualitätskriteriums für beide Wasserkörper der Maarbecke als unklar eingestuft. Für alle weiteren betrachteten Metalle besteht zwar kein direkter Anfangsverdacht, die Datenlage reicht aber auch hier nicht aus, um eine abschließende Einstufung vorzunehmen. Für alle Metalle aus Anhang IX und X ist die Zielerreichung somit unklar.

Im Bereich der Pflanzenschutzmittel und der Industriechemikalien aus Anhang IX und X kann lediglich für Isoproturon und Diuron zum jetzigen Zeitpunkt eine Belastung nicht ausgeschlossen werden. Für alle weiteren Parameter aus Anhang IX und X kann die Zielerreichung als wahrscheinlich angesehen werden.

So stellt sich die chemische Belastungssituation der Maarbecke als insgesamt relativ unkritisch dar. Aufgrund der o. g. nicht abschließend bewertbaren Parameter muss die Zielerreichung für den chemischen Zustand der Wasserkörper der Maarbecke aber als unklar eingestuft werden.

Bewertung des Gesamtzustands

In der Gesamtbewertung muss die Zielerreichung beider Wasserkörper der Maarbecke als unwahrscheinlich eingestuft werden. Hier schlägt sich der schlechte biologische Zustand des Gewässers nieder.

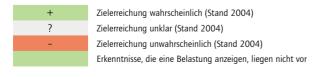
► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 1a)

				– Ein	schätzung (Teil 1a)							
				WK-Nr.			DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
						01001	3	3	3	3	3	3
							206483	263688	296800	316800	336486	358886
			G	ewässer					Ems			
			V	on [km]		175,792	206,483	263,688	296,800	316,800	336,486	358,886
				ois [km]		206,483	263,688	296,800	316,800	336,486	358,886	362,409
			Län	ge [km]		30,743	57,205	33,112	20,000	19,686	22,400	3,523
	.9		Stu	Bezeichnung	Gewässergüte	Salzbergen bis Lingen +	Rheine bis Münster	Münster bis Warendorf	Warendorf bis Gütersloh	Gütersloh bis Rietberg	Rietberg bis Hövelhof	Hövelhof bis Schloß + Holte-Stukenbrock
		gie	Ju	16 1	Gewässerstruktur	?	_	_	_	_	_	+
		90	Stu	Fo II	Fischfauna	?					_	+
		B	Stal	ie II	N	-	_	_	_	_	_	?
		Ökologischer Zustand Biologie	Stuf	الله	P		?	?	?	_		!
		Zus	Allgei		T	+	!	:	:			
		ē	chem.		0 ₂	+						
		isch	Kon		NH ₄	+						
		<u> 0</u>	nen		CI	+						
		ķ	lieli	iteli	pH	+						
	ÖKOLOGISCHER ZUSTAND				TOC	_	?	?	_	?	?	
	STA				AOX	?	?	?	?		·	
	Z				Sulfat	+		:	·			
	품	Ökologischer Zustand Chemie	Met	alle	Cu	?	+	?	?	?	?	
	SC		(Anh		Cr	?		•	•	·	•	
	ğ		VI	_	Zn	?	_	_	?	?	?	
	000	౼		,	AMPA	?	?	?	-	+	•	
	ë	and	PS	м	Mecoprop	?	•	•	?	+		
5		ust	(Anh		Metamitron	?			•			
Einschätzung		er Z	VI		Metazachlor	?						
c P		SCh		•	Metolachlor	?			?	+		
ins		igo	Indu	strie-	PCB-101	?	?					
		<u>8</u>	che	em.	PCB-138	?	-	-	+			
		:0	(Anh		PCB-153	?	_	_	+			
			VI		PCB-180	?	?	?	+			
					PCB-52	?	?	+				
					Übrige (Anhang VIII)	?	-	-	-	?	-	+
			Met	alle	Cd	?	?	-	?			
			(Anh	nang	Hg	?	?	?	?	?	?	?
	₽		IX,	X)	Ni	?	?	?	?	?	?	?
	Ĭ.				Pb	?	?	-	?	?	?	
	SUS		PSM		Atrazin	?						
	ER 2		hang	IX, X)	Isoproturon	?	-	?	?	+		
	통				Simazin	?						
	CHEMISCHER ZUSTAND				Diuron	?	?	?	-	+		
	Ä		Indu:		Benzo(a)anthracen	?						
	3		chem.		Benzo(a)pyren	?	?	?	+			
			IX,	X)	Fluoranthen	?	?	?	+			
					Übrige (Anhang IX, X)	?	+	+	+	+	+	+
					Ökologischer Zustand	-	-	-	-	-	-	+
					Chemischer Zustand	?	-	-	-	?	?	?
					Gesamtbewertung	?	-	-	-	-	-	?

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 1b)

	Analyse der Belastungen	(leil lb)						
WH	C-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
		01001	3	3	3	3	3	3
			206483	263688	296800	316800	336486	358886
Gewä	ässer				Ems			
von	[km]	175,792	206,483	263,688	296,800	316,800	336,486	358,886
bis	[km]	206,483	263,688	296,800	316,800	336,486	358,886	362,409
Länge	[km]	30,743	57,205	33,112	20,000	19,686	22,400	3,523
	Bezeichnung	Salzbergen bis Lingen	Rheine bis Münster	Münster bis Warendorf	Warendorf bis Gütersloh	Gütersloh bis Rietberg	Rietberg bis Hövelhof	Hövelhof bis Schloß Holte-Stukenbrock
	KomARA	Х				?	Х	
	IGL-ARA	Х		?				
	Regenwassereinleitungen		X	Х		?		
	Kühlwassereinleitungen							
	Sümpfungswassereinleitungen							
	Kleinkläranlagen							
	Schmutzwasser ohne							
	Behandlung							
	Erosion							
	Auswaschung		2		2	X	X	Х
	Altlasten		?		?	?	?	
Z	Sonstige diffuse Quellen, auch Sediment							
S _N	Einleitungen						.,	
ST.	Entnahmen			Х		Х	Х	
F	Abflussregulierungen durch			^				
ANALYSE DER BELASTUNGEN	Talsperren							
DE	Wasserverluste							
rSE	Über- und Umleitungen							
ĮĄĘ	Querbauwerke und Rückstau				х	х	х	?
ŧ	Sonstige Abflussregulierungen							
	Gewässerstrukturgüte		х	Х		Х		
	Querbauwerke und Aufwärts-		х	х	х	х	х	?
	passierbarkeit							
	Sonstige morphologische							
	Belastungen							
	Sonstige signifikante							
	anthropogene Belastungen							
	Unbekannt							
	Oberlauf		Х			?		
	Zufluss Nebengewässer							
	Kommentar							

Zielerreichung wahrscheinlich (Stand 2004)
Zielerreichung unklar (Stand 2004)
Zielerreichung unwahrscheinlich (Stand 2004)
Erkenntnisse, die eine Belastung anzeigen, liegen nicht vor

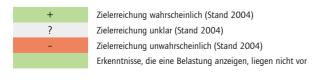

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 2a)

	Tub.		– Ein	schätzung (Teil 2a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					31112	31112	3112	3112	3114	3114	3116	31164
					0	3990	0	6900	0	17500	0	0
			Gewässer		Schwarzw	asserbach	Furlt	ach	Senne	ebach	Grubeb.	Forthb.
			von [km]		0,000	3,990	0,000	6,900	0,000	17,500	0,000	0,000
			bis [km]		3,900	6,228	6,900	14,586	17,500	25,526	22,235	5,400
			Länge [km]		3,900	2,238	6,900	7,686	17,500	8,026	22,235	5,400
			3 1		-,		-1			5/5_5		
			Bezeichnung		Hövelhof	Hövelhof	Delbrück bis Hövelhof	Hövelhof bis Augustdorf	Rietberg bis Schloss Holte-Stukenbrock	Schloss Holte-Stukenbrock	Rheda-Wiedenbrück bis Delbrück	Rheda-Wiedenbrück bis Langenberg
		je.	Stufe I	Gewässergüte	-	-	+	+	-	-	+	+
		9		Gewässerstruktur	-	-	+	+	-	-	-	-
		Ä	Stufe II	Fischfauna	?	?	?	?	-	+	?	?
		Ökologischer Zustand Biologie		N					-	-		?
		ust	Stufe III	Р								?
		ir Z	Allgemeine	Т								
		che	chemphys.	02								
		gis	Kompo-	NH ₄								
		9	nenten	Cl								
	_	ō		pH								
	ÖKOLOGISCHER ZUSTAND			TOC	?	?					?	?
	S			AOX								
	Z			Sulfat								
	포		Metalle	Cu	?	?					?	?
	SC	. <u>e</u>	(Anhang	Cr								
	8	Je I	VIII)	Zn	?	?					?	?
	0.0	<u> </u>	·	AMPA								
	÷ō	anc	PSM	Mecoprop								
Ē		nst	(Anhang	Metamitron								
tz n		er Z	VIII)	Metazachlor								
:E		녌		Metolachlor								
Einschätzung		Ökologischer Zustand Chemie	Industrie-	PCB-101								
ū		ko	chem.	PCB-138								
		:0	(Anhang	PCB-153								
			VIII)	PCB-180								
			VIII)	PCB-180								
				Übrige (Anhang VIII)	+	+	+	+	+	+	+	+
			Metalle	Cd Cd	T			-			-	7
			(Anhang	Hg								
	N		IX, X)	Ni	2	2					2	
	CHEMISCHER ZUSTAND		DCM (A	Pb	?	?					?	?
	ZU		PSM (An-	Atrazin								
	H		hang IX, X)	Isoproturon								
	£			Simazin								
	MIS			Diuron								
	H		Industrie-	Benzo(a)anthracen								
	J		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	+	+	-	-	-	-
				Chemischer Zustand	?	?	+	+	+	+	?	?
				Gesamtbewertung	-	-	+	+	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 2b)

	- Ana	alyse der Belastungen	(leil 2b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			31112	31112	3112	3112	3114	3114	3116	31164
			0	3990	0	6900	0	17500	0	0
	Gewässer		Schwarzw	asserbach	Furll	oach	Senn	ebach	Grubeb.	Forthb.
	von [km]		0,000	3,990	0,000	6,900	0,000	17,500	0,000	0,000
	bis [km]		3,900	6,228	6,900	14,586	17,500	25,526	22,235	5,400
	Länge [km]		3,900	2,238	6,900	7,686	17,500	8,026	22,235	5,400
	Bezeichnung		Hövelhof	Hövelhof	Delbrück bis Hövelhof	Hövelhof bis Augustdorf	Rietberg bis Schloss Holte-Stukenbrock	Schloss Holte-Stukenbrock	Rheda-Wiedenbrück bis Delbrück	Rheda-Wiedenbrück bis Langenberg
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen					?			
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung	X		Х		X	Х	Х	?
		Altlasten	?				?			
a		Sonstige diffuse Quellen,								
S _N		auch Sediment								
UT		Einleitungen								Х
¥.		Entnahmen								
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch								
DEF		Talsperren								
SE		Wasserverluste								
ALY		Über- und Umleitungen Ouerbauwerke und Rückstau	?		?	?		.,	?	?
Ā		Sonstige Abflussregulierungen				ſ	Х	Х		·
		Gewässerstrukturgüte	х	X			Х	?	х	
		Querbauwerke und Aufwärts-	?	^	?	?	X	· X	?	?
		passierbarkeit			•	•	^	^		·
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

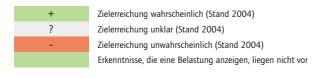

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 3a)

lab.	. 4.1.2	– Ein	schätzung (Teil 3a)								
		WK-Nr.		DE_NRW	E_NRW	DE_NRW	DE_NRW	DE_NRW	E_NRW	DE_NRW	DE_NRW
				31164	31164	31172	31172	3118	3118	3118	312
				5400	7600	0	3800	0	2800	5800	0
		Gewässer		Forth	bach	Euster	nbach		Hamelbach		Dalkeb.
		von [km]		5,400	7,600	0,000	3,800	0,000	2,800	5,800	0,000
		bis [km]		7,600	19,212	3,800	15,898	2,800	5,800	14,403	0,949
		Länge [km]		2,200	11,612	3,800	12,098	2,800	3,000	8,603	0,949
		3									
		5			bis Oelde	enbrück bi	bis Oelde	enbrück	enbrück	enbrück bi	Clarholz bis
		Bezeichnung		Langenberg	Langenberg bis Oelde	Rheda-Wiedenbrück bis Langenberg	Langenberg bis Oelde	Rheda-Wiedenbrück	Rheda-Wiedenbrück	Rheda-Wiedenbrück bis Oelde	Herzebrock-Clarholz bis Gütersloh
	a	Stufe I	Gewässergüte	+	+	-	-	-	-	-	-
	Ökologischer Zustand Biologie		Gewässerstruktur	-	-	-	-	-		-	-
	Sio	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
	P		N	?	-	?	?				?
	star	Stufe III	P	?	?	?	?	?	?		
	Zmi	Allgemeine	T								
	je j	chemphys.	02								
	iscl	Котро-	NH ₄				+				
	<u>6</u>	nenten	Cl								
	Ö		pH								
ÖKOLOGISCHER ZUSTAND			TOC	?	?	?	?	?	?		?
15			AOX		·	·			•		
Z			Sulfat								
量		Metalle	Cu	+		?	?	?	?		?
Š	<u>.e</u>	(Anhang	Cr			•	·	·	•		
ğ	Ökologischer Zustand Chemie	VIII)	Zn	+		?	?	?	?		?
9	5	V ,	AMPA			:	:	:	:		?
ë	and	PSM	Mecoprop								?
ਨੂ	ust	(Anhang	Metamitron								
Einschätzung	ı.	VIII)	Metazachlor								
ie i	S	VIII)	Metolachlor								?
nsc	<u>g</u> is	Industrie-	PCB-101								:
ш	8										
	:5	chem.	PCB-138								
		(Anhang	PCB-153								
		VIII)	PCB-180 PCB-52								
			Übrige (Anhang VIII)	+	+	+	+	+	+	+	
		Metalle	Cd Cd	+	+	T	7	+	+	+	
											2
		(Anhang	Hg Ni								?
CHEMISCHER ZUSTAND		IX, X)	Pb			?	?	?	?		
STA		DCM /A		+		,	(ſ	(?
ZU		PSM (An-	Atrazin								?
黑		hang IX, X)	Isoproturon								į.
$\widetilde{\Sigma}$			Simazin								2
¥ ×		Inches de la	Diuron Renze(a)anthracan								?
뿡		Industrie-	Benzo(a)anthracen								
		chem. (Anh.	Benzo(a)pyren								
		IX, X)	Fluoranthen		,				,	,	
			Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
			Ökologischer Zustand	-	-	-	-	-	-	-	-
			Chemischer Zustand	+	+	?	?	?	?	+	?
			Gesamtbewertung	-	-	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 3b)

	– Ana	alyse der Belastungen	(Teil 3b)							
	WK-Nr.		DE_NRW	E_NRW	DE_NRW	DE_NRW	DE_NRW	E_NRW	DE_NRW	DE_NRW
			31164	31164	31172	31172	3118	3118	3118	312
			5400	7600	0	3800	0	2800	5800	0
	Gewässer		Forth	bach	Euster	nbach		Hamelbach	l	Dalkeb.
	von [km]		5,400	7,600	0,000	3,800	0,000	2,800	5,800	0,000
	bis [km]		7,600	19,212	3,800	15,898	2,800	5,800	14,403	0,949
	Länge [km]		2,200	11,612	3,800	12,098	2,800	3,000	8,603	0,949
	Bezeichnung		Langenberg	Langenberg bis Oelde	Rheda-Wiedenbrück bis Langenberg	Langenberg bis Oelde	Rheda-Wiedenbrück	Rheda-Wiedenbrück	Rheda-Wiedenbrück bis Oelde	Herzebrock-Clarholz bis Gütersloh
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen							?	
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion Auswaschung				.,	?			, , , , , , , , , , , , , , , , , , ,
		Altlasten		Х	Х	X	· ·	Х		Х
		Sonstige diffuse Quellen,								
		auch Sediment								
	5	Einleitungen								
Š	Ŝ	Entnahmen								
NE CALLET PARTY AND STATE OF THE CAL		Abflussregulierungen durch Talsperren								
2	u D	Wasserverluste								
Ž	3	Über- und Umleitungen								
		Querbauwerke und Rückstau	?	?	?		?			
	•	Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	X	X	X	Х		Х	X	Х
		Querbauwerke und Aufwärts- passierbarkeit	?	?	?		?		?	
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

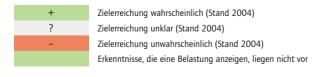

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 4a)

			– Ein	schätzung (Teil 4a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					312	312	312	3124	3124	3126	3126	3128
					949	9950	21762	0	2192	0	12000	0
			Gewässer			Dalkebach		Hasse	lbach	Menk	ebach	Wapelb.
			von [km]		0,949	9,950	21,762	0,000	2,192	0,000	12,000	0,000
			bis [km]		9,950	21,762	23,762	2,192	4,192	12,000	20,074	4,900
			Länge [km]		9,001	11,812	2,000	2,192	2,000	12,000	8,074	4,900
			Bezeichnung	Gewässergüte	Bielefeld	Gütersloh	Gütersloh bis Bielefeld	Gütersloh bis Bielefeld +	Bielefeld +	Gütersloh bis Bielefeld +	Bielefeld bis + Oerlinghausen	Gütersloh bis Rheda-Wiedenbrück
		og:		Gewässerstruktur	_	+	_	+	+	_	+	-
		Ö	Stufe II	Fischfauna	?	?	?	?	?	?	+	-
		Ökologischer Zustand Biologie		N	?	?	?			?	?	?
		tar	Stufe III	P						?	?	?
		Zus	Allgemeine	T						·		•
		her	chemphys.	02								
		jsc	Kompo-	NH ₄								
		90	nenten	Cl								
		Ö		pH								
	ÖKOLOGISCHER ZUSTAND			TOC	?	?						?
	TST.			AOX								
	נצו			Sulfat								
	皇		Metalle	Cu	?	?	?			?	+	?
	SCI	<u>.e</u>	(Anhang	Cr								
	00	Ē	`vIII)	Zn	?	?	?			?	+	?
	9	Ċ		AMPA	?							?
	ΞŌ	ä	PSM	Mecoprop	?							?
<u> 5</u>		'ust	(Anhang	Metamitron								•
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor								
ë.		Ř	·,	Metolachlor	?							?
in Sé		.gi	Industrie-	PCB-101	·							•
ш		Š	chem.	PCB-138								
		:0	(Anhang	PCB-153								
			VIII)	PCB-180								
			·,	PCB-52								
				Übrige (Anhang VIII)	_	+	+	+	+	_	_	?
			Metalle	Cd								
			(Anhang	Hg	+							?
	0		IX, X)	Ni	+							?
	AN			Pb	?	?	?			?	+	?
	UST		PSM (An-	Atrazin								
	RZ		hang IX, X)	Isoproturon	?							?
	里		J . ,	Simazin								
	CHEMISCHER ZUSTAND			Diuron	?							?
	E		Industrie-	Benzo(a)anthracen								
	5		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	+	+	-	-	-
				Chemischer Zustand	?	?	?	+	+	?	+	?
				Gesamtbewertung	-	-	-	+	+	-	-	-
				9								

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 4b)

- Analyse der Belastunger								
WK-Nr.	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
	312	312	312	3124	3124	3126	3126	3128
	949	9950	21762	0	2192	0	12000	0
Gewässer		Dalkebach		Hasse	lbach	Menk	ebach	Wapelb.
von [km]	0,949	9,950	21,762	0,000	2,192	0,000	12,000	0,000
bis [km]	9,950	21,762	23,762	2,192	4,192	12,000	20,074	4,900
Länge [km]	9,001	11,812	2,000	2,192	2,000	12,000	8,074	4,900
Bezeichnung	Bielefeld	Gütersloh	Gütersloh bis Bielefeld	Gütersloh bis Bielefeld	Bielefeld	Gütersloh bis Bielefeld	Bielefeld bis Oerlinghausen	Gütersloh bis Rheda-Wiedenbrück
KomARA	?							
IGL-ARA								
Regenwassereinleitungen								
Kühlwassereinleitungen								
Sümpfungswassereinleitunger	n							
Kleinkläranlagen								
Schmutzwasser ohne								
Behandlung								
Erosion		2		?		?		
Auswaschung	?	?		?	2			Х
Altlasten					?			
Sonstige diffuse Quellen, auch Sediment								
auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau	V	v						
Entnahmen	X	Х						
Abflussregulierungen durch								
Talsperren								
Wasserverluste								
Über- und Umleitungen								
Querbauwerke und Rückstau	?	Х	?			?		?
Sonstige Abflussregulierunger			·					
Gewässerstrukturgüte	х		х			х		х
Querbauwerke und Aufwärts		Х	?			?		?
passierbarkeit								
Sonstige morphologische								
Belastungen								
Sonstige signifikante								
anthropogene Belastungen								
Unbekannt								
Oberlauf								
Zufluss Nebengewässer								
Kommentar								


x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 5a)

			– Ein	schätzung (Teil 5a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW_	DE_NRW	DE_NRW
					3128	3128	31282	31282	31284	31284	312844	312844
					4900	29200	0	6700	0	19400	0	8300
			Gewässer		Wape	lbach	Rodei	ıbach	Ölb	ach	Lande	rbach
			von [km]		4,900	29,200	0,000	6,700	0,000	19,400	0,000	8,300
			bis [km]		29,200	35,525	6,700	12,545	19,400	29,618	8,300	11,392
			Länge [km]		24,300	6,325	6,700	5,845	19,400	10,218	8,300	3,092
					Jbro	bis bro	ф	Jbro	bis bro	Jbro		ıbro
					nker	rück uker	HoH	ukeı	rück uker	uker	쑹	uker
			5u		e-St	enb :e-St	055	e-St	enb :e-St	e-Str aus	oss	e-St
			E		불	Vied Holt	Schl	동	Vied Holt	Holt ngh	Schl	호
					SSO	da-V oss	bis enb	oss	da-V oss	oss)erli	bis e-Str	oss
			Bezeichnung		Schloss Holte-Stukenbrock	Rheda-Wiedenbrück bis Schloss Holte-Stukenbrock	Verl bis Schloss Holte- Stukenbrock	Schloss Holte-Stukenbrock	Rheda-Wiedenbrück bis Schloss Holte-Stukenbrock	Schloss Holte-Stukenbrock bis Oerlinghausen	Verl bis Schloss Holte-Stukenbrock	Schloss Holte-Stukenbrock
		a	Stufe I	Gewässergüte	-	-	-	-	+	-	-	-
		ogie		Gewässerstruktur	+	+	+	?	+	+	+	?
		jo	Stufe II	Fischfauna	?	+	?	?	_	_	_	_
		B B		N	?	+	+		?	?	?	+
		tan	Stufe III	P	?	+			-	;	:	
		Zus	Allgemeine	T								
		Ökologischer Zustand Biologie	chemphys.	O_2								
		isch	Kompo-	NH ₄								
		<u>6</u>	nenten	CI								
		ķ	Heliteli	pH								
	ÖKOLOGISCHER ZUSTAND	.0		TOC	?	+			_	?	?	+
	ξ			AOX	· ·	Т			_	!	:	
	Ž			Sulfat								
	띪		Metalle	Cu	?		?	+	?	?	?	
	동	ø.	(Anhang					+	· ·	?	· ·	+
	25	Ë		Cr	?		2		3	2	2	
	3	ਤੱ	VIII)	Zn			?	+	?	?	?	+
	Ö	P	PSM	AMPA					?		?	?
5		Ökologischer Zustand Chemie		Mecoprop					?			?
In		' Zu	(Anhang	Metamitron Metazachlor								
Einschätzung		che :	VIII)	****					2		2	2
ıscl		gis		Metolachlor					?		?	?
适		8	Industrie-	PCB-101								
		ë	chem.	PCB-138								
			(Anhang	PCB-153								
			VIII)	PCB-180								
				PCB-52	2				2		,	
			NA - C - 11	Übrige (Anhang VIII)	?	+	+	+	?	+	+	+
			Metalle	Cd					+	?		
			(Anhang	Hg					?	?	?	?
	N N		IX, X)	Ni					?	?	?	+
	CHEMISCHER ZUSTAND		DCM (1	Pb	?		?	+	?	?	?	+
	ZÜ		PSM (An-	Atrazin					2		2	
	H		hang IX, X)	Isoproturon					?		?	?
	Ã			Simazin								
	MIS			Diuron					?		?	?
	Ħ		Industrie-	Benzo(a)anthracen								
	J		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	-	-	-	-
				Chemischer Zustand	?	+	?	+	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 5b)

- Ana	alyse der Belastungen								
WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW_	DE_NRW	DE_NRW
		3128	3128	31282	31282	31284	31284	312844	312844
		4900	29200	0	6700	0	19400	0	8300
Gewässer		Wape	lbach	Roder	ıbach	Ölb	ach	Lande	rbach
von [km]		4,900	29,200	0,000	6,700	0,000	19,400	0,000	8,300
bis [km]		29,200	35,525	6,700	12,545	19,400	29,618	8,300	11,392
Länge [km]		24,300	6,325	6,700	5,845	19,400	10,218	8,300	3,092
Bezeichnung		Schloss Holte-Stukenbrock	Rheda-Wiedenbrück bis Schloss Holte-Stukenbrock	Verl bis Schloss Holte Stukenbrock	Schloss Holte-Stukenbrock	Rheda-Wiedenbrück bis Schloss Holte-Stukenbrock	Schloss Holte-Stukenbrock bis Oerlinghausen	Verl bis Schloss Holte-Stukenbrock	Schloss Holte-Stukenbrock
	KomARA								
	IGL-ARA								
	Regenwassereinleitungen				?	?	?	?	
	Kühlwassereinleitungen								
	Sümpfungswassereinleitungen								
	Kleinkläranlagen								
	Schmutzwasser ohne								
	Behandlung								
	Erosion								
	Auswaschung	Х	Х	Х	Х	Х		Х	
	Altlasten	?				?	?		?
z	Sonstige diffuse Quellen,								
2	auch Sediment								
ANALYSE DER BELASTUNGEN	Einleitungen	Х				х	Х	Х	
AS:	Entnahmen								
교	Abflussregulierungen durch								
품	Talsperren								
<u> </u>	Wasserverluste								
IX S	Über- und Umleitungen								
N A	Querbauwerke und Rückstau	Х	Х	?		?	Х	Х	Х
⋖	Sonstige Abflussregulierungen								
	Gewässerstrukturgüte								
	Querbauwerke und Aufwärts-	x	х	?		?	Х	х	х
	passierbarkeit								
	Sonstige morphologische								
	Belastungen								
	Sonstige signifikante								
	anthropogene Belastungen								
	Unbekannt								
	Oberlauf								
	Zufluss Nebengewässer								
	Kommentar								

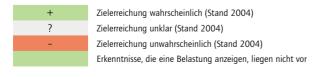
x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 6a)

	iab.	7.1.2	- Ein	schätzung (Teil 6a)	3		3		3			
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					31312	3132	3132	3132	31322	31324	31324	31326
					0	0	4193	20093	0	0	2500	0
			Gewässer		Ruthenb.		Lutter		Trüggelb.	Reihe	rbach	Welzpl.b.
			von [km]		0,000	0,000	4,193	20,093	0,000	0,000	2,500	0,000
			bis [km]		9,235	4,193	20,093	25,961	5,529	2,500	10,653	14,600
			Länge [km]		9,235	4,193	15,900	5,868	5,529	2,500	8,153	14,600
			Bezeichnung		Harsewinkel bis Rheda- Wiedenbrück	Harsewinkel	Bielefeld	Harsewinkel bis Bielefeld	Bielefeld	Gütersloh	Gütersloh bis Bielefeld	Harsewinkel bis Gütersloh
		gie	Stufe I	Gewässergüte	-	-	-	-	-	-	-	-
		9	Cturfu II	Gewässerstruktur	-	-	-	?	-	+	-	-
		<u> </u>	Stufe II	Fischfauna	-	-	-	-	?	-	-	?
		Ökologischer Zustand Biologie	S4	N P		?	?	?	?	?	?	
		Zust	Stufe III Allgemeine	T			· ·			-	-	
		ē	chemphys.									
		sch		O ₂								
		<u>o</u>	Kompo- nenten	NH ₄		?	?					
		Š	nenten	pH		· ·	f					
	ÖKOLOGISCHER ZUSTAND	.0		TOC	?	_	_		?	_	_	?
	ξ			AOX	· ·	?	?		· ·	?	?	·
	Z			Sulfat		?	+				:	
	띪		Metalle	Cu		?	?	?	?	?	?	
	Ã	<u>.e</u>	(Anhang	Cr		:	:	:	:	:	:	
	ğ	Ē	VIII)	Zn		?	?	?	?	?	?	
	9	호	¥,	AMPA	_	-	-	· -	:	-	-	
	ë	Ökologischer Zustand Chemie	PSM	Mecoprop	?	?	?	?		?	?	
Đ.		inst	(Anhang	Metamitron	·	•				·	•	
Einschätzung		er Z	VIII)	Metazachlor								
: <u>=</u>		ŞĊ	•,	Metolachlor	?	?	?	?		?	?	
ī.		og:	Industrie-	PCB-101	·	•				·	•	
ш		S	chem.	PCB-138								
		:0	(Anhang	PCB-153								
			VIII)	PCB-180								
			,	PCB-52								
				Übrige (Anhang VIII)	+	_	_	+	+	_	_	+
			Metalle	Cd						?	?	
			(Anhang	Hg		?	?	?	?			?
	0		IX, X)	Ni		?	?	?	?	?	?	
	Ā			Pb		?	?	?	?	?	?	
	JST		PSM (An-	Atrazin								
	R ZI		hang IX, X)	Isoproturon	?	?	?	?		?	?	
	품			Simazin								
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?		?	?	
	Ē		Industrie-	Benzo(a)anthracen								
	5		chem. (Anh.	Benzo(a)pyren					?	?	?	
			IX, X)	Fluoranthen					?	?	?	
				Übrige (Anhang IX, X)	+	+	+	+	?	?	?	+
				Ökologischer Zustand	-	-	-	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 6b)

	- All	alyse der Belastungen	(leil 6b)							
W	K-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			31312	3132	3132	3132	31322	31324	31324	31326
			0	0	4193	20093	0	0	2500	0
Gew	ässer		Ruthenb.		Lutter		Trüggelb.	Reihe	rbach	Welzpl.b.
von	[km]		0,000	0,000	4,193	20,093	0,000	0,000	2,500	0,000
	[km]		9,235	4,193	20,093	25,961	5,529	2,500	10,653	14,600
Länge			9,235	4,193	15,900	5,868	5,529	2,500	8,153	14,600
3	Bezeichnung	KomARA	Harsewinkel bis Rheda- Wiedenbrück	Harsewinkel	Bielefeld	Harsewinkel bis Bielefeld	Bielefeld	Gütersloh	Gütersloh bis Bielefeld	Harsewinkel bis Gütersloh
		IGL-ARA			· ·				?	
				?	?	?	?		?	
		Regenwassereinleitungen			· ·	· ·	· ·		· ·	
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung	Х	Х	X			Х		X
		Altlasten			?	?	?		?	?
Z		Sonstige diffuse Quellen,								
Ū Ž		auch Sediment								
ANALYSE DER BELASTUNGEN		Einleitungen			Х				Х	
₹		Entnahmen								
B		Abflussregulierungen durch								
E		Talsperren								
<u> </u>		Wasserverluste								
ž,		Über- und Umleitungen								
3		Querbauwerke und Rückstau	X	?	Х	X		?	Х	Х
		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	X	Х			?		?	
		Querbauwerke und Aufwärts-	Х	?	Х	Х		?	Х	Х
		passierbarkeit								
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf		?				?		
		Zufluss Nebengewässer								
		Kommentar								

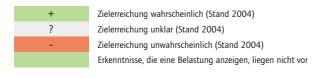

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 7a)

			– Ein	schätzung (Teil 7a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					31326	31328	31328	3134	3134	3134	31342	31342
					14600	0	14500	0	9590	15290	0	3300
			Gewässer		Welzpl.b.	Lichte	ebach	A	Abrocksbac	h	Hove	bach
			von [km]		14,600	0,000	14,500	0,000	9,590	15,290	0,000	3,300
			bis [km]		16,885	14,500	18,980	9,590	15,290	17,375	3,300	6,379
			Länge [km]		2,285	14,500	4,480	9,590	5,700	2,085	3,300	3,079
			Bezeichnung		Gütersloh	Harsewinkel bis Bielefeld	Bielefeld	Harsewinkel bis Steinhagen	Steinhagen	Steinhagen	Steinhagen	Steinhagen
		je Jie	Stufe I	Gewässergüte	-	-	-	+	+	+	+	+
		50		Gewässerstruktur	-	-	-	-	-	-	-	-
		Bi	Stufe II	Fischfauna	?	-	-	?	?	?	?	?
		Ökologischer Zustand Biologie		N		?	?	?	-	-		
		ısta	Stufe III	Р				?	-	-		
		r Zı	Allgemeine	Т								
		che	chemphys.	02								
		gis	Kompo-	NH ₄								
		9	nenten	Cl								
		ë		pН								
	Į			TOC	?	+		?	?	?		
	ÖKOLOGISCHER ZUSTAND			AOX								
				Sulfat		+						
	떝		Metalle	Cu		?	?	?	?	?		
	Š	<u>.</u>	(Anhang	Cr		·	•	•	·	•		
	Š	e ii	VIII)	Zn		?	?	?	?	?		
	5	ษ์	VIII)	AMPA		· ·	:	:	:	:		
	ÖK	Ökologischer Zustand Chemie	PSM								-	-
5		sta		Mecoprop				?	?	?	?	?
5		, Zu	(Anhang	Metamitron								
Einschätzung		i.	VIII)	Metazachlor				_	-	_	_	
SC		jsc		Metolachlor				?	?	?	?	?
ᇤ		<u>S</u>	Industrie-	PCB-101								
		ÖK	chem.	PCB-138								
			(Anhang	PCB-153								
			VIII)	PCB-180								
				PCB-52								
				Übrige (Anhang VIII)	+	?	?	-	?	+	+	+
			Metalle	Cd				?	?	?	?	?
			(Anhang	Hg	?	?	?					
	۵		IX, X)	Ni								
	CHEMISCHER ZUSTAND			Pb		?	?	?	?	?		
	ISD		PSM (An-	Atrazin								
	RZ		hang IX, X)	Isoproturon				?	?	?	?	?
	Ŧ			Simazin								
	ISC			Diuron				?	?	?	?	?
	M		Industrie-	Benzo(a)anthracen								
	끙		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
			,,	Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
					-	-		-	-	-		
				Ökologischer Zustand			- 2				- 2	- 2
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 7b)

	– Ana	alyse der Belastungen	(Teil 7b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			31326	31328	31328	3134	3134	3134	31342	31342
			14600	0	14500	0	9590	15290	0	3300
	Gewässer		Welzpl.b.	Lichte	ebach	Δ.	brocksbac	h	Hove	bach
	von [km]		14,600	0,000	14,500	0,000	9,590	15,290	0,000	3,300
	bis [km]		16,885	14,500	18,980	9,590	15,290	17,375	3,300	6,379
	Länge [km]		2,285	14,500	4,480	9,590	5,700	2,085	3,300	3,079
	Bezeichnung		Gütersloh	Harsewinkel bis Bielefeld	Bielefeld	Harsewinkel bis Steinhagen	Steinhagen	Steinhagen	Steinhagen	Steinhagen
		KomARA				?				
		IGL-ARA								
		Regenwassereinleitungen				?	?	?		
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung	Х	Х	Х	Х	Х	Х	Х	Х
		Altlasten								
		Sonstige diffuse Quellen, auch Sediment								
	5	Einleitungen						Х		
,	3	Entnahmen								
ANAIVEE DEB DEI ACTIINGEN		Abflussregulierungen durch Talsperren								
		Wasserverluste								
Š	<u> </u>	Über- und Umleitungen								
		Querbauwerke und Rückstau	Х	?	Х	?	Х	Х		
•		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	Х	Х	Х	Х	Х	Х	?	?
		Querbauwerke und Aufwärtspassierbarkeit	X	?	Х	?	Х	Х		
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

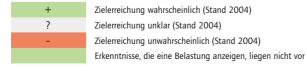

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 8a)

	ias.		– Ein	schätzung (Teil 8a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					31344	31344	3136	3136	3136	3138	3138	31382
					0	6700	0	14785	21220	0	16491	0
			Gewässer		Lodde	nbach		Laibach		Lodde	nbach	Ruthenb.
			von [km]		0,000	6,700	0,000	14,785	21,220	0,000	16,491	0,000
			bis [km]		6,700	12,188	14,785	21,220	23,272	16,491	20,466	5,100
			Länge [km]		6,700	5,488	14,785	6,435	2,052	16,491	3,975	5,100
			Bezeichnung		Steinhagen	Steinhagen	Harsewinkel bis Halle (Westf.)	Halle (Westf.)	Halle (Westf.)	Harsewinkel bis Halle (Westf.)	Halle (Westf.)	Halle (Westf.)
							∄ ≶	Η	На	± ≶	Ξ	Ξ
		<u>.e</u>	Stufe I	Gewässergüte	+	+	-	-	-	-	-	-
		<u> </u>		Gewässerstruktur	-	-	-	-	-	-	-	+
		Bio	Stufe II	Fischfauna	?	?	-	-	-	-	-	-
		Pu		N	?	?	-	-		?	?	?
		Ökologischer Zustand Biologie	Stufe III	Р			-	-		?	?	?
		' Zu	Allgemeine	Т								
		he	chemphys.	02								
		yisc	Kompo-	NH ₄						?		
		900	nenten	Cl								
		ÖK		pН								
	Ĭ			TOC			_	_		?	?	?
	ST			AOX			?					·
	ZU			Sulfat								
	핊		Metalle	Cu			?	?	+	+		?
	Ã	ø	(Anhang	Cr			·	,				!
	ÖKOLOGISCHER ZUSTAND	Ē					2	2		,		2
		Š	VIII)	Zn			?	?	+	+		?
	ÖKC	2	me s	AMPA	-	-	-	-	-	-	-	
5		Ista	PSM	Mecoprop	?	?	?	?	?	?	?	
3		Zu.	VIII)	Metamitron								
Einschätzung		Ökologischer Zustand Chemie		Metazachlor								
sch		Jisc		Metolachlor	?	?	?	?	?	?	?	
ᇤ		9	Industrie-	PCB-101								
		Ökc	chem.	PCB-138								
			(Anhang	PCB-153								
			VIII)	PCB-180								
				PCB-52								
				Übrige (Anhang VIII)	+	+	?	?	+	?	+	+
			Metalle	Cd	?	?	?	?	?	?	?	?
			(Anhang	Hg								
	۵		IX, X)	Ni								
	CHEMISCHER ZUSTAND		·	Pb			?	?	+	+		?
	IST		PSM (An-	Atrazin								
	R ZI		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	
	里			Simazin								
	ISC			Diuron	?	?	?	?	?	?	?	
	E		Industrie-	Benzo(a)anthracen								
	£		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
			IA, A,	Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	_	_	_	_	_	_	_	_
				Chemischer Zustand	?	?	?	?	?	?	?	
								<i>?</i>				?
				Gesamtbewertung	-	-	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 8b)

	– Ana	alyse der Belastungen	(Teil 8b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			31344	31344	3136	3136	3136	3138	3138	31382
			0	6700	0	14785	21220	0	16491	0
	Gewässer		Lodde	nbach		Laibach		Lodde	nbach	Ruthenb.
	von [km]		0,000	6,700	0,000	14,785	21,220	0,000	16,491	0,000
	bis [km]		6,700	12,188	14,785	21,220	23,272	16,491	20,466	5,100
	Länge [km]		6,700	5,488	14,785	6,435	2,052	16,491	3,975	5,100
	Bezeichnung		Steinhagen	Steinhagen	Harsewinkel bis Halle (Westf.)	Halle (Westf.)	Halle (Westf.)	Harsewinkel bis Halle (Westf.)	Halle (Westf.)	Halle (Westf.)
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen				?		?		
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung					_			
		Erosion					?			
		Auswaschung	Х	Х	X		?	Х	Х	Х
		Altlasten			?					
		Sonstige diffuse Quellen, auch Sediment								
Ē		Einleitungen								
AS:		Entnahmen				Х				
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch Talsperren								
		Wasserverluste								
IXS		Über- und Umleitungen								
S S		Querbauwerke und Rückstau	?		х	Х		Х	?	
•		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte		Х	х	Х	Х	Х		
		Querbauwerke und Aufwärts- passierbarkeit	?		X	Х		х	?	
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

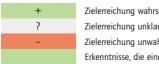

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 9a)

	- Einschätzung (Teil 9a) WK-Nr. DE_NRW DE_N											
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					31382	314	314	314	314	3142	3142	3144
					5100	0	6682	20982	26357	0	3600	0
			Gewässer		Ruthenb.		Axtl	oach		Bergele	er Bach	Maibach
			von [km]		5,100	0,000	6,682	20,982	26,357	0,000	3,600	0,000
			bis [km]		10,330	6,682	20,982	26,357	34,132	3,600	8,151	1,500
			Länge [km]		5,230	6,682	14,300	5,375	7,775	3,600	4,551	1,500
			Stufe I	Cautinaaniita	Halle (Westf.)	Warendorf bis Beelen +	Oelde +	Oelde +	Beelen bis Oelde -	Oelde	Oelde -	Herzebrock-Clarholz
		gie	Stule I	Gewässergüte Gewässerstruktur		-	-	+	+	+	+	+
		응	Stufe II	Fischfauna	-					?	?	
		Ökologischer Zustand Biologie	Jule II	N	?	-	-	-	-	· -	· -	?
		tan	Stufe III	P	?	?	?	?	?			+
		Zus	Allgemeine	T	•	·		+	·			'
		声	chemphys.	02		?	?		?			
		isc	Kompo-	NH ₄		•			·			
		<u>6</u>	nenten	Cl								
		Š		pH								
	¥			TOC	?	?	?	?	?	?	?	-
	TST.			AOX		?	?	?	?	?	?	?
	ζZ			Sulfat								
	皇		Metalle	Cu	?	?	?	?	+	?	?	?
	ISC	<u>ë</u> .	(Anhang	Cr								
	Ö	he n	VIII)	Zn	?	?	?	?	+	?	?	?
	ÖKOLOGISCHER ZUSTAND	Ökologischer Zustand Chemie		AMPA								
	:ō	tan	PSM	Mecoprop								
E .		Zus	(Anhang	Metamitron								
iţī		ē	VIII)	Metazachlor								
Einschätzung		isch		Metolachlor								
Ë		<u>o</u>	Industrie-	PCB-101								
		Se	chem.	PCB-138		?	?	?	?			?
			(Anhang	PCB-153		?	?	?	?			?
			VIII)	PCB-180		?	?	?	?			?
				PCB-52								
				Übrige (Anhang VIII)	+	?	?	?	?	+	+	+
			Metalle	Cd	?	?	?	?	?	?	?	?
			(Anhang	Hg		?	?	?	?	?	?	?
	Q		IX, X)	Ni		?	?	?	?	?	?	?
	Ι¥			Pb	?	?	?	?	+	?	?	?
	Z		PSM (An-	Atrazin		2	2	2	2	2	2	2
	띮		hang IX, X)	Isoproturon		?	?	?	?	?	?	?
	Š			Simazin		2	2	2	2	2	2	2
	CHEMISCHER ZUSTAND		Industrie-	Diuron Benzo(a)anthracen		?	?	?	?	?	?	?
	퉁		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
			IA, A,	Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	_	-	-	-	-	-	-	_
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	-	_

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 9b)

	- Ana	alyse der Belastungen	(Teil 9b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW		DE_NRW	DE_NRW	DE_NRW	DE_NRW
			31382	314	314	314	314	3142	3142	3144
			5100	0	6682	20982	26357	0	3600	0
	Gewässer		Ruthenb.		Axtl	ach		Bergel	er Bach	Maibach
	von [km]		5,100	0,000	6,682	20,982	26,357	0,000	3,600	0,000
	bis [km]		10,330	6,682	20,982	26,357	34,132	3,600	8,151	1,500
	Länge [km]		5,230	6,682	14,300	5,375	7,775	3,600	4,551	1,500
	Bezeichnung		Halle (Westf.)	Warendorf bis Beelen	Oelde	Oelde	Beelen bis Oelde	Oelde	Oelde	Herzebrock-Clarholz
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen			?		?			?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung						2		
		Erosion	.,	.,			.,	?		
		Auswaschung Altlasten	Х	Х	Х	x ?	Х			Х
		Sonstige diffuse Quellen,				f				
N		auch Sediment								
1		Einleitungen	Х			Х				
IAS		Entnahmen								
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch Talsperren								
0		Wasserverluste								
SXI		Über- und Umleitungen								
Z Z		Querbauwerke und Rückstau			?	Х	Х	х		
•		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	Х	Х		Х	Х	Х		Х
		Querbauwerke und Aufwärtspassierbarkeit			?	Х	Х	Х		
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								


x = relevant

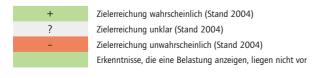
► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 10a)

	Iau.		– Ein	schätzung (Teil 10a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					3144	3144	3146	3146	3146	31472	3148	3148
					1500	4400	0	9200	14565	0	0	8500
			Gewässer		Mail	bach		Beilbach		Flutbach	Baarl	bach
			von [km]		1,500	4,400	0,000	9,200	14,565	0,000	0,000	8,500
			bis [km]		4,400	7,521	9,200	14,565	17,129	8,623	8,500	12,718
			Länge [km]		2,900	3,121	9,200	5,365	2,564	8,623	8,500	4,218
			Bezeichnung		Herzebrock-Clarholz bis Oelde	Oelde	Beelen bis Ennigerloh	Oelde bis Ennigerloh	Ennigerloh bis Oelde	Beelen bis Herzebrock Clarholz	Warendorf bis Ennigerloh	Ennigerloh
		gie	Stufe I	Gewässergüte	-	-	+	+	+	-	-	-
		8		Gewässerstruktur	-	-	+	+	+	-	+	+
		Ä	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
		Ökologischer Zustand Biologie	C4C	N	-	-	-	-	-	2	-	-
		'ust	Stufe III	P			?	?	?	?	-	-
		er Z	Allgemeine	T								
		sch	chemphys.	02								
		ogi	Kompo-	NH ₄								
		ᅙ	nenten	Cl								
	9	.0		pH TOC			2	?	2			2
	Ι¥			AOX	?	?	?	?	?	?	?	?
	Ž			Sulfat	· ·	?	ŗ	· ·		,	· ·	ſ
	띪		Metalle	Cu	?	?				?	?	?
	Ĩ	ø	(Anhang	Cr	ŗ	f				· ·	· ·	f
	ÖKOLOGISCHER ZUSTAND	Ökologischer Zustand Chemie	(Alliang VIII)	Zn	?	?				?	?	?
	2	ษ์	VIII)	AMPA	· ·						•	:
	Ö	P I	PSM	Mecoprop								
<u>p</u>		nst	(Anhang	Metamitron								
Einschätzung		r Z	(Alliang VIII)	Metazachlor								
Ha:		흥	VIII)	Metolachlor								
nsc		gis	Industrie-	PCB-101								
ѿ		S	chem.	PCB-138	?	?	?	?	?	?	?	?
		: <u>ō</u>	(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180	?	?	?	?	?	?	?	?
			··,	PCB-52	·	•		•		•	•	·
				Übrige (Anhang VIII)	+	+	+	+	+	?	+	+
			Metalle	Cd	?	?	?	?	?	?	?	?
			(Anhang	Hg	?	?	?	?	?	?	?	?
			IX, X)	Ni	?	?	?	?	?	?	?	?
	¥		,	Pb	?	?				?	?	?
	ızı		PSM (An-	Atrazin								
	R ZI		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	포			Simazin								
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?	?	?	?
	Ę		Industrie-	Benzo(a)anthracen								
	טֿ		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 10b)

	- Ana	alyse der Belastungen	(Teil 10b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			3144	3144	3146	3146	3146	31472	3148	3148
			1500	4400	0	9200	14565	0	0	8500
	Gewässer		Mail	oach		Beilbach		Flutbach	Baark	oach
	von [km]		1,500	4,400	0,000	9,200	14,565	0,000	0,000	8,500
	bis [km]		4,400	7,521	9,200	14,565	17,129	8,623	8,500	12,718
	Länge [km]		2,900	3,121	9,200	5,365	2,564	8,623	8,500	4,218
	Bezeichnung		HerzebrockClarholz bis Oelde	Oelde	Beelen bis Ennigerloh	Oelde bis Ennigerloh	Ennigerloh bis Oelde	Beelen bis Herzebrock- Clarholz	Warendorf bis Ennigerloh	Ennigerloh
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen				?		?		
		Kühlwassereinleitungen								
	ŀ	Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung	Х	Х	Х	Х	Х	Х	Х	Х
		Altlasten								
S EN		Sonstige diffuse Quellen, auch Sediment								
Ž		Einleitungen				Х				
AST		Entnahmen								
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch Talsperren								
<u></u>		Wasserverluste								
YSE		Über- und Umleitungen								
Ψ¥		Querbauwerke und Rückstau				?	х		?	?
₹		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	х	Х	х	Х			х	х
		Querbauwerke und Aufwärts-				?	Х		?	?
		passierbarkeit								
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

Zielerreichung wahrscheinlich (Stand 2004)
Zielerreichung unklar (Stand 2004)
Zielerreichung unwahrscheinlich (Stand 2004)
Erkenntnisse, die eine Belastung anzeigen, liegen nicht vor

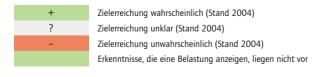

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 11a)

	idb.		– Ein	schätzung (Teil 11a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					31482	31482	31492	314924	3152	3154	3154	316
					0	2500	0	0	0	0	8583	0
			Gewässer		Westkirch	ener Bach	Südl.Talgr.	Poggenb.	Nörd.Talgr.	Holt	bach	Hessel
			von [km]		0,000	2,500	0,000	0,000	0,000	0,000	8,583	0,000
			bis [km]		2,500	8,038	16,659	8,144	13,795	8,583	11,113	10,872
			Länge [km]		2,500	5,538	16,659	8,144	13,795	8,583	2,530	10,872
			Bezeichnung	Gewässergüte	Beelen bis Ennigerloh	Ennigerloh	Warendorf bis + HerzebrockClarholz	Herzebrock-Clarholz	Warendorf bis + Harsewinkel	Warendorf bis Ennigerloh	Ennigerloh	Warendorf + bis Sassenberg
		gie	June 1	Gewässerstruktur	_	_	-	_	-	+	+	-
		Ş	Stufe II	Fischfauna	?	?	_	?	_	?	?	_
		Ökologischer Zustand Biologie		N	-	-	_		-	?	?	?
		stan	Stufe III	P	_	_				?	?	?
		Zus	Allgemeine	T								
		БĘ	chemphys.	02								
		jsc	Kompo-	NH ₄	?	?				?	?	
		9	nenten	CI								
		Š		pН								
	ÖKOLOGISCHER ZUSTAND			TOC	?	-	?			-	-	?
	JST			AOX	?	?	?		?	?	?	?
	Z ZI			Sulfat								
	皇		Metalle	Cu	?	+			?	+		?
	ISC	<u>.e</u> .	(Anhang	Cr								
	S	Je n	VIII)	Zn	?	+			?	+		?
	<u> </u>	Ökologischer Zustand Chemie		AMPA				-				
	:ō	tan	PSM	Mecoprop				?				
Ę		Zus	(Anhang	Metamitron								
itzi		ē	VIII)	Metazachlor								
Einschätzung		isc		Metolachlor				?				
Ë		<u>6</u>	Industrie-	PCB-101								
		Š	chem.	PCB-138	?	?	?		?	?	?	?
			(Anhang	PCB-153	?	?	?		?	?	?	?
			VIII)	PCB-180	?	?	?		?	?	?	?
				PCB-52								
				Übrige (Anhang VIII)	?	?	+	+	+	?	?	?
			Metalle	Cd	?	?	?		?	?	?	?
			(Anhang	Hg	?	?	?		?	?	?	?
	9		IX, X)	Ni	?	?	?		?	?	?	?
	ΙŽ			Pb	?	+			?	+		?
	ZU		PSM (An-	Atrazin	2	2	2	2		2	2	
	E		hang IX, X)	Isoproturon	?	?	?	?		?	?	
	CHEMISCHER ZUSTAND			Simazin	2	2	2	2				2
	Z		Industrie-	Diuron Benzo(a)anthracen	?	?	?	?				?
	품											
			chem. (Anh.	Benzo(a)pyren Fluoranthen								
			IX, X)	Übrige (Anhang IX, X)	+	+	+	+	+	+	+	
				Ökologischer Zustand	-					-	-	+
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	<u>.</u>	· ·	· -	· -	· ·	
				Gesaminewertung								

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 11b)

	– Ana	alyse der Belastungen	(Teil 11b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			31482	31482	31492	314924	3152	3154	3154	316
			0	2500	0	0	0	0	8583	0
	Gewässer		Westkirch	ener Bach	Südl.Talgr.	Poggenb.	Nörd.Talgr.	Holt	bach	Hessel
	von [km]		0,000	2,500	0,000	0,000	0,000	0,000	8,583	0,000
	bis [km]		2,500	8,038	16,659	8,144	13,795	8,583	11,113	10,872
	Länge [km]		2,500	5,538	16,659	8,144	13,795	8,583	2,530	10,872
	Bezeichnung		Beelen bis Ennigerloh	Ennigerloh	Warendorf bis Herzebrock-Clarholz	Herzebrock-Clarholz	Warendorf bis Harsewinkel	Warendorf bis Ennigerloh	Ennigerloh	Warendorf bis Sassenberg
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen	?							?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung			Х	Х	X			
		Altlasten Sonstige diffuse Quellen,					?			
NEC		auch Sediment								
1		Einleitungen		Х						
AS		Entnahmen								
ANALYCE DER BEI ACTIINGEN		Abflussregulierungen durch Talsperren								
ā		Wasserverluste								
<u> </u>		Über- und Umleitungen								
Į d		Querbauwerke und Rückstau			Х		Х			
4	•	Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	Х	Х		Х	Х			Х
		Querbauwerke und Aufwärts- passierbarkeit			Х		Х			?
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

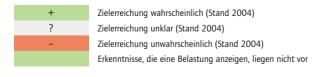

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 12a)

lab. ²	+.1.2	- Ein	schätzung (Teil 12a)	3		3		3			
		WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
				316	316	316	31612	31612	3162	3162	3162
				10872	31394	36387	0	4517	0	1600	5100
		Gewässer			Hessel		Casum	er Bach		Bruchbach	
		von [km]		10,872	31,394	36,387	0,000	4,517	0,000	1,600	5,100
		bis [km]		31,394	36,387	39,336	4,517	7,216	1,600	5,100	8,300
		Länge [km]		20,522	4,993	2,949	4,517	2,699	1,600	3,500	3,200
		Bezeichnung		Sassenberg bis Borgholzhausen	Borgholzhausen bis Halle (Westf.)	Halle (Westf.)	Versmold bis Borgholzhausen	Borgholzhausen	Versmold	Versmold	Versmold bis Borgholzhausen
	gie	Stufe I	Gewässergüte	-	-	-	-	-	-	-	-
	8	c. c	Gewässerstruktur	-	-	-	2	2	-	-	-
	Ä	Stufe II	Fischfauna	-	-	-	?	?	?	?	?
	Ökologischer Zustand Biologie	C4E- !!!	N P	-	-		?	?	?	?	?
	Zust	Stufe III Allgemeine	T	-	-		?	ſ			ſ
	ē	chemphys.	0 ₂								
	isch	Kompo-	NH ₄								
	<u>log</u>	nenten	Cl Cl						?	?	?
	Ö		pH						•	·	
N N			TOC	?			?	?	?	?	?
TS(AOX	+							
I ZI			Sulfat						?	?	?
皇		Metalle	Cu	?	?				?		
ISC	<u>.e</u>	(Anhang	Cr								
9	hen	VIII)	Zn	?	?				?		
ÖKOLOGISCHER ZUSTAND	Q C		AMPA	-	-	-	-	-	-	-	-
:0	tan	PSM	Mecoprop	?	?	?	?	?	?	?	?
Bu n	Zus	(Anhang	Metamitron								
Einschätzung	Ökologischer Zustand Chemie	VIII)	Metazachlor								
sch	jscl		Metolachlor	?	?	?	?	?	?	?	?
ᇤ	<u> </u>	Industrie-	PCB-101								
	Š	chem.	PCB-138	+							
		(Anhang	PCB-153	+							
		VIII)	PCB-180	+							
			PCB-52								
		Metalle	Übrige (Anhang VIII)	?	?	+	+	+	+	+	+
			Cd	?	?	?	?	?	?	?	?
		(Anhang	Hg Ni	<i>?</i>	(!	!	(,	((
S		IX, X)	Pb	?	?				?		
TS!		PSM (An-	Atrazin								
t ZU		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
H			Simazin								
CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?	?	?	?
E		Industrie-	Benzo(a)anthracen								
5		chem. (Anh.	Benzo(a)pyren								
		IX, X)	Fluoranthen								
			Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
			oblige (runnang ix, x)								
			Ökologischer Zustand	-	-	-	-	-	-	-	-
					- ?	- ?	- ?	- ?	?	- ?	?

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 12b)

WK-Nr. DE_NRW	- Ana	alyse der Belastungen	(Teil 12b)							
Cewisser Hessel Hessel Casumer Bach Brunchach Brunchac	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
Cewässer No. Cewisser No. Cewi			316	316	316	31612	31612	3162	3162	3162
Non Km			10872	31394	36387	0	4517	0	1600	5100
Bis Em 20,522 4,993 2,949 4,517 7,216 1,600 5,100 8,300 3,200	Gewässer			Hessel		Casum	er Bach		Bruchbach	
Liange Lm	von [km]		10,872	31,394	36,387	0,000	4,517	0,000	1,600	5,100
September Sept	bis [km]		31,394	36,387	39,336	4,517	7,216	1,600	5,100	8,300
KomARA IGL—ARA Regenwassereinleitungen Kühlwassereinleitungen Sümpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Riseinkläranlagen Sonstige diffuse Quellen, auch Sediment Einleitungen Abflüssregulierungen durch Talsiperren Wasserveluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Afflüssregulierungen Gewässerstrukturgüte Vaurdauwerke und Rückstau Sonstige Politikusen van van van van van van van van van va	Länge [km]		20,522	4,993	2,949	4,517	2,699	1,600	3,500	3,200
IGL-ARA Regenwassereinleitungen Sümpfungswassereinleitungen Simpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Ricison Riciso	Bezeichnung		Sassenberg bis Borgholzhausen	Borgholzhausen bis Halle (Westf.)	Halle (Westf.)	Versmold bis Borgholzhausen	Borgholzhausen	Versmold	Versmold	Versmold bis Borgholzhausen
Regenwasserinleitungen Kühlwassereinleitungen Sümpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung x x x ? ? x x x x Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen x Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau x x x x Querbauwerke und Aufwärts x x x x x x x x x x x x x x x x x x x										
Kühlwassereinleitungen Sümpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung XXXY??XXXX Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen XEntnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX										
Sümpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion ?			?							
Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung x x x ? ? ? x x x x Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau x x x x Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer										
Schmutzwasser ohne Behandlung Erosion ? Auswaschung x x ? ? x x x Altlasten Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen x Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau x x x x Sonstige Abflussegulierungen Gewässerstrukturgüte x x x x x x x x Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer										
Behandlung Erosion ? ?		-								
Auswaschung x x x ? ? X x x x A Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen x Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau x x x x X Sonstige Abflussregulierungen Gewässerstruktryüte x x x x x x x x x x x x x x x x x x x										
Auswaschung x x x ? ? x x x x Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen x Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau x x x x x x x x x x x x x x x x x x x					_					
Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau x x x x Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x							_			
Sonstige diffuse Quellen, auch Sediment Einleitungen x Enthahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau x x x x Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x		-	Х	Х	?		?	Х	Х	Х
auch Sediment Einleitungen x Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau x x x x Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x										
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	Z	=								
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	Š.									
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x) TR	•	Х							
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	LA .									
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	8									
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x		<u> </u>								
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	Š									
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	ALI			V	V					
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	Z _e		^	^	^					
Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			×	Y	x			x	Y	x
passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer		-								
Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer		-								
Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer		<u>'</u>								
Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer										
anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer										
Unbekannt Oberlauf Zufluss Nebengewässer		anthropogene Belastungen								
Zufluss Nebengewässer										
		Oberlauf								
		Zufluss Nebengewässer								
Kommentar		Kommentar								


x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 13a)

			– Ein	schätzung (Teil 13a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW		DE_NRW	DE_NRW
					31632	3164	3164	3164	31642		3168	3168
					0	0	7800	13341	0	01024	0	9100
			Gewässer		Alte Hessel	Вас	khorster B	ach	Dissen	er Bach	Specker	ngraben
			von [km]		0,000	0,000	7,800	13,341	0,000	1,063	0,000	9,100
			bis [km]		9,482	7,800	13,341	15,341	1,063	11,509	9,100	12,403
			Länge [km]		9,482	7,800	5,541	2,000	1,063	10,676	9,100	3,303
			Bezeichnung		Versmold bis Borgholzhausen	Versmold	Borgholzhausen	Versmold bis Borgholzhausen	Versmold	Dissener Bach	Sassenberg	Sassenberg
		gie	Stufe I	Gewässergüte	-	-	+	+	-	-	+	+
		9		Gewässerstruktur	-	-	-	-	-	?	+	+
		ĕ	Stufe II	Fischfauna	-	?	?	?	?	?	?	?
		Ökologischer Zustand Biologie		N	?	-	-	-	-	-	?	?
		ust	Stufe III	P		-	?	?	?	-		
		7 Z	Allgemeine	Т						+		
		Ę,	chemphys.	02						+		
		sigo	Kompo-	NH ₄		?	+		-	-		
		ᅙ	nenten	Cl						-		
	₽	:0		pH						+		
	Ž			TOC	?	?	+		-	-	-	-
	S			AOX						?	?	?
	ÖKOLOGISCHER ZUSTAND			Sulfat						+		
	뿤		Metalle	Cu	?	?				?	+	
	S	je.	(Anhang	Cr						?		
	Ö	Pe P	VIII)	Zn	?	?				?	+	
	<u>8</u>	O P		AMPA	-	-	-	-	-	?		
	:ō	tan	PSM	Mecoprop	?	?	?	?	?	?		
Ē		ZmZ	(Anhang	Metamitron						?		
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor						?		
퍨		sch	·	Metolachlor	?	?	?	?	?	?		
Ï.		og.	Industrie-	PCB-101						?		
ш		Š	chem.	PCB-138						?	?	?
		:0	(Anhang	PCB-153						?	?	?
			VIII)	PCB-180						?	?	?
			,	PCB-52						?		
				Übrige (Anhang VIII)	?	+	+	+	+	?	?	?
			Metalle	Cd	?	?	?	?		?	?	?
			(Anhang	Hg	?	?	?	?	?	?	?	?
			IX, X)	Ni				·		?	?	?
	N.		,,	Pb	?	?				?	+	
	CHEMISCHER ZUSTAND		PSM (An-	Atrazin		,				?		
	z		hang IX, X)	Isoproturon	?	?	?	?	?	?		
	Ä		g iA, A)	Simazin		·		·		?		
	SCI			Diuron	?	?	?	?	?	?	?	?
	M		Industrie-	Benzo(a)anthracen				·		?		
	동		chem. (Anh.	Benzo(a)pyren						?		
			IX, X)	Fluoranthen						?		
			1A, A)		+	J	+	,	+	?	+	.1
				Übrige (Anhang IX, X)		+		+				+
				Ökologischer Zustand	-	-	-	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	?	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 13b)

	– Ana	alyse der Belastungen	(Teil 13b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW		DE_NRW	DE_NRW
			31632	3164	3164	3164	31642		3168	3168
			0	0	7800	13341	0	01024	0	9100
	Gewässer		Alte Hessel	Вас	khorster B	ach	Dissen	er Bach	Specken	graben
	von [km]		0,000	0,000	7,800	13,341	0,000	1,063	0,000	9,100
	bis [km]		9,482	7,800	13,341	15,341	1,063	11,509	9,100	12,403
	Länge [km]		9,482	7,800	5,541	2,000	1,063	10,676	9,100	3,303
	Bezeichnung		Versmold bis Borgholzhausen	Versmold	Borgholzhausen	Versmold bis Borgholzhausen	Versmold	Dissener Bach	Sassenberg	Sassenberg
		KomARA						Х		
		IGL-ARA						Х		
		Regenwassereinleitungen		?						
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion	.,	.,		?				
		Auswaschung Altlasten	Х	Х	Х		Х			
		Sonstige diffuse Quellen,								
NE		auch Sediment								
		Einleitungen		х						
IAS		Entnahmen								
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch Talsperren								
		Wasserverluste								
SXI		Über- und Umleitungen								
Ž.		Querbauwerke und Rückstau	х	?	?	?	?			
•	•	Sonstige Abflussregulierungen								
		Gewässerstrukturgüte		Х	X	X	Х			
		Querbauwerke und Aufwärtspassierbarkeit	X	?	?	?	?		?	
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer		Х			Х			
		Kommentar								

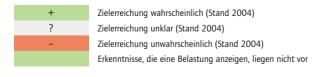
x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 14a)

				schätzung (Teil 14a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					3172	3172	31722	31722	3174	3174	318	318
					0	7884	0	2200	0	1686	0	21995
			Gewässer		Musse	nbach	Brügge	enbach	Maar	becke	Bev	/er
			von [km]		0,000	7,884	0,000	2,200	0,000	1,686	0,000	21,995
			bis [km]		7,884	24,367	2,200	11,869	1,686	5,750	21,995	25,966
			Länge [km]		7,884	16,483	2,200	9,669	1,686	4,064	21,995	3,971
			Bezeichnung	Gewässergüte	Telgte bis Warendorf	Warendorf bis Ennigerloh	Everswinkel bis Warendorf	Warendorf bis Ennigerloh	Telgte	Telgte bis Everswinkel	Telgte bis Sassenberg +	Sassenberg bis Glandorf +
		gie	50	Gewässerstruktur	+	-	+	+	_	_	+	_
		<u>i</u>	Stufe II	Fischfauna	_	_	?	?	?	?	+	?
		B	Juie II	N		?		·	-		?	?
		Ökologischer Zustand Biologie	Stufe III	P							+	?
		Zus			-	-	-	-	-	-	+	· ·
		er .	Allgemeine	T	-	-	-	-	-	-		
		sch	chemphys.	02	?	?	?	?	?	?		
		ogi	Kompo-	NH ₄	?		?	+			2	
		Š	nenten	Cl							?	-
	9	:0		pH								
	₹			TOC	-	-	-	-	?	?	?	?
	S			AOX	?	?	?	?	?	?	?	?
	R Z			Sulfat							?	?
	뽔		Metalle	Cu	+		?	?	?	?	?	?
	ÖKOLOGISCHER ZUSTAND	я.	(Anhang	Cr								
	ğ	亨	VIII)	Zn	+		?	?	?	?	?	?
	δ	9		AMPA								
	:0	tan	PSM	Mecoprop								
<u> </u>		Zus	(Anhang	Metamitron								
Ĭ		ē	VIII)	Metazachlor								
- <u>B</u>		sch	·	Metolachlor								
Einschätzung		Ökologischer Zustand Chemie	Industrie-	PCB-101								
		ko	chem.	PCB-138	?	?	?	?	?	?	?	?
		:0	(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180	?	?	?	?	?	?	?	?
			,	PCB-52							·	
				Übrige (Anhang VIII)	?	?	+	+	?	?	?	?
			Metalle	Cd	?	?	?	?	?	?	?	?
			(Anhang	Hg	?	?	?	?	?	?	?	?
			IX, X)	Ni	?	?	?	?	?	?	?	?
	N N		1A, A)	Pb	+		?	?	?	?	?	?
	CHEMISCHER ZUSTAND		PSM (An-	Atrazin				·	,	,	•	
	Z		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	荒		ilaliy IA, A)	Simazin		,		·	,	,	•	!
	SC			Diuron	?	?	?	?	?	?	?	?
	Σ		Industrie-		,	(į	į	((į	į
	품			Benzo(a)anthracen								
			chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	-	-	?	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	?	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 14b)

	– Ana	alyse der Belastungen	(Teil 14b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			3172	3172	31722	31722	3174	3174	318	318
			0	7884	0	2200	0	1686	0	21995
	Gewässer		Musse	nbach	Brügge	enbach	Maar	becke	Bev	/er
	von [km]		0,000	7,884	0,000	2,200	0,000	1,686	0,000	21,995
	bis [km]		7,884	24,367	2,200	11,869	1,686	5,750	21,995	25,966
	Länge [km]		7,884	16,483	2,200	9,669	1,686	4,064	21,995	3,971
	Bezeichnung		Telgte bis Warendorf	Warendorf bis Ennigerloh	Everswinkel bis Warendorf	Warendorf bis Ennigerloh	Telgte	Telgte bis Everswinkel	Telgte bis Sassenberg	Sassenberg bis Glandorf
		KomARA								
		IGL-ARA			_			X		
		Regenwassereinleitungen			?		?	?	?	?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung Erosion								
		Auswaschung								
		Altlasten								
_	_	Sonstige diffuse Quellen,								
		auch Sediment								
Ē		Einleitungen						Х		
AS.		Entnahmen								
ANALYCE DER BEI ACTIINGEN		Abflussregulierungen durch Talsperren								
		Wasserverluste								
15		Über- und Umleitungen								
- A		Querbauwerke und Rückstau								
4	•	Sonstige Abflussregulierungen								
		Gewässerstrukturgüte		Х			х	Х		х
		Querbauwerke und Aufwärtspassierbarkeit	?		?	?			?	?
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf			?					
		Zufluss Nebengewässer								
		Kommentar								

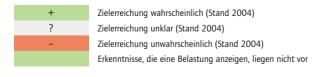

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 15a)

			- EIN	schatzung (Teil 15a)								
			WK-Nr.				DE_NRW	DE_NRW	DE_NRW			
							3184	32	32	32	32	3212
					01025	01026	0	0	43489	48200	50960	0
			Gewässer		Bever,		Frankenb.		We	erse		Offe
					Süßbach	Remseder						
						B., Links-						
						seit. Talgr.						
			von [km]		25,966	0	0,000	0,000	43,489	48,200	50,960	0,000
			bis [km]		39,407	17,173	7,382	43,489	48,200	50,960	66,646	7,765
			Länge [km]		13,441	17,174	7,382	43,489	4,711	2,760	15,686	7,765
			<u> </u>		\$	ich, B., Talg	i bis ا	sic				
			Bezeichnung		Bever, Süß- bach	Rankenbach, Remseder B., Linksseit. Talgr.	Ostbevern bis Warendorf	Münster bis Ahlen	_	_	Ahlen bis Beckum	Ahlen bis Beckum
			eze		Bever	ank ems inks	stbe	Münst Ahlen	Ahlen	Ahlen	Ahlen bis Beckum	Ahlen bis Beckum
			Stufe I	Gewässergüte	ж +	?	0 × +	≥ ∢	_	_	≪ m -	- A
		gie	Jule I	Gewässerstruktur	_	+	_	_	_	_	_	_
		jol	Stufe II	Fischfauna	?	?	?	_	_	_	-	_
		B B	- Jan 10 11	N	:	?	·	-	_	?	?	?
		stan	Stufe III	P	_	?		_		-	-	?
		Zus	Allgemeine	T	+	+					-	
		Ökologischer Zustand Biologie	chemphys.	O ₂	+			?				
		yisc	Kompo-	NH ₄	+	?		+	-	-	-	
		500	nenten	Cl	-	?						
	_	Ö		рН	+	?						
	Ā			TOC	-	?	?	?	?	?	?	?
	JST			AOX	?	?	?	+	?	?	?	?
	RZI			Sulfat	-							
	폿	<u>.e</u>	Metalle	Cu	+	?		?	?	?	?	?
	SIS	nje.	(Anhang	Cr	+	?						
	9	je.	VIII)	Zn	?	?		?	?	?	?	?
	ÖKOLOGISCHER ZUSTAND	Ökologischer Zustand Chemie		AMPA	?	?						
-	:0	staı	PSM	Mecoprop	+	?						
<u>.</u>		Zn	(Anhang	Metamitron	?	?						
Einschätzung		her	VIII)	Metazachlor	+	?		-	-	-	-	?
ısc		gisc		Metolachlor	?	?						
造		9	Industrie-	PCB-101	+	?	2	2	2	2	2	
		ij	chem.	PCB-138	+	?	?	?	?	?	?	?
			(Anhang	PCB-153	+	?		?	?	?	?	?
			VIII)	PCB-180 PCB-52	+	?	?	?	?	?	?	?
				Übrige (Anhang VIII)	?	?	+	· ·	!	· ·	<i>!</i>	?
			Metalle	Cd	?	?	?					1
			(Anhang	Hg	+	?	?					
	0		IX, X)	Ni	+	?	?					
	AN			Pb	+	?		?	?	?	?	?
	JST		PSM (An-	Atrazin	+	?						
	R ZI		hang IX, X)	Isoproturon	+	?	?	-	-	-	-	?
	H			Simazin	+	?						
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?	?	?	?
	TEN		Industrie-	Benzo(a)anthracen	?	?						
	טֿ		chem. (Anh.	Benzo(a)pyren	?	?						
			IX, X)	Fluoranthen	?	?						
				Übrige (Anhang IX, X)	?	?	+	+	+	+	+	+
				Ökologischer Zustand	-	?	-	-	-	-	-	-
				Chemischer Zustand	?	?	?	-	-	-	-	?
				Gesamtbewertung	?	?	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 15b)

- Analyse der Belastungen	(Teil 15b)							
WK-Nr.			DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			3184	32	32	32	32	3212
	01025	01026	0	0	43489	48200	50960	0
Gewässer	Bever, Süßbach	Rankenb., Remseder B., Links- seit. Talgr.	Frankenb.		We	erse		Offe
von [km]	25,966	0	0,000	0,000	43,489	48,200	50,960	0,000
bis [km]	39,407	17,173	7,382	43,489	48,200	50,960	66,646	7,765
Länge [km]	13,441	17,174	7,382	43,489	4,711	2,760	15,686	7,765
Bezeichnung	Bever, Süß- bach	Rankenbach, Remseder B., Linksseit. Talgr.	Ostbevern bis Warendorf	Münster bis Ahlen	Ahlen	Ahlen	Ahlen bis Beckum	Ahlen bis Beckum
KomARA	Х	Х					Х	
IGL-ARA		х						
Regenwassereinleitungen				?	?		?	?
Kühlwassereinleitungen								
Sümpfungswassereinleitungen								
Kleinkläranlagen								
Schmutzwasser ohne								
Behandlung								
Erosion					?		?	
Auswaschung								
Altlasten								
Sonstige diffuse Quellen,								
auch Sediment								
Einleitungen							Х	
E ntnahmen								
auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau								
Wasserverluste								
Über- und Umleitungen								
Querbauwerke und Rückstau				х				
Sonstige Abflussregulierungen								
Gewässerstrukturgüte			Х	х	Х		Х	х
Querbauwerke und Aufwärts-			?	?	?		Х	
passierbarkeit								
Sonstige morphologische								
Belastungen								
Sonstige signifikante								
anthropogene Belastungen								
Unbekannt								
Oberlauf								
Zufluss Nebengewässer								
Kommentar								

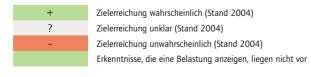

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 16a)

			– Ein	schätzung (Teil 16a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					3214	3216	322	3222	3232	3232	324	324
					0	0	0	0	0	5207	0	1900
			Gewässer		Kälberb.	Erlebach	Umlaufsb.	Mühlenb.	Flagge	enbach	Ahrenhors	ster Bach
			von [km]		0,000	0,000	0,000	0,000	0,000	5,207	0,000	1,900
			bis [km]		7,203	8,997	13,187	6,749	5,207	11,884	1,900	11,500
			Länge [km]		7,203	8,997	13,187	6,749	5,207	6,677	1,900	9,600
		<u>.e.</u>	Sezeichnung	Gewässergüte	Ahlen bis Drensteinfurt	Drensteinfurt '	Drensteinfurt bis + Ascheberg	Drensteinfurt bis + Ascheberg	Sendenhorst bis Drensteinfurt	Drensteinfurt bis Ascheberg	Sendenhorst +	Sendenhorst +
		<u> </u>		Gewässerstruktur	-	-	+	+	+	+	+	+
		Bio	Stufe II	Fischfauna	?	-	?	?	?	?	?	?
		Ökologischer Zustand Biologie		N	?	?	?	?	-	-	-	+
		sta	Stufe III	Р	?	?	?	?	-	-	?	?
		Z	Allgemeine	T								
		- He	chemphys.	02		?			+	?		
		gis	Kompo-	NH_4	?				?	?		
		9	nenten	Cl								
	_	÷		pH								
	¥			TOC	?	?	?	?	-	-	?	?
	ızı			AOX	?							
	ÖKOLOGISCHER ZUSTAND			Sulfat								
	皇		Metalle	Cu		?	?		?	+		
	SC	<u>.e</u>	(Anhang	Cr								
	5	Ē	VIII)	Zn		?	?		?	+		
	0	<u>5</u>		AMPA								
	÷Š	anc	PSM	Mecoprop								
Ę.		ust	(Anhang	Metamitron								
II I		r Z	VIII)	Metazachlor	?	?	?	?	?	?	?	?
Einschätzung		Ökologischer Zustand Chemie	V,	Metolachlor	·	•				•	•	•
nsc		gis	Industrie-	PCB-101								
₩		9	chem.	PCB-138	?	?	?	?	?	?	?	?
		:0	(Anhang	PCB-153	?	?	?	?	?	?	?	?
			(Annang VIII)	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180	?	?	?	?	?	?	?	?
				Übrige (Anhang VIII)	?	?	?	?	?	?	?	?
			Metalle		!	į	į.	!	į.	!	!	!
				Cd								
			(Anhang	Hg Ni								
	N		IX, X)			2	2		2			
	STA		DCM /A	Pb		?	?		?	+		
	ZO		PSM (An-	Atrazin	2	2	2	2	2	2	2	2
	Ħ		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	CHEMISCHER ZUSTAND			Simazin	2	2	2	2	2	2	2	2
	M		I males at the	Diuron Renze(a)anthracan	?	?	?	?	?	?	?	?
	품		Industrie-	Benzo(a)anthracen								
			chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	?	?	-	-	-	?
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	?	?	-	-	-	?

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 16b)

	– Ana	alyse der Belastungen	(Teil 16b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			3214	3216	322	3222	3232	3232	324	324
			0	0	0	0	0	5207	0	1900
	Gewässer		Kälberb.	Erlebach	Umlaufsb.	Mühlenb.	Flagge	enbach	Ahrenhors	ster Bach
	von [km]		0,000	0,000	0,000	0,000	0,000	5,207	0,000	1,900
	bis [km]		7,203	8,997	13,187	6,749	5,207	11,884	1,900	11,500
	Länge [km]		7,203	8,997	13,187	6,749	5,207	6,677	1,900	9,600
	Bezeichnung		Ahlen bis Drensteinfurt	Drensteinfurt	Drensteinfurt bis Ascheberg	Drensteinfurt bis Ascheberg	Sendenhorst bis Drensteinfurt	Drensteinfurt bis Ascheberg	Sendenhorst	Sendenhorst
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen		?	?		?			
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung Erosion								
		Auswaschung			?	?				
		Altlasten			· ·	·				
		Sonstige diffuse Quellen,								
2		auch Sediment								
Ē		Einleitungen					Х			
SA.	}	Entnahmen								
ANAIVE DER REI ACTIINGEN		Abflussregulierungen durch Talsperren								
Ē		Wasserverluste								
5 <u>×</u>		Über- und Umleitungen								
4		Querbauwerke und Rückstau								
•	•	Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	Х	Х						
		Querbauwerke und Aufwärtspassierbarkeit	X		Х		?		?	?
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

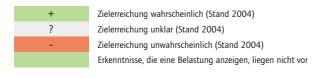

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 17a)

	Iau.		– Ein	schätzung (Teil 17a)								
			WK-Nr.		DE_NRW	DE_NRW						
					3172	3242	3242	3242	3252	3252	326	326
					0	0	4900	7300	0	2400	0	7086
			Gewässer		Ahrenh. B.		Alsterbach		Weste	erbach	Emme	rbach
			von [km]		11,500	0,000	4,900	7,300	0,000	2,400	0,000	7,086
			bis [km]		15,141	4,900	7,300	10,101	2,400	9,803	7,086	35,668
			Länge [km]		3,641	4,900	2,400	2,801	2,400	7,403	7,086	28,582
			Bezeichnung		Sendenhorst bis Münster	Münster bis Ascheberg						
		gie	Stufe I	Gewässergüte	+	-	-	-	+	+	+	-
		8	Stufe II	Gewässerstruktur Fischfauna	?	+	?	?	+	?	?	+
		B	Stule II	N	f	?	f .	į.	?	· ·		
		Ökologischer Zustand Biologie	Stufe III	P	?	-	_	_	?	?	-	-
		Zus	Allgemeine	T	·				•	•		
		je je	chemphys.	0 ₂							?	?
		jscl	Kompo-	NH ₄							+	+
		<u> </u>	nenten	Cl								
	_	Š		рН								
	Ā			TOC	?	?	?	?	?	?	?	?
	ISI			AOX						?	?	
	R ZI			Sulfat								
	뿢		Metalle	Cu		?	?				?	?
	Sis	я.	(Anhang	Cr								
	ğ	亨	VIII)	Zn		?	?				?	?
	ÖKOLOGISCHER ZUSTAND	힏		AMPA								
5	:0	sta	PSM	Mecoprop								
3		nz.	(Anhang	Metamitron	_	_	_					
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor	?	?	?	?	?	?	?	?
SC		gisc		Metolachlor								
造		9	Industrie-	PCB-101								
		÷	chem.	PCB-138	?	?	?	?	?	?	?	?
			(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180 PCB-52	?	?	?	?	?	?	?	?
				Übrige (Anhang VIII)	?	?	?	?	?	?	?	?
			Metalle	Cd Cannang viii)								,
			(Anhang	Hg								
	_		IX, X)	Ni								
	Ā		224, 224	Pb		?	?				?	?
	JST		PSM (An-	Atrazin								
	R ZI		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	뿢			Simazin								
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?	?	?	?
	E		Industrie-	Benzo(a)anthracen								
	ט		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	?	?	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	?	?	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 17b)

	– Ana	alyse der Belastungen	(Teil 17b)							
	WK-Nr.		DE_NRW	DE_NRW						
			3172	3242	3242	3242	3252	3252	326	326
			0	0	4900	7300	0	2400	0	7086
	Gewässer		Ahrenh. B.		Alsterbach		Weste	erbach	Emme	rbach
	von [km]		11,500	0,000	4,900	7,300	0,000	2,400	0,000	7,086
	bis [km]		15,141	4,900	7,300	10,101	2,400	9,803	7,086	35,668
	Länge [km]		3,641	4,900	2,400	2,801	2,400	7,403	7,086	28,582
	Bezeichnung		Sendenhorst bis Münster	Münster bis Ascheberg						
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen		?	?				?	?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung Erosion								
		Auswaschung								?
		Altlasten								?
	_	Sonstige diffuse Quellen,								
Z		auch Sediment								
Ē		Einleitungen		Х					Х	Х
AS		Entnahmen								
ANALYCE DER BEI ACTIINGEN		Abflussregulierungen durch Talsperren								
ā		Wasserverluste								
5		Über- und Umleitungen								
4		Querbauwerke und Rückstau								
4	•	Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	Х		Х	Х			Х	Х
		Querbauwerke und Aufwärtspassierbarkeit		Х	Х				?	?
		Sonstige morphologische							х	
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf		Х						
		Zufluss Nebengewässer								
		Kommentar								

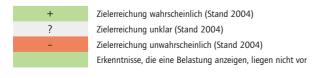

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 18a)

			– Ein	schätzung (Teil 18a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					3268	3269922	328	328	328	328	3282	3282
					0	0	0	12791	18391	27436	0	2700
			Gewässer		Getterb.	Kannenb.		An	gel		Hellk	ach
			von [km]		0,000	0,000	0,000	12,791	18,391	27,436	0,000	2,700
			bis [km]		7,222	7,372	12,791	18,391	27,436	38,180	2,700	12,215
			Länge [km]		7,222	7,372	12,791	5,600	9,045	10,744	2,700	9,515
			Sezeichnung		Münster	Münster	Münster bis + Everswinkel	Everswinkel bis Sendenhorst	Sendenhorst bis Ennigerloh	Ennigerloh bis Beckum	- Ahlen	Ahlen bis Beckum
		gie	Stule I	Gewässergüte Gewässerstruktur	+	-	-	-	-	-	+	+
		9	Ctufo II			-						
		Ökologischer Zustand Biologie	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
		tan	Stufe III	N P	!	!	<i>?</i> _	?	?	-	+ ?	?
		Zusi	Allgemeine	T				į			į	1
		ē	chemphys.				?		+			
		sch	Kompo-	O ₂ NH ₄		_	· ·		?	-		
		<u>og</u>	nenten	Cl		-			!	-		
		Š	Henten	pH								
	Ş	.0		TOC	?	?	?	?	?	?	?	?
	STA			AOX	?	:	?	?	?			?
	Z			Sulfat	:		:	:	:	:	:	:
	띮		Metalle	Cu	?		?	?	?		7	?
	ÖKOLOGISCHER ZUSTAND	<u>.e</u>	(Anhang	Cr					,			·
	ğ	emi	VIII)	Zn	?		?	?	?	?	?	?
	0	5	V ,	AMPA			:	·		·	:	
	ë	and	PSM	Mecoprop								
Ē		ust	(Anhang	Metamitron								
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor	?	?	?	?	?	?	?	?
: <u>=</u>		Ä	· · · · · · ·	Metolachlor	·	•			•	•	•	
ī.		ogis	Industrie-	PCB-101	?							
ш		Š	chem.	PCB-138	?		?	?	?	?	?	?
		:0	(Anhang	PCB-153	?		?	?	?	?	?	?
			VIII)	PCB-180	?		?	?	?	?	?	?
				PCB-52	?		?	?	?	?	?	?
				Übrige (Anhang VIII)	?	?	?	?	?	?	?	?
			Metalle	Cd								
			(Anhang	Hg								
	_		ix, x)	Ni								
	Z			Pb	?		?	?	?	?	?	?
	IS		PSM (An-	Atrazin								
	R ZI		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	뿢			Simazin								
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?	?	?	?
	Ē		Industrie-	Benzo(a)anthracen								
	בֿ		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	-	-	?	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	?	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 18b)

	nalyse der Belastungen	(Tell 18b)							
WK-N	r.	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
		3268	3269922	328	328	328	328	3282	3282
		0	0	0	12791	18391	27436	0	2700
Gewäss	er	Getterb.	Kannenb.		An	gel		Hellb	oach
von [kn	1]	0,000	0,000	0,000	12,791	18,391	27,436	0,000	2,700
bis [kn	1]	7,222	7,372	12,791	18,391	27,436	38,180	2,700	12,215
Länge [kn	n]	7,222	7,372	12,791	5,600	9,045	10,744	2,700	9,515
Bezeichnung		Münster	Münster	Münster bis Everswinkel	Everswinkel bis Sendenhorst	Sendenhorst bis Ennigerloh	Ennigerloh bis Beckum	Ahlen	Ahlen bis Beckum
	KomARA						Х		
	IGL-ARA								?
	Regenwassereinleitungen	?		?	?	?	?	?	?
	Kühlwassereinleitungen								
	Sümpfungswassereinleitungen								
	Kleinkläranlagen								
	Schmutzwasser ohne								
	Behandlung								
	Erosion								
	Auswaschung								
	Altlasten								
S EN	Sonstige diffuse Quellen, auch Sediment								
Ę	Einleitungen	х					Х		
AS:	Entnahmen								
ANALYSE DER BELASTUNGEN	Abflussregulierungen durch Talsperren								
Ō	Wasserverluste								
IYS	Über- und Umleitungen								
X	Querbauwerke und Rückstau								
∢	Sonstige Abflussregulierungen								
	Gewässerstrukturgüte		х	Х	х	х	Х		
	Querbauwerke und Aufwärtspassierbarkeit			?	?	?	Х	?	Х
	Sonstige morphologische Belastungen								
	Sonstige signifikante								
	anthropogene Belastungen								
	Unbekannt								
	Oberlauf			?	?				
	Zufluss Nebengewässer								
	Kommentar								

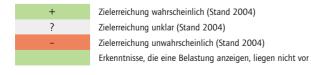

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 19a)

			– Ein	schätzung (Teil 19a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					3284	3284	3284	3286	3288	3288	3288	32892
					0	3040	5200	0	0	3400	8500	7300
			Gewässer		N	lienholtbac	h	Voßbach	Wi	eninger Ba	ch	Piepenb.
			von [km]		0,000	3,040	5,200	0,000	0,000	3,400	8,500	0,000
			bis [km]		3,040	5,200	8,357	15,716	3,400	8,500	15,029	7,300
			Länge [km]		3,040	2,160	3,157	15,716	3,400	5,100	6,529	7,300
			Bezeichnung		Sendenhorst	Sendenhorst bis Ahlen	Ahlen	Everswinkel bis Ennigerloh	Everswinkel	Everswinkel bis Warendorf	Warendorf bis Ennigerloh	Münster bis Everswinkel
		<u>e</u> .	Stufe I	Gewässergüte	?			-	+	+	-	-
		90		Gewässerstruktur	+	+	+	-	-	-	-	-
		Ë	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
		Ökologischer Zustand Biologie		N	?	?	?	-	?	?		?
		ust	Stufe III	P	?	?	?	?	-	-	-	?
		ar Z	Allgemeine	Т								
		Ä	chemphys.	02				+	+	?	?	?
		ogis	Kompo-	NH ₄						?	?	
		<u>\$</u>	nenten	Cl								
	₽	:0		pH	_							
	ÖKOLOGISCHER ZUSTAND			TOC	?	?	?	?	?	?	?	?
	S			AOX	?	?	?	?	?	?	?	?
	8			Sulfat								
	통		Metalle	Cu				?	?	?		?
	GIS	E.	(Anhang	Cr								
	2	S S	VIII)	Zn				?	?	?		?
	Š	Ē		AMPA								
5 0	.5	stai	PSM	Mecoprop								
Einschätzung		Ökologischer Zustand Chemie	(Anhang	Metamitron								
ätz		her	VIII)	Metazachlor	?	?	?	?	?	?	?	?
SC		jisc		Metolachlor								
ᇤ		9	Industrie-	PCB-101								
		Š	chem.	PCB-138	?	?	?	?	?	?	?	?
			(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180	?	?	?	?	?	?	?	?
				PCB-52	?	?	?	?	?	?	?	?
				Übrige (Anhang VIII)	?	?	?	?	?	?	?	?
			Metalle	Cd								
			(Anhang	Hg								
	N O		IX, X)	Ni								
	CHEMISCHER ZUSTAND		nc	Pb				?	?	?		?
	ZÜ		PSM (An-	Atrazin				2	2			
	Ä		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	Ã			Simazin	2	2	2	2	2	2	2	2
	Z		In december	Diuron	?	?	?	?	?	?	?	?
	품		Industrie-	Benzo(a)anthracen								
			chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen		,		,	,	,	,	
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	?	?	?	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	?	?	?	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 19b)

	- Ana	alyse der Belastungen	(Teil 19b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			3284	3284	3284	3286	3288	3288	3288	32892
			0	3040	5200	0	0	3400	8500	7300
	Gewässer		N	lienholtbac	h	Voßbach	Wi	eninger Ba	ch	Piepenb.
	von [km]		0,000	3,040	5,200	0,000	0,000	3,400	8,500	0,000
	bis [km]		3,040	5,200	8,357	15,716	3,400	8,500	15,029	7,300
	Länge [km]		3,040	2,160	3,157	15,716	3,400	5,100	6,529	7,300
	Bezeichnung		Sendenhorst	Sendenhorst bis Ahlen	Ahlen	Everswinkel bis Ennigerloh	Everswinkel	Everswinkel bis Warendorf	Warendorf bis Ennigerloh	Münster bis Everswinkel
		KomARA								
		IGL-ARA				_		_		-
		Regenwassereinleitungen				?	?	?		?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion Auswaschung								
		Altlasten								
		Sonstige diffuse Quellen,								
CEN		auch Sediment								
Ę		Einleitungen								
-AS:		Entnahmen								
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch Talsperren								
ä		Wasserverluste								
YSE		Über- und Umleitungen								
NA I		Querbauwerke und Rückstau								
₹		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte				х	х	х	Х	х
		Querbauwerke und Aufwärtspassierbarkeit				Х		?	Х	?
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

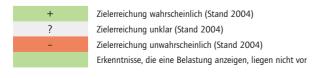

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 20a)

			– Ein	schätzung (Teil 20a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					32892	3294	3312	332	332	332	332	332
					7300	0	0	0	11785	15857	20800	34729
			Gewässer		Piepenb.	Kreuzb.	Gellenb.		Mü	nstersche .	Aa	
			von [km]		7,300	0,000	0,000	0,000	11,785	15,857	20,800	34,729
			bis [km]		9,839	14,460	10,915	11,785	15,857	20,800	34,729	38,829
			Länge [km]		2,539	14,460	10,915	11,785	4,072	4,943	13,929	4,100
			Bezeichnung	Causinaansiita	Everswinkel	Münster bis Telgte	Greven bis Ostbevern +	Greven bis Münster -	Münster	Münster	Münster bis + Altenberge	Altenberge bis + Havixbeck
		gie	Stule I	Gewässergüte Gewässerstruktur	_	-	-	+	+	-	+	-
		응	Stufe II	Fischfauna	?	_	?	_	-		_	_
		<u> </u>	Stare II	N	?		:	?	?	_	?	?
		Ökologischer Zustand Biologie	Stufe III	P	?	-	?	?	?	?	-	-
		Zni	Allgemeine	T		_						
		her	chemphys.	02	?	?		+	?	?	+	
		jisc	Kompo-	NH ₄		+						
		8	nenten	Cl								
		÷Š		рH								
	ÖKOLOGISCHER ZUSTAND			TOC	?	?	?	?	?	?	?	?
	ISU			AOX	?	+		?				
	RZ			Sulfat								
	뿣		Metalle	Cu				?	?	?	?	
	Si	⊒.	(Anhang	Cr								
	3	重	VIII)	Zn				?	?	?	?	
	8	ē		AMPA								
_	:0	star	PSM	Mecoprop								
E,		Zus	(Anhang	Metamitron								
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor	?	?						
SC		gisc		Metolachlor								
ᆵ		8	Industrie-	PCB-101	_							
		ë	chem.	PCB-138	?	?	?	?	?	?	?	?
			(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180	?	?	?	?	?	?	?	?
				PCB-52	?	?	?	?	?	?	?	?
			Metalle	Übrige (Anhang VIII) Cd	!	?	+ ?	?	?	?	?	?
							?	?	?	?	?	?
			(Anhang IX, X)	Hg Ni			?	?	?	?	?	?
	N N		ιλ, λ)	Pb				?	?	?	?	·
	JST,		PSM (An-	Atrazin								
	\ ZL		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	皇			Simazin								
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?	?	?	?
	E		Industrie-	Benzo(a)anthracen								
	ਤ		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 20b)

WK-Nr.	1451 4.112	– Ana	alyse der Belastungen	(Teil 20b)							
Piepenb. Piepenb. Koruzb. Cellenb.		WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
Cewisser Piepenb. Vicuxb. Cellenb. Wilmstersche James Vicuxb. Cellenb. Vicuxb. Vicuxb.				32892	3294	3312	332	332	332	332	332
Von km				7300	0	0	0	11785	15857	20800	34729
Von km		Gewässer		Piepenb.	Kreuzb.	Gellenb.		Mü	instersche .	Aa	
Dis Km Lânge km 2,539 14,460 10,915 11,785 15,857 20,800 34,729 38,829 4,100 11,785 15,857 20,800 34,729 34,943 33,929 4,100 11,785 11,785 15,857 20,800 34,729 34,943 33,929 4,100 11,785 11,785 15,857 20,800 34,729 34,943 33,929 4,100 34,949		von [km]			0,000	0,000	0,000				34,729
Linge Em				9,839	14,460	10,915	11,785	15,857	20,800	34,729	38,829
KomARA IGL-ARA Regenwassereinleitungen Kühlwassereinleitungen Sümpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung Altiasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entinahmen Abflussregulierungen durch Talsperren Wasservefuste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussegulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x				2,539	14,460	10,915	11,785	4,072	4,943	13,929	4,100
Clarana Clar		Bezeichnung		Everswinkel	Münster bis Telgte	Greven bis Ostbevern	Greven bis Münster	Münster	Münster	Münster bis Altenberge	Altenberge bis Havixbeck
Regenwasserinleitungen			KomARA								
Kühlwassereinleitungen Sümpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Aufwärts- passierbarkeit Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x											
Sümpfungswassereinleitungen Rleinkläranlagen Rleinkläranlagen Rleinkläranlagen Rleinkläranlagen Rleinkläranlagen Rehandlung Rension Rayswaschung Rayswaschungen Rayswaschungen							?	?	?	?	
Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x											
Schmutzwasser ohne Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entrahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussegulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x											
Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x											
Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x											
Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x											
Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x											
Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x			-								
auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte x x x x x x x x Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer											
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	NEC		_								
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x											
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	AS	}									
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	E E										
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x			Wasserverluste								
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	5										
Gewässerstrukturgüte x x x x x x x x x x x x x x x x x x x	4		•						Х		
Querbauwerke und Aufwärtspassierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer	4	•									
passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer				Х							
Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer					?	?	?	?	?	?	?
Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf ? ? Zufluss Nebengewässer											
anthropogene Belastungen Unbekannt Oberlauf ? ? Zufluss Nebengewässer											
Unbekannt Oberlauf Zufluss Nebengewässer											
Zufluss Nebengewässer											
·							?	?			
Kommentar			Zufluss Nebengewässer								
			Kommentar								

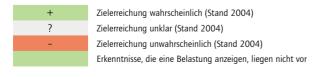

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 21a)

			– Ein	schätzung (Teil 21a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					332	3322	3322	3324	3324	3328	3328	3328
					38829	0	5400	0	5100	0	3200	7700
			Gewässer		Münst. Aa	Schlau	ıfbach	Mecke	elbach		Kinderbach	1
			von [km]		38,829	0,000	5,400	0,000	5,100	0,000	3,200	7,700
			bis [km]		42,959	5,400	8,903	5,100	8,128			10,507
			Länge [km]		4,130	5,400	3,503	5,100	3,028			2,807
			Bezeichnung		Havixbeck	Havixbeck	Havixbeck	Münster	Münster	Münster	Münster	Münster
		je.	Stufe I	Gewässergüte	?	+	+	-	-	-		
		50		Gewässerstruktur	?	+	+	+	?			
		Ë	Stufe II	Fischfauna	-	?	?	?	?			?
		and		N	?	+		?				?
		Ökologischer Zustand Biologie	Stufe III	Р	-	+		?	?	?	?	?
		ir Z	Allgemeine	Т								
		che	chemphys.	02				?	?			
		gis	Kompo-	NH ₄								
		9	nenten	Cl								
	۵	:5		pН								
	ÖKOLOGISCHER ZUSTAND			TOC	?	?	?	?	?	?	?	?
	S			AOX				?	?		3328 3328 0 3200 Kinderbach 0,000 3,200 3,200 7,700 3,200 4,500	
	RZ			Sulfat								
	뿤		Metalle	Cu		?	?	?		?	?	?
	SIS	ë.	(Anhang	Cr								
	Ö	重	VIII)	Zn		?	?	?		?	?	?
	<u>8</u>	O P		AMPA								
	:ō	ţa	PSM	Mecoprop								
Ē		Sm2	(Anhang	Metamitron								
İŢ		er 7	VIII)	Metazachlor								
Einschätzung		Ökologischer Zustand Chemie		Metolachlor								
Ţ.		igo	Industrie-	PCB-101								
ш		S	chem.	PCB-138	?	?	?	?	?	?	?	?
		:0	(Anhang	PCB-153	?	?	?	?	?			?
			VIII)	PCB-180	?	?	?	?	?			?
				PCB-52	?	?	?	?	?			?
				Übrige (Anhang VIII)	?	?	?	+	+			+
			Metalle	Cd Cd	?	?	?	?	?			?
			(Anhang	Hg	?	?	?	?	?			?
			IX, X)	Ni	?	?	?	?	?			?
	AN I		-24, 24,	Pb		?	?	?				?
	CHEMISCHER ZUSTAND		PSM (An-	Atrazin								
	i zu		hang IX, X)	Isoproturon	?	?	?	?	?	7	7	?
	Ä		y iA, A)	Simazin	·							
	SCI			Diuron	?	?	?	?	?	7	7	?
	M		Industrie-	Benzo(a)anthracen	:	,						
	훙		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
			IA, A,	Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	_	?	?	_	_			?
				Chemischer Zustand	?	?	?	?	?			?
				Gesamtbewertung	-	?	?	-	· ·			?
				Gesaminewerlung			!		-	-	-	ŗ

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 21b)

P 100. 1.1.2	– An	alyse der Belastungen	(Teil 21b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			332	3322	3322	3324	3324	3328	3328	3328
			38829	0	5400	0	5100	0	3200	7700
	Gewässer		Münst. Aa	Schlau	ufbach	Mecke	elbach		Kinderbach	1
	von [km]		38,829	0,000	5,400	0,000	5,100	0,000	3,200	7,700
	bis [km]		42,959	5,400	8,903	5,100	8,128	3,200	7,700	10,507
	Länge [km]		4,130	5,400	3,503	5,100	3,028	3,200	4,500	2,807
	Bezeichnung		Havixbeck	Havixbeck	Havixbeck	Münster	Münster	Münster	Münster	Münster
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen		?	?	?		?	?	?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung								
		Altlasten								
N		Sonstige diffuse Quellen, auch Sediment								
		Einleitungen								
P.S.	}	Entnahmen								
ANAIVSE DER REI ACTIINGEN		Abflussregulierungen durch Talsperren								
	<u> </u>	Wasserverluste								
Ž.		Über- und Umleitungen								
4		Querbauwerke und Rückstau								
4	t	Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	?				?			
		Querbauwerke und Aufwärtspassierbarkeit	?	х	Х			?		
		Sonstige morphologische Belastungen								
		Sonstige signifikante anthropogene Belastungen								
		Unbekannt								
		Oberlauf								-
		Zufluss Nebengewässer								
		Kommentar								
			1					L		

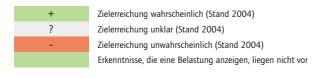

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 22a)

	iub.		– Ein	schätzung (Teil 22a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW		DE_NRW	DE_NRW
					3332	3332	33324	334	334		3342	33432
					0	13594	0	0	15784	01028	0	0
			Gewässer		Mühle	nbach	Flothbach	Gla	ine	Reckte-	Buller-	Katten-
										bach	bach	venner B.
			von [km]		0,000	13,594	0,000	0,000	15,784	32,502	0,000	0,000
			bis [km]		13,594	17,064	8,802	15,784	32,348	35,117	9,152	8,732
			Länge [km]		13,594	3,470	8,802	15,784	16,564	2,797	9,152	8,732
			Bezeichnung		Greven bis Altenberge	Altenberge	Greven bis Münster	Saerbeck bis Lengerich	Lengerich bis Lienen	Recktebach	Lengerich bis Lienen	Ladbergen
		<u>.e</u>	Stufe I	Gewässergüte	?		-	+	+	?	+	-
		log		Gewässerstruktur	-	-	-	-	-	-	+	-
		Ökologischer Zustand Biologie	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
		and		N	?	?	-	-	-	?	?	?
		ust	Stufe III	P	-	?	-	+	?	?		?
		er Z	Allgemeine	Т	-		-			+		
		S. Che	chemphys.	02	?		?			_		?
		ogi	Kompo-	NH ₄			+			?		?
		S	nenten	Cl						?		
	P	:0		pH	2	2	2		2	?		
	ΙŽ			TOC	?	?	?	?	?	?		-
	Š			AOX				?	(?	?	?
	띪		Metalle	Sulfat Cu	?		?	?	+	2	?	2
	Ĩ	a	(Anhang	Cr			· ·	?	+	?		?
	5	Ē	(Allilalig VIII)	Zn	?		?	?	+	?		?
	ÖKOLOGISCHER ZUSTAND	Ökologischer Zustand Chemie	VIII,	AMPA	·		· ·	!	т	?		· ·
	ë	and	PSM	Mecoprop						?		
Đ.		ust	(Anhang	Metamitron						?		
ĮŽ.		er Z	VIII)	Metazachlor						?		
Einschätzung		Sign	·,	Metolachlor						?		
ii S		ogis	Industrie-	PCB-101						?		
ш		3	chem.	PCB-138	?	?	?	?	?	?	?	?
		:0	(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180	?	?	?			?		
				PCB-52	?	?	?	?	?	?	?	?
				Übrige (Anhang VIII)	+	+	?	?	?	?	+	?
			Metalle	Cd	?	?	?	?	?	?	?	?
			(Anhang	Hg	?	?	?			?		
	۵		IX, X)	Ni	?	?	?			?		
	₹			Pb	?		?	?	+	?		?
	SO		PSM (An-	Atrazin						?		
	R Z		hang IX, X)	Isoproturon	?	?	?			?		
	CHEMISCHER ZUSTAND			Simazin						?		
	MIS			Diuron	?	?	?			?		
	품		Industrie-	Benzo(a)anthracen						?		
	J		chem. (Anh.	Benzo(a)pyren						?		
			IX, X)	Fluoranthen						?		
				Übrige (Anhang IX, X)	+	+	+	+	+	?	+	+
				Ökologischer Zustand	-	-	-	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	?	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 22b)

	– Ana	alyse der Belastungen	(Teil 22b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW		DE_NRW	DE_NRW
			3332	3332	33324	334	334		3342	33432
			0	13594	0	0	15784	01028	0	0
	Gewässer		Mühle	enbach	Flothbach	Gla	ane	Reckte-	Buller-	Katten-
								bach	bach	venner B.
	von [km]		0,000	13,594	0,000	0,000	15,784	32,502	0,000	0,000
	bis [km]		13,594	17,064	8,802	15,784	32,348	35,117	9,152	8,732
	Länge [km]		13,594	3,470	8,802	15,784	16,564	2,797	9,152	8,732
	Bezeichnung		Greven bis Altenberge	Altenberge	Greven bis Münster	Saerbeck bis Lengerich	Lengerich bis Lienen	Recktebach	Lengerich bis Lienen	Ladbergen
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen	?		?	?				?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung					?		?	
		Altlasten	?							
N S S S S S S S S S S S S S S S S S S S		Sonstige diffuse Quellen, auch Sediment								
		Einleitungen								
AS:		Entnahmen				Х				
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch Talsperren								
		Wasserverluste								
, s		Über- und Umleitungen								
₹ Z		Querbauwerke und Rückstau				х				
•		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	Х	Х	х	х	Х			х
		Querbauwerke und Aufwärts- passierbarkeit	?	Х		?	?			
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

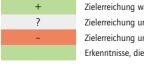

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 23a)

	iau.		– Ein	schätzung (Teil 23a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	
					3344	3344	3344	33442	3346	3346	3346	01027
					0	4000	18200	0	0	15537	18317	
			Gewässer		ı	Mühlenbach	1	Aldruper	Eltin	gs Mühlen	bach	Glaner B., Oeding-
								Mühlen-				berger B.,
								bach				Wispenb., Kolb
			von [km]		0,000	4,000	18,200	0,000	0,000	15,537	18,317	27,569
			bis [km]		4,000	18,200	20,353	8,060	15,537	18,317	27,556	51,337
			Länge [km]		4,000	14,200	2,153	8,060	15,537	2,780	9,239	23,850
			50									9. Ob
			<u> </u>		_		l bis	l bis	s _	_	l bis	ch, rger ch, k
			<u> </u>		igel	_	ergel n	ergel	ın bi verr	verr	verr	r Ba igbe
			Bezeichnung		Ladbergen	Lienen	Ladbergen bis Lienen	Ladbergen bis Lengerich	Greven bis Ostbevern	Ostbevern	Ostbevern bis Glandorf	Glaner Bach, Oedingberger B, Wispenbach, Kolb
			Stufe I	Cowäccorgüto	+	+	+	+	+	0 +	+	?
		gie	Stule I	Gewässergüte Gewässerstruktur	_		-	+	+	+	+	+
		응	Stufe II	Fischfauna	?	?	?	?	+	+	+	?
		Ökologischer Zustand Biologie	Juil II	N	· -	-	<u>;</u>	i i	_	_	_	-
		tan	Stufe III	P	_	_			+			_
		Zus	Allgemeine	T								+
		Те.	chemphys.	02								+
		Jisc	Kompo-	NH ₄	+	?						+
		9	nenten	CI								+
	_	ë		рH								+
	N N			TOC	?	?	?	?	-	-	-	-
	IS			AOX	?	?	?	?	?	?	?	?
	ÖKOLOGISCHER ZUSTAND			Sulfat								+
	뿢		Metalle	Cu	?	?						?
	Sis	⊒.	(Anhang	Cr								?
	ğ	亨	VIII)	Zn	?	?						?
	8	P		AMPA								?
5 0	.0	staı	PSM	Mecoprop								?
3		,Zu	(Anhang	Metamitron								?
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor								?
ıscl		gisc		Metolachlor								?
逼		90	Industrie-	PCB-101	2	2	2	2				?
		÷	chem. (Anhang	PCB-138 PCB-153	?	?	?	?				?
			(Allilalig VIII)	PCB-180	f	· ·	ſ	· ·				?
			V,	PCB-52	?	?	?	?	?	?	?	?
				Übrige (Anhang VIII)	?	?	?	+	+	+	+	?
			Metalle	Cd	?	?	?	?	_	?	?	?
			(Anhang	Hg								?
	۵		IX, X)	Ni								?
	Ā			Pb	?	?						?
	USI		PSM (An-	Atrazin								?
	RZ		hang IX, X)	Isoproturon								?
	붕			Simazin								?
	CHEMISCHER ZUSTAND			Diuron								?
	Ę		Industrie-	Benzo(a)anthracen								?
	Ü		chem. (Anh.	Benzo(a)pyren								?
			IX, X)	Fluoranthen								?
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	?
				Ökologischer Zustand	-	-	-	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	-	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	-	?

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 23b)

	- ,	Ana	alyse der Belastungen	(Teil 23b)							
	WK-	-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	
				3344	3344	3344	33442	3346	3346	3346	01027
				0	4000	18200	0	0	15537	18317	
	Gewäs	sser			Mühlenbacl		Aldruper Mühlen- bach		ıgs Mühlen		Glaner B., Oeding- berger B., Wispenb., Kolb
	von [l	km]		0,000	4,000	18,200	0,000	0,000	15,537	18,317	27,569
	bis [l	km]		4,000	18,200	20,353	8,060	15,537	18,317	27,556	51,337
	Länge [l	km]		4,000	14,200	2,153	8,060	15,537	2,780	9,239	23,850
	:	Bezeichnung		Ladbergen	Lienen	Ladbergen bis Lienen	Ladbergen bis Lengerich	Greven bis Ostbevern	Ostbevern	Ostbevern bis Glandorf	Glaner Bach, Oedingberger B, Wispenbach, Kolb
			KomARA		Х						х
			IGL-ARA		х						х
			Regenwassereinleitungen	?	?						
			Kühlwassereinleitungen								
			Sümpfungswassereinleitungen								
			Kleinkläranlagen								
			Schmutzwasser ohne								
			Behandlung								
			Erosion								
			Auswaschung		?		?				
			Altlasten								
GEN			Sonstige diffuse Quellen, auch Sediment								
Ž			Einleitungen		х						
AS			Entnahmen								
ANALYSE DER BELASTUNGEN			Abflussregulierungen durch Talsperren								
E D			Wasserverluste								
IX S			Über- und Umleitungen								
AZ			Querbauwerke und Rückstau								
•	•		Sonstige Abflussregulierungen								
			Gewässerstrukturgüte	Х	Х	Х					
			Querbauwerke und Aufwärtspassierbarkeit	?	Х	?	Х	?	?	?	
			Sonstige morphologische								
			Belastungen								
			Sonstige signifikante								
			anthropogene Belastungen								
			Unbekannt								
			Oberlauf								
			Zufluss Nebengewässer								
			Kommentar								


x = relevant

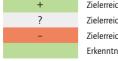
► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 24a)

			– Ein	schätzung (Teil 24a)								
			WK-Nr.		DE_NRW		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					33462	01029	33462	33468	33468	3352	3352	3352
					0		9912	0	2500	0	1088	4688
			Gewässer		Bockhor-	Dümmer	Bockhor-	Lütke	becke	Saerbe	cker Mühle	enbach
					ner Bach	Bach	ner Bach					
			von [km]		0,000	1,757	9,912	0,000	2,500	0,000	1,088	4,688
			bis [km]		1,760	9,912	11,707	2,500	11,018	1,088	4,688	15,188
			Länge [km]		1,760	8,324	1,795	2,500	8,518	1,088	3,600	10,500
			Bezeichnung		Ostbevern bis Glandorf	Dümmer Bach	Glandorf bis Lienen	Greven	Greven bis Ladbergen	Emsdetten bis Saerbeck	Saerbeck	Tecklenburg bis Lengerich
		g.	Stufe I	Gewässergüte	+	?		+	+	+	+	+
		8		Gewässerstruktur	-	-	_	+	-	+	+	-
		Ä	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
		anc		N	-	?		?	?	?	?	?
		ust	Stufe III	P		?						
		er Z	Allgemeine	Т		+						
		Ökologischer Zustand Biologie	chemphys.	02								
		ogi:	Kompo-	NH ₄		?						
		Š	nenten	Cl		?						
	ð	:0		pH		?				_		
	ÖKOLOGISCHER ZUSTAND			TOC	-	?		-	-	?	?	?
	SC			AOX	?	?		?	?	?	?	?
	E 2			Sulfat						_		
	통	_	Metalle	Cu		?				?	?	
	GIS	Ē.	(Anhang	Cr		?				_		
	2	۽	VIII)	Zn		?				?	?	
	Š	Ē		AMPA		?						
5 0		sta	PSM	Mecoprop		?						
Einschätzung		Ökologischer Zustand Chemie	(Anhang	Metamitron		?						
lä:		亨	VIII)	Metazachlor		?						
SC		gisc		Metolachlor		?				_		
造		8	Industrie-	PCB-101		?		_		?	?	?
		÷Š	chem.	PCB-138		?		?	?	?	?	?
			(Anhang	PCB-153		?		?	?	?	?	?
			VIII)	PCB-180	2	?		2		2		
				PCB-52	?	?		?	?	?	?	?
			14.4	Übrige (Anhang VIII)	+	?	+	+	+	+	+	+
			Metalle	Cd	?	?		?	?	?	?	?
			(Anhang	Hg	?	?				?	?	?
	N O		IX, X)	Ni		?				?	?	?
	CHEMISCHER ZUSTAND		DCM /Am	Pb Atrazin		?				?	?	
	ZU		PSM (An- hang IX, X)			?				?	?	?
	荒		nang IA, A)	Isoproturon Simazin		?				!	!	!
	SC			Diuron		?				?	?	?
	M		Industrie-	Benzo(a)anthracen		?				·	,	:
	동		chem. (Anh.	Benzo(a)pyren		?						
			IX, X)	Fluoranthen		?						
			·A, A)	Übrige (Anhang IX, X)	+	?	+	+	+	+	+	+
				Ökologischer Zustand	_	:	?	_	_	?	?	_
				Chemischer Zustand	?	?	+	?	?	?	?	?
				Gesamtbewertung	:	?	?	-	:	?	?	-
				Cesaminativeritality			:			·		

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 24b)

	– Ana	alyse der Belastungen	(Teil 24b)							
	WK-Nr.		DE_NRW		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			33462	01029	33462	33468	33468	3352	3352	3352
			0		9912	0	2500	0	1088	4688
	Gewässer		Bockhor-	Dümmer	Bockhor-	Lütke	becke	Saerbe	cker Mühle	enbach
			ner Bach	Bach	ner Bach					
	von [km]		0,000	1,757	9,912	0,000	2,500	0,000	1,088	4,688
	bis [km]		1,760	9,912	11,707	2,500	11,018	1,088	4,688	15,188
	Länge [km]		1,760	8,324	1,795	2,500	8,518	1,088	3,600	10,500
	Bezeichnung		Ostbevern bis Glandorf	Dümmer Bach	Glandorf bis Lienen	Greven	Greven bis Ladbergen	Emsdetten bis Saerbeck	Saerbeck	Tecklenburg bis Lengerich
		KomARA								
		IGL-ARA		х						
		Regenwassereinleitungen						?		
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung								
		Altlasten								
GEN		Sonstige diffuse Quellen, auch Sediment								
Ę		Einleitungen								
AS		Entnahmen								
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch Talsperren								
ā		Wasserverluste								
ISI		Über- und Umleitungen								
₹ ¥		Querbauwerke und Rückstau								
₹		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	Х				Х			Х
		Querbauwerke und Aufwärtspassierbarkeit						?		?
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf						?		
		Zufluss Nebengewässer								
		Kommentar								

Zielerreichung wahrscheinlich (Stand 2004)
Zielerreichung unklar (Stand 2004)
Zielerreichung unwahrscheinlich (Stand 2004)
Erkenntnisse, die eine Belastung anzeigen, liegen nicht vor


x = relevant

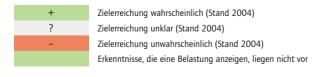
► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 25a)

	iau.		– Ein	schätzung (Teil 25a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					3352	3354	336	336	336	3364	3364	3366
					15188	0	0	8081	16081	0	2900	0
			Gewässer		Saerbecker	Walgen-	Emsdet	tener Mühl	enbach	Landwel	nrgraben	Rösing-
					M. bach	bach						bach
			von [km]		15,188	0,000	0,000	8,081	16,081	0,000		0,000
			bis [km]		18,048	8,041	8,081	16,081	19,585	2,900		7,695
			Länge [km]		2,860	8,041	8,081	8,000	3,504	2,900	2,346	7,695
			Bezeichnung		Saerbeck bis Tecklenburg	Saerbeck bis Greven	Emsdetten bis Nordwalde	Nordwalde bis Altenberge	Nordwalde	Nordwalde bis Steinfurt	Steinfurt	Nordwalde
		gie	Stufe I	Gewässergüte	+	+	+	-	-	-		-
		8	61 6 11	Gewässerstruktur	-	+	-	-	+	-		-
		iế B	Stufe II	Fischfauna	?	?	?	?	?	?	!	?
		Ökologischer Zustand Biologie	Stufe III	N P	?	?	-	-	?	_		_
		Zust	Allgemeine	T		<u>'</u>	-	-	<i>!</i>	-	-	-
		ē	chemphys.	0 ₂		-		-	-			?
		isc	Kompo-	NH ₄				?	?			:
		olog	nenten	Cl								
		Ö		рН								
	Ĭ			TOC	?	?	_	-	?	_	_	?
	TS(AOX	?	?	?	?	?	?	?	?
	ξŢ											
	皇		Metalle	Sulfat Ile Cu ? ? ? ? ? ?								
	ISC	<u>.e</u>	(Anhang	Cr							5,246 2,346 thunder 2,346	
	9	Fe .	VIII)	Zn		?	?	?	?	?	?	
	ÖKOLOGISCHER ZUSTAND	S E		AMPA								
	:0	tan	PSM	Mecoprop								
Ę		Zus	(Anhang	Metamitron								
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor								
Sch		jscl		Metolachlor								
ᇤ		90	Industrie-	PCB-101	?	?	?	?	?	?		?
		Ö	chem.	PCB-138	?	?	?	?	?	?		?
			(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180			_			_		_
				PCB-52	?	?	?	?	?	?		?
			NA	Übrige (Anhang VIII)	+	+	?	?	?	+		+
			Metalle	Cd	?	?	?	?	?	?		?
			(Anhang IX, X)	Hg Ni	?	?	?	?	?	?		?
	N		14, 4)	Pb	· ·	?	?	?	?	?		· ·
	IST/		PSM (An-	Atrazin								
	l ZL		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	皇			Simazin		-						
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?	?	?	?
	EM		Industrie-	Benzo(a)anthracen								
	5		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	-	-	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 25b)

105. 4.11.2	– An	alyse der Belastungen	(Teil 25b)							
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			3352	3354	336	336	336	3364	3364	3366
			15188	0	0	8081	16081	0	2900	0
	Gewässer		Saerbecker	Walgen-	Emsdet	tener Mühl	enbach	Landwel	hrgraben	Rösing-
			M. bach	bach						bach
	von [km]		15,188	0,000	0,000	8,081	16,081	0,000	2,900	0,000
	bis [km]		18,048	8,041	8,081	16,081	19,585	2,900	5,246	7,695
	Länge [km]		2,860	8,041	8,081	8,000	3,504	2,900	2,346	7,695
	Bezeichnung		Saerbeck bis Tecklenburg	Saerbeck bis Greven	Emsdetten bis Nordwalde	Nordwalde bis Altenberge	Nordwalde	Nordwalde bis Steinfurt	Steinfurt	Nordwalde
		KomARA								
		IGL-ARA								
		Regenwassereinleitungen		?	?	?	?	?	?	
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung								
		Altlasten								
2	•	Sonstige diffuse Quellen,								
ָב 2		auch Sediment								
Ē		Einleitungen								
8	}	Entnahmen								
<u> </u>	\$	Abflussregulierungen durch								
Ĭ,	į	Talsperren								
ANAIVSE DER REI ACTIINGEN	į	Wasserverluste								
Š	į	Über- und Umleitungen								
Ž		Querbauwerke und Rückstau Sonstige Abflussregulierungen								
		Gewässerstrukturgüte	.,			.,		.,		
		Querbauwerke und Aufwärts-	X		X ?	Х		Х		Х
		passierbarkeit			ļ '		Х			
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

Zielerreichung wahrscheinlich (Stand 2004)
Zielerreichung unklar (Stand 2004)
Zielerreichung unwahrscheinlich (Stand 2004)
Erkenntnisse, die eine Belastung anzeigen, liegen nicht vor

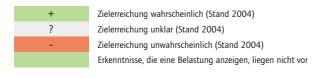

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 26a)

	Iab.	7.1.2	– Ein	schätzung (Teil 26a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					3368	3368	3372	3372	3374	3376	3376	3378
					0	6000	0	6880	0	0	10674	0
			Gewässer		Aab	oach	Humme	rtsbach	Mühlenb.	Frischh	ofsbach	Wamb.
			von [km]		0,000	6,000	0,000	6,880	0,000	0,000	10,674	0,000
			bis [km]		6,000	8,580	6,880	9,899	7,009	10,674	18,645	4,077
			Länge [km]		6,000	2,580	6,880	3,019	7,009	10,674	7,971	4,077
			Bezeichnung		Nordwalde bis Steinfurt	Steinfurt	Rheine bis Emsdetten	Emsdetten	Rheine	Rheine bis Neuenkirchen	Neuenkirchen bis Steinfurt	Rheine
		gie	Stufe I	Gewässergüte Gewässerstruktur	+	+	+	+	+	+	+	+
		9	Stufe II			-		?	+	+	-	
		<u>8</u>	Stule II	Fischfauna N	?	?	?	<i>!</i>	?	?	?	?
		Ökologischer Zustand Biologie	Stufe III	P			?	?	· ·	+		
		Zus	Allgemeine	T			:	·		'		_
		her	chemphys.	02	?							
		Jisc	Kompo-	NH ₄								
		9	nenten	CI								
	_	ë		pН								
	ÖKOLOGISCHER ZUSTAND			TOC	-	-	?	?	?	-	-	?
	ISI			AOX	?	?	?	?	?	-	?	?
	RZI			Sulfat								
	뿢		Metalle	Cu	?	?				?		?
	Sis	ne.	(Anhang	Cr								
	9	를	VIII)	Zn	?	?				?		?
	8	ē		AMPA								
_	:0	staı	PSM	Mecoprop								
Einschätzung		Ökologischer Zustand Chemie	(Anhang	Metamitron								
ıätz		her	VIII)	Metazachlor								
SC		gisc		Metolachlor	_	-	_		-	_	-	_
造		9	Industrie-	PCB-101	?	?	?	?	?	?	?	?
		÷Š	chem.	PCB-138	?	?	?	?	?	?	?	?
			(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180 PCB-52	?	?						
				Übrige (Anhang VIII)	?	?	+	+	+	?	?	+
			Metalle	Cd	?	?	?	?	?	?	?	?
			(Anhang	Hg	?	?	?	?	?	?	?	?
	0		IX, X)	Ni	?	?	?	?	?	?	?	?
	AN			Pb	?	?				?		?
	UST		PSM (An-	Atrazin								
	R ZI		hang IX, X)	Isoproturon	?	?	?	?	?			?
	품			Simazin								
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?			?
	Ŧ		Industrie-	Benzo(a)anthracen								
	ਹ		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	?	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	?	-	-	_

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 26b)

	- Alla	alyse der Belastungen								
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			3368	3368	3372	3372	3374	3376	3376	3378
			0	6000	0	6880	0	0	10674	0
	Gewässer		Aab	ach	Humme	rtsbach	Mühlenb.	Frischh	ofsbach	Wamb.
	von [km]		0,000	6,000	0,000	6,880	0,000	0,000	10,674	0,000
	bis [km]		6,000	8,580	6,880	9,899	7,009	10,674	18,645	4,077
	Länge [km]		6,000	2,580	6,880	3,019	7,009	10,674	7,971	4,077
	Bezeichnung		Nordwalde bis Steinfurt	Steinfurt	Rheine bis Emsdetten	Emsdetten	Rheine	Rheine bis Neuenkirchen	Neuenkirchen bis Steinfurt	Rheine
		KomARA								
		IGL-ARA						_		
		Regenwassereinleitungen	?	?				?		?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung								
		Altlasten								
Z		Sonstige diffuse Quellen,								
S		auch Sediment								
ANALYSE DER BELASTUNGEN		Einleitungen								
AS		Entnahmen						Х		
ᇤ		Abflussregulierungen durch								
Æ		Talsperren								
<u> </u>		Wasserverluste								
I.K		Über- und Umleitungen								
Ž		Querbauwerke und Rückstau								
•		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte		Х					Х	
		Querbauwerke und Aufwärts-	?		Х			х		
		passierbarkeit								
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								

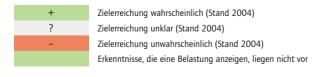

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 27a)

	iau.		– Ein	schätzung (Teil 27a)								
			WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
					3378	3378	338	338	338	3382	3382	3392
					4077	6777	0	11476	31676	0	9300	0
			Gewässer		Wam	bach	Ве	vergerner A	Aa	Mühle	enbach	Randelb.
			von [km]		4,077	6,777	0,000	11,476	31,676	0,000	9,300	0,000
			bis [km]		6,777	9,600	11,476	31,676	33,891	9,300	11,495	1,385
			Länge [km]		2,700	2,823	11,476	20,200	2,215	9,300	2,195	1,385
		gie	Stufe I	Gewässergüte	Rheine bis + Neuenkirchen	Neuenkirchen +	Rheine bis Hörstel	Hörstel bis Tecklenburg	. Tecklenburg	Hörstel bis + Tecklenburg	Tecklenburg +	. + Rheine
		9	61 6 11	Gewässerstruktur	+	-	+	-	-	+	-	+
		ĕ	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
		ano		N	-	-	-	?	?	?	?	?
		Ökologischer Zustand Biologie	Stufe III	P			-	?	?			
		er Z	Allgemeine	T	-	-	+	-	-			
		Š	chemphys.	02						?	?	
		og:	Kompo-	NH ₄								
		<u>\$</u>	nenten	Cl								
	₽	:0		pH	_					_		
	ÖKOLOGISCHER ZUSTAND			TOC	?	?	-	?	?	?	?	?
	S			AOX	?	?	?	?	?	?	?	?
	8			Sulfat	_		-					
	동		Metalle	Cu	?	?	?					?
	Sis	E.	(Anhang	Cr								
	2	<u>F</u>	VIII)	Zn	?	?	-					?
	Š	힏		AMPA								
_	:0	stal	PSM	Mecoprop								
Ξ ,		Zus	(Anhang	Metamitron								
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor								
당		iscl		Metolachlor								
Ë		<u> </u>	Industrie-	PCB-101	?	?				?	?	?
		Ö	chem.	PCB-138	?	?	?	?	?	?	?	?
			(Anhang	PCB-153	?	?	?	?	?	?	?	?
			VIII)	PCB-180								
				PCB-52								
				Übrige (Anhang VIII)	+	+	+	+	+	+	+	+
			Metalle	Cd	?	?	?	?	?	?	?	?
			(Anhang	Hg	?	?						?
	₽		IX, X)	Ni	?	?	?					
	M			Pb	?	?	-					?
	US		PSM (An-	Atrazin								
	R Z		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	?
	품			Simazin								
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?	?	?	?
	Ē		Industrie-	Benzo(a)anthracen								
	Ü		chem. (Anh.	Benzo(a)pyren								
			IX, X)	Fluoranthen								
				Übrige (Anhang IX, X)	+	+	+	+	+	+	+	+
				Ökologischer Zustand	-	-	-	-	-	?	-	?
				Chemischer Zustand	?	?	-	?	?	?	?	?
				Gesamtbewertung	-	-	-	-	-	?	-	?

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 27b)

	– Ana	alyse der Belastungen								
	WK-Nr.		DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
			3378	3378	338	338	338	3382	3382	3392
			4077	6777	0	11476	31676	0	9300	0
	Gewässer		Wam	bach	Ве	vergerner <i>i</i>	А а	Mühle	nbach	Randelb.
	von [km]		4,077	6,777	0,000	11,476	31,676	0,000	9,300	0,000
	bis [km]		6,777	9,600	11,476	31,676	33,891	9,300	11,495	1,385
	Länge [km]		2,700	2,823	11,476	20,200	2,215	9,300	2,195	1,385
	Bezeichnung		Rheine bis Neuenkirchen	Neuenkirchen	Rheine bis Hörstel	Hörstel bis Tecklenburg	Tecklenburg	Hörstel bis Tecklenburg	Tecklenburg	Rheine
		KomARA								
		IGL-ARA				_	_			
		Regenwassereinleitungen	?	?	Х	?	?			?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung								
		Altlasten								
N. S.		Sonstige diffuse Quellen, auch Sediment								
Ē		Einleitungen								
AS:		Entnahmen			Х					
ANALYSE DER BELASTUNGEN		Abflussregulierungen durch Talsperren								
<u> </u>		Wasserverluste								
ISX		Über- und Umleitungen								
A		Querbauwerke und Rückstau								
•		Sonstige Abflussregulierungen								
		Gewässerstrukturgüte		Х		х	х		Х	
		Querbauwerke und Aufwärts- passierbarkeit		?	?	Х	Х			
		Sonstige morphologische								
		Belastungen								
		Sonstige signifikante								
		anthropogene Belastungen								
		Unbekannt								
		Oberlauf				?				
		Zufluss Nebengewässer								
		Kommentar								

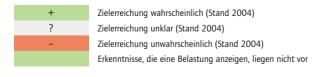

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 28a)

			– Ein	schätzung (Teil 28a)								
			WK-Nr.		DE_NRW		DE_NRW					
					3392	01013	3394	01012	01011	01010	01002	01003
					1385		7647					
			Gewässer		Randelb.	Elsb	ach	Listruper	Flecken-	Elberger Graben,	Gross	e Aa
								Bach	bach	Kanal-		
										graben, Verbundgr.		
			von [km]		1,385	0	7,647	0	0	0	0	7,271
			bis [km]		7,707	7,647	10,527	7,679	6,839	7,193	7,271	24,267
			Länge [km]		6,322	7,649	2,880	7,700	6,860	7,211	7,301	16,996
										<u>_</u>		Ď.
			Bezeichnung		nen		Salzbergen bis Wettringen	Listruper Bach	Ę	Elberger Graben	ng bis	bis Einmündung Speller Aa
			통		Rheine bis Neuenkirchen		Salzbergen Wettringen	er B	Fleckenbach	er G	Einmündung Speller Aa bis Ems	bis Einmür Speller Aa
			zei		eine	Elsbach	zbe	trup	cker	erg	ımü eller Is	Ein eller
						Els	Sal	List	본		Einm Spell Ems	
		<u>.e</u> .	Stufe I	Gewässergüte	+	+	-	+	-	?	-	+
		<u> </u>		Gewässerstruktur	-	+	-	?	?	?	-	-
		Bio	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
		and		N	?	?	-	?	?	?	?	-
		usta	Stufe III	Р		?		?	?	?	?	-
		ır Zı	Allgemeine	Т		+		+	+	+	+	+
		che	chemphys.	02								+
		Ökologischer Zustand Biologie	Kompo-	NH ₄		?		?	?	?	?	-
		Š	nenten	Cl		?		?	?	?	-	+
	9	:0		pH		?		?	?	?	?	+
	ÖKOLOGISCHER ZUSTAND			TOC	?	?	-	?	?	?	?	-
	SÜ			AOX	?	?	?	?	?	?	?	?
	1 Z			Sulfat								+
	훙		Metalle	Cu	?	?	?	?	?	?	?	+
	SIS	E.	(Anhang	Cr		?		?	?	?	?	+
	2	e C	VIII)	Zn	?	?	?	?	?	?	?	+
	<u>8</u>	Ē		AMPA		?		?	?	?	?	?
5 0		stal	PSM	Mecoprop		?		?	?	?	?	+
3		nz.	(Anhang	Metamitron		?		?	?	?	?	?
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor		?		?	?	?	?	+
SC		gisc		Metolachlor		?		?	?	?	?	+
造		8	Industrie-	PCB-101	?	?		?	?	?	?	+
		÷	chem.	PCB-138	?	?		?	?	?	?	+
			(Anhang	PCB-153	?	?		?	?	?	?	+
			VIII)	PCB-180		?		?	?	?	?	+
				PCB-52		?		?	?	?	?	+
			Metalle	Übrige (Anhang VIII)	+ ?	?	+ ?	?	?	?	?	?
				Cd	?	?	?	?	?	?	?	?
			(Anhang	Hg Ni	,	?	(?	?	?	?	+
	N		IX, X)	Pb	?	?	?	?	?	?	?	+
	CHEMISCHER ZUSTAND		PSM (An-	Atrazin	,	?	(?	?	?	?	+
	ZU		hang IX, X)	Isoproturon	?	?	?	?	?	?	?	+
	Ä		nang iA, A)	Simazin		?	,	?	?	?	?	+
	SCF			Diuron	?	?		?	?	?	?	?
	EMI		Industrie-	Benzo(a)anthracen	;	?		?	?	?	?	?
	동		chem. (Anh.	Benzo(a)pyren		?		?	?	?	?	+
			IX, X)	Fluoranthen		?		?	?	?	?	+
			-24,24	Übrige (Anhang IX, X)	+	?	+	?	?	?	?	?
				Ökologischer Zustand	_	?	-	?	-	?	:	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	-	+	-	?	?	?	?	?

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 28b)

- /	Analyse der Belastungen	(Teil 28b)							
WK-	Nr.	DE_NRW		DE_NRW					
		3392	01013	3394	01012	01011	01010	01002	01003
		1385		7647					
Gewäs	ser	Randelb.	Elsk	oach	Listruper Bach	Flecken- bach	Elberger Graben, Kanal- graben, Verbundgr.	Gross	e Aa
von [k	m]	1,385	0	7,647	0	0	0	0	7,271
bis [k	m]	7,707	7,647	10,527	7,679	6,839	7,193	7,271	24,267
Länge [k	m]	6,322	7,649	2,880	7,700	6,860	7,211	7,301	16,996
	Bezeich nung Bezeich nung	Rheine bis Neuenkirchen	Elsbach	Salzbergen bis Wettringen	Listruper Bach	Fleckenbach	Elberger Graben	Einmündung Speller Aa bis Ems	bis Einmündung Speller Aa
	KomARA					х			Х
	IGL-ARA							х	
	Regenwassereinleitungen	?		?					
	Kühlwassereinleitungen								
	Sümpfungswassereinleitungen								
	Kleinkläranlagen								
	Schmutzwasser ohne								
	Behandlung								
	Erosion								
	Auswaschung								
	Altlasten								
CEN	Sonstige diffuse Quellen, auch Sediment								
ž	Einleitungen								
IS	Entnahmen								
ANALYSE DER BELASTUNGEN	Abflussregulierungen durch Talsperren								
Ō	Wasserverluste								
I X SI	Über- und Umleitungen								
Ā	Querbauwerke und Rückstau								
₹	Sonstige Abflussregulierungen								
	Gewässerstrukturgüte	Х		Х					
	Querbauwerke und Aufwärtspassierbarkeit								
	Sonstige morphologische Belastungen								
	Sonstige signifikante anthropogene Belastungen								
	Unbekannt								
	Oberlauf								
	Zufluss Nebengewässer								
	Kommentar								


x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 29a)

	iub.		– Ein	schätzung (Teil 29a)								
			WK-Nr.							DE_NRW		DE_NRW
					01006	01007	01008	01009	01005	342	01031	3424
										2556		0
			Gewässer		Deeper Aa, Fürstenauer Mühlenb., Anderven- ner Graben	Fürste- nauer Mühlenb.	Reetbach	Ahe, Wolfsberg- bach, Memedings- bach	Schaler Aa	Aa	Weeser Aa, Vorderer Kölzenkanal	
			von [km]		24,267	4,4910	0	0	0	2,556	14,597	0,000
			bis [km]		35,018	12,921	12,242	15,172	2,556	14,596	31,006	6,049
			Länge [km] Bezeichnung		Deeper Aa	Oberlauf Oberlauf	Reetbach	28,986	Schaler Aa	Freren bis Voltlage	Meeser Aa	Hopsten Hopsten
		a	Stufe I	Gewässergüte	?	?	?	_	+	-	_	+
		ğ		Gewässerstruktur	_	?	?	_	_	-	_	_
		iğ	Stufe II	Fischfauna	_	?	?	?	_	?	?	?
		P		N	?	?	?	?	?	-	?	_
		tan	Stufe III	P	?	?	?	?	?	?	?	
		Ökologischer Zustand Biologie	Allgemeine	T	+	+	+	+	+		+	
		Je .	chemphys.	02								
		isc	Kompo-	NH ₄	?	?	?	?	?	?	?	
		<u> </u>	nenten	Cl	?	?	?	?	?	·	?	
		ÖK		pH	?	?	?	?	?		?	
	ğ	_		TOC	?	?	?	?	?	-	?	_
	TS.			AOX	?	?	?	?	?	?	?	?
	Z			Sulfat		•	•	•	·	•	•	·
	띺		Metalle	Cu	?	?	?	?	?	?	?	
	SC	<u>.e</u> .	(Anhang	Cr	?	?	?	?	?	·	?	
	5	E	VIII)	Zn	?	?	?	?	?	?	?	
	ÖKOLOGISCHER ZUSTAND	5		AMPA	?	?	?	?	?		?	
	÷Š	and	PSM	Mecoprop	?	?	?	?	?		?	
E E		Ökologischer Zustand Chemie	(Anhang	Metamitron	?	?	?	?	?		?	
Einschätzung		er Z	VIII)	Metazachlor	?	?	?	?	?		?	
: 		S.	,	Metolachlor	?	?	?	?	?		?	
ins		ogi:	Industrie-	PCB-101	?	?	?	?	?		?	
ш		Š	chem.	PCB-138	?	?	?	?	?		?	
		:0	(Anhang	PCB-153	?	?	?	?	?		?	
			VIII)	PCB-180	?	?	?	?	?		?	
				PCB-52	?	?	?	?	?		?	
				Übrige (Anhang VIII)	?	?	?	?	?	?	?	+
			Metalle	Cd	?	?	?	?	?		?	
			(Anhang	Hg	?	?	?	?	?		?	
	۵		ix, x)	Ni	?	?	?	?	?		?	
	CHEMISCHER ZUSTAND			Pb	?	?	?	?	?	?	?	
	LSU		PSM (An-	Atrazin	?	?	?	?	?		?	
	RZ		hang IX, X)	Isoproturon	?	?	?	?	?		?	
	H			Simazin	?	?	?	?	?		?	
	IISC			Diuron	?	?	?	?	?	?	?	?
	Ē		Industrie-	Benzo(a)anthracen	?	?	?	?	?		?	
	2		chem. (Anh.	Benzo(a)pyren	?	?	?	?	?		?	
			IX, X)	Fluoranthen	?	?	?	?	?		?	
				Übrige (Anhang IX, X)	?	?	?	?	?	+	?	+
				Ökologischer Zustand	-	?	?	-	-	-	-	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	?	?	?	?	?	-	?	-
						·						

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 29b)

WK-Nz		– Ana	alyse der Belastungen	(Teil 29b)							
Description Description Principles P		WK-Nr.							DE_NRW		DE_NRW
Despera August				01006	01007	01008	01009	01005	342	01031	3424
Nomara N									2556		0
Bis km		Gewässer		Fürstenauer Mühlenb., Anderven-	nauer	Reetbach	Wolfsberg- bach, Memedings-	Schaler Aa		Vorderer	
Lânge [km]		von [km]		24,267	4,4910	0	0	0	2,556	14,597	0,000
NomARA X IGL-ARA Regenwassereinleitungen Ximplungswassereinleitungen Ximplungswassereinleitungswassereinleitungswassereinleitungswassereinleitungen Ximplungswassereinleitungswassereinleitungswassereinleitungswassereinleitungswassereinleitungen Ximplungswassereinleitungswassereinleitungswassereinleitungen Ximplungswassereinleitungswassereinleitungswassereinleitungen Ximplungswassereinleitungswassereinleitungswassereinleitungen Ximplungswassereinleitungen Ximplungswassereinleitungswassereinleitungen Ximplungswassereinleitungen Ximplungswasserei		bis [km]		35,018	12,921	12,242	15,172	2,556	14,596	31,006	6,049
KomARA x IGLARA Regenwassereinleitungen ?		Länge [km]		19,404	8,430	12,242	28,986	2,582	12,040	19,111	6,049
IGL-ARA Regenwassereinleitungen Rühlwassereinleitungen Rühlwass		Bezeichnung		Deeper Aa	Oberlauf	Reetbach	Ahe	Schaler Aa	Freren bis Voltlage	Weeser Aa	Hopsten
Regenwassereinleitungen Kühlwassereinleitungen Sümpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Querbauwerke und Aufwärts- passierbarkeit Sonstige mophologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			KomARA	Х							
Kühlwassereinleitungen Sümpfungswassereinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Überlauf Zufluss Nebengewässer			IGL-ARA								
Sümpfungswasserinleitungen Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entrahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonsige Abflussegulierungen Gewässerstrukturgüte Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer									?		
Kleinkläranlagen Schmutzwasser ohne Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Kühlwassereinleitungen								
Schmutzwasser ohne Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entrahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Cewässerstrukturgüte Sonstige Masserverluste Unerbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Sümpfungswassereinleitungen								
Behandlung Erosion Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Kleinkläranlagen								
Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Schmutzwasser ohne								
Auswaschung Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Aufwarts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Behandlung								
Altlasten Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte XXXX Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Erosion								
Sonstige diffuse Quellen, auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Auswaschung								
auch Sediment Einleitungen Entnahmen Abflussregulierungen durch Talsperren Wasserverluste Über- und Umleitungen Querbauwerke und Rückstau Sonstige Abflussregulierungen Gewässerstrukturgüte Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer											
Gewässerstrukturgüte	2		_								
Gewässerstrukturgüte	2	5	Einleitungen								
Gewässerstrukturgüte	5		Entnahmen								
Gewässerstrukturgüte XXXXX Querbauwerke und Aufwärts- passierbarkeit XXXX Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer	<u>.</u>										
Gewässerstrukturgüte XXXXX Querbauwerke und Aufwärts- passierbarkeit XXXX Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer	ā	5	Wasserverluste								
Gewässerstrukturgüte XXXXX Querbauwerke und Aufwärts- passierbarkeit XXXX Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer	5	<u>.</u>	Über- und Umleitungen								
Gewässerstrukturgüte XXXXX Querbauwerke und Aufwärts- passierbarkeit XXXX Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer		<u> </u>	Querbauwerke und Rückstau								
Querbauwerke und Aufwärts- passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer	-	ŧ .	Sonstige Abflussregulierungen								
passierbarkeit Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Gewässerstrukturgüte						Х		х
Sonstige morphologische Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			Querbauwerke und Aufwärts-						х		х
Belastungen Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer			passierbarkeit								
Sonstige signifikante anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer											
anthropogene Belastungen Unbekannt Oberlauf Zufluss Nebengewässer											
Unbekannt Oberlauf Zufluss Nebengewässer											
Oberlauf Zufluss Nebengewässer			anthropogene Belastungen								
Zufluss Nebengewässer			Unbekannt								
Kommentar			Zufluss Nebengewässer								
			Kommentar								

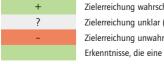

x = relevant

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 30a) ► Tab. 4.1.2.1-1

				schatzung (Teil 30a)								
			WK-Nr.				DE_NRW		DE_NRW			DE_NRW
					01030	01020	3432	01019	3434	01016	01018	3438
							4736		8343			10089
			Gewässer		Voltlager	Bardel	graben	Moos	beeke	Reitbach,	Giege	el Aa
					Aa					Thuiner		
										Mühlenb.		
			von [km]		6,049	0	4,736	0	8,343	0	0	10,089
			bis [km]		18,109	4,736	23,581	8,343	17,463	6,845	10,089	11,884
			Länge [km]		12,056	4,736	18,845	8,327	9,120	12,929	10,083	1,795
			Bezeichnung Bezeichnung	Coursessaille	Voltlager Aa	Bardelgraben -	Hopsten bis Mettingen	Moosbeeke	Hopsten bis Recke	Reitbach	Giegel Aa -	Schapen bis Hopsten
		gie	Sture I	Gewässergüte	-	+	-	-	-	-	+	-
		8	Ctf. II	Gewässerstruktur	-	-	-	+	-	+	+	-
		Ökologischer Zustand Biologie	Stufe II	Fischfauna	?	?	?	?	?	?	?	?
		anc	C4 . F	N	?	?	?	?		?	?	?
		ust	Stufe III	P	?	?		?	+	?	?	
		er Z	Allgemeine	T	+	+		+		+	+	
		ŠĢ	chemphys.	02					+			
		ogi	Kompo-	NH ₄	?	?	?	?	?	?	?	
		ko	nenten	Cl	?	?		?		?	?	
	9	:0		pH	?	?		?		?	?	
	Ž			TOC	?	?	-	?	-	?	?	-
	ÖKOLOGISCHER ZUSTAND			AOX	?	?	?	?	?	?	?	?
	R Z			Sulfat								
	Ë		Metalle	Cu	?	?		?		?	?	?
	SIS	m:	(Anhang	Cr	?	?		?		?	?	
	Š	je i	VIII)	Zn	?	?		?		?	?	?
	Š	J Pr		AMPA	?	?		?		?	?	
	:0	star	PSM	Mecoprop	?	?		?		?	?	
5un		Zus	(Anhang	Metamitron	?	?		?		?	?	
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor	?	?		?		?	?	
sch		jisc		Metolachlor	?	?		?		?	?	
Ë		90	Industrie-	PCB-101	?	?		?		?	?	
		ÖKC	chem.	PCB-138	?	?		?		?	?	
			(Anhang	PCB-153	?	?		?		?	?	
			VIII)	PCB-180	?	?		?		?	?	
				PCB-52	?	?		?		?	?	
				Übrige (Anhang VIII)	?	?	+	?	+	?	?	+
			Metalle	Cd	?	?		?		?	?	
			(Anhang	Hg	?	?		?		?	?	
	Ģ		IX, X)	Ni	?	?		?		?	?	+
	CHEMISCHER ZUSTAND			Pb	?	?		?		?	?	?
	SUS		PSM (An-	Atrazin	?	?		?		?	?	
	ER 2		hang IX, X)	Isoproturon	?	?		?		?	?	
	동			Simazin	?	?		?		?	?	
	MIS			Diuron	?	?	?	?	?	?	?	?
	五		Industrie-	Benzo(a)anthracen	?	?		?		?	?	
	J		chem. (Anh.	Benzo(a)pyren	?	?		?		?	?	
			IX, X)	Fluoranthen	?	?		?		?	?	
				Übrige (Anhang IX, X)	?	?	+	?	+	?	?	+
				Ökologischer Zustand	-	-	-	-	-	-	?	-
				Chemischer Zustand	?	?	?	?	?	?	?	?
				Gesamtbewertung	?	?	-	?	-	?	?	-

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 30b)

145. 4.1.2	– An	alyse der Belastungen	(Teil 30b)							
	WK-Nr.				DE_NRW		DE_NRW			DE_NRW
			01030	01020	3432	01019	3434	01016	01018	3438
					4736		8343			10089
	Gewässer		Voltlager Aa	Bardel	graben	Moos	beeke	Reitbach, Thuiner Mühlenb.	Giege	
	von [km]		6,049	0	4,736	0	8,343	0	0	10,089
	bis [km]		18,109	4,736	23,581	8,343	17,463	6,845	10,089	11,884
	Länge [km]		12,056	4,736	18,845	8,327	9,120	12,929	10,083	1,795
	Bezeichnung		Voltlager Aa	Bardelgraben	Hopsten bis Mettingen	Moosbeeke	Hopsten bis Recke	Reitbach	Giegel Aa	Schapen bis Hopsten
		KomARA	Х							
		IGL-ARA								
		Regenwassereinleitungen								?
		Kühlwassereinleitungen								
		Sümpfungswassereinleitungen								
		Kleinkläranlagen								
		Schmutzwasser ohne								
		Behandlung								
		Erosion								
		Auswaschung								
		Altlasten								
N		Sonstige diffuse Quellen, auch Sediment								
2	5	Einleitungen								х
5	2	Entnahmen								
ANAIVCE DER REI ACTIINGEN		Abflussregulierungen durch Talsperren								
	2	Wasserverluste								
X		Über- und Umleitungen								
Š		Querbauwerke und Rückstau								
٩	•	Sonstige Abflussregulierungen								
		Gewässerstrukturgüte			Х		Х			Х
		Querbauwerke und Aufwärtspassierbarkeit					Х			Х
		Sonstige morphologische Belastungen								
		Sonstige signifikante anthropogene Belastungen								
		Unbekannt								
		Oberlauf								
		Zufluss Nebengewässer								
		Kommentar								


x = relevant

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 31a) ► Tab. 4.1.2.1-1

				Schatzung (Teil 31a)								
			WK-Nr.						DE_NRW		DE_NRW	
					01015	0101	01004	01021	344	344	344	344
									14915	20304	29104	43304
			Gewässer		Schinken- kanal	Lünner Graben	Speller Aa, Dreierwal- der Aa	Hopstener Aa		Metting	ger Aa	
			von [km]		0	0	0	12,482	14,915	20,304	29,104	43,304
			bis [km]		10,472	7,022	12,482	14,915	20,304	29,104	43,304	49,317
			Länge [km]		10,472	7,023	13,963	2,443	5,389	8,800	14,200	6,013
			Bezeichnung		Schinkenkanal	Lünner Graben	Speller Aa	Hopstener Aa	Spelle bis Hopsten	Hopsten bis Recke	Recke bis Westerkappeln	Westerkappeln
		<u>.e</u>	Stufe I	Gewässergüte	?	?	-	-	?	+	+	+
		90		Gewässerstruktur	+	?	-	?	+	-	-	+
		Ökologischer Zustand Biologie	Stufe II	Fischfauna	?	?	-	?	?	?	?	?
		and a		N	?	?	-	?	?	?	-	-
		ıst	Stufe III	Р	?	?	-	?			?	
		r Zı	Allgemeine	Т	+	+	+	+				
		che	chemphys.	02			+					
		gis	Kompo-	NH ₄	?	?	-	?			+	
		용	nenten	Cl	?	?	-	?				
	۵	÷Š		рН	?	?	+	?				
	ÖKOLOGISCHER ZUSTAND			TOC	?	?	-	?	?	?	?	
	S			AOX	?	?	-	?	?	?	?	?
	R Z			Sulfat			-					
	품		Metalle	Cu	?	?	+	?	?	?	?	
	SC	<u>.e</u>	(Anhang	Cr	?	?	+	?				
	9	Ten .	VIII)	Zn	?	?	+	?	?	?	?	
	9	ū		AMPA	?	?	?	?				
	ΞŌ	ta n	PSM	Mecoprop	?	?	+	?				
ng		'ms	(Anhang	Metamitron	?	?	?	?				
Į		er 2	VIII)	Metazachlor	?	?	+	?				
흥		Sch	•	Metolachlor	?	?	+	?				
Einschätzung		Ökologischer Zustand Chemie	Industrie-	PCB-101	?	?	+	?				
ш		ko	chem.	PCB-138	?	?	+	?				
		:0	(Anhang	PCB-153	?	?	+	?				
			VIII)	PCB-180	?	?	+	?				
				PCB-52	?	?	+	?				
				Übrige (Anhang VIII)	?	?	_	?	?	?	?	?
			Metalle	Cd Cd	?	?	+	?				
			(Anhang	Hg	?	?	_	?				
	6		IX, X)	Ni	?	?	+	?				
	CHEMISCHER ZUSTAND		,,	Pb	?	?	+	?	?	?	?	
	JST		PSM (An-	Atrazin	?	?	?	?				
	Z ZI		hang IX, X)	Isoproturon	?	?	?	?				
	皇			Simazin	?	?	?	?				
	ISC			Diuron	?	?	?	?	?	?	?	?
	M		Industrie-	Benzo(a)anthracen	?	?	?	?				
	£		chem. (Anh.	Benzo(a)pyren	?	?	+	?				
			IX, X)	Fluoranthen	?	?	+	?				
			,,	Übrige (Anhang IX, X)	?	?	?	?	+	+	+	+
				Ökologischer Zustand	?	?	:	:	?			
				Chemischer Zustand	?	?		?	?	?	?	?
				Gesamtbewertung	?	?		?	?	· -	-	-
				Gesaminewertung	:	:		,	:			

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 31b)

- And	alyse der Belastungen	(Teil 31b)							
WK-Nr.						DE_NRW	DE_NRW	DE_NRW	DE_NRW
		01015	0101	01004	01021	344	344	344	344
						14915	20304	29104	43304
Gewässer		Schinken- kanal	Lünner Graben	Speller Aa, Dreierwal- der Aa	Hopstener Aa		Metting	ger Aa	
von [km]		0	0	0	12,482	14,915	20,304	29,104	43,304
bis [km]		10,472	7,022	12,482	14,915	20,304	29,104	43,304	49,317
Länge [km]		10,472	7,023	13,963	2,443	5,389	8,800	14,200	6,013
Bezeichnung		Schinkenkanal	Lünner Graben	Speller Aa	Hopstener Aa	Spelle bis Hopsten	Hopsten bis Recke	Recke bis Westerkappeln	Westerkappeln
	KomARA			х					
	IGL-ARA								
	Regenwassereinleitungen					?	?	?	
	Kühlwassereinleitungen								
	Sümpfungswassereinleitungen								
	Kleinkläranlagen								
	Schmutzwasser ohne								
	Behandlung								
	Erosion								?
	Auswaschung							?	
	Altlasten								
DEN	Sonstige diffuse Quellen, auch Sediment								
Ę	Einleitungen								
A S:	Entnahmen								
ANALYSE DER BELASTUNGEN	Abflussregulierungen durch Talsperren								
Ö	Wasserverluste								
IYS	Über- und Umleitungen								
Ž	Querbauwerke und Rückstau								
<	Sonstige Abflussregulierungen								
	Gewässerstrukturgüte						Х	Х	
	Querbauwerke und Aufwärtspassierbarkeit					?	?	?	х
	Sonstige morphologische Belastungen								
	Sonstige signifikante								
	anthropogene Belastungen								
	Unbekannt								
	Oberlauf								
	Zufluss Nebengewässer								
	Kommentar								

Zielerreichung wahrscheinlich (Stand 2004) Zielerreichung unklar (Stand 2004) Zielerreichung unwahrscheinlich (Stand 2004) Erkenntnisse, die eine Belastung anzeigen, liegen nicht vor

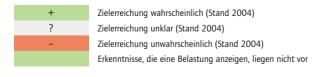

x = relevant

► Tab. 4.1.2.1–1 Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Einschätzung (Teil 32a)

DE_NRW DE_NRW DE_NRW DE_NRW DE_NRW DE_NRW DE_NRW DE_NRW 3448 3448 3448 3444 3444 3444 3444 3444 3444 3444 3444 3444 3444 3444 3444 3444 3445 3448	3448 15075
Community Comm	15075 der Aa 15,075 31,200
Hauptgraben Gewässer Hauptgraben Strootbach Meerbecke Breischener Bruchgraben Gewässer Hauptgraben Strootbach Meerbecke Breischener Bruchgraben Gewässer O,000 O,000 Z,600 6,500 O,000 O,000 1,494 O,000 D,000 D,0	15,075 31,200
Specific Residual Contract of the Residual Res	15,075 31,200
Secke Seck	31,200
Von [km] O,000 O,000 Z,600 6,500 O,000 0,000 1,494	31,200
von [km] 0,000 0,000 2,600 6,500 0,000 0,000 1,494 bis [km] 9,801 2,600 6,500 9,336 5,221 7,160 15,075 Länge [km] 9,801 2,600 3,900 2,836 5,221 7,160 13,581	31,200
Section Sect	31,200
Mettingen bis Westerkappeln bis Westerka	
Bezeichnung Mettingen bis Westerkappeln Recke Becke bis Ibbenbüren Ibbenbüren Hopsten Hopsten Hopsten Hopsten Hopsten Hopsten	
CAUSE I COUNTY OF THE	
CAUSE I COUNTY OF THE	
Chufa I Coming and its	Hörstel bis Tecklenburg
Charles I Constitution of the Constitution of	stel
Stufe I Conferencia	Hö Tec
Stufe II Fischfauna P P P P P P P P P	-
Stufe Fischfauna	-
N	?
Stufe III P ? ? ? ? ? ? ?	?
Allgemeine T Chemphys. O ₂	-
chemphys. O ₂	-
	?
Kompo- NH ₄ ? ? ?	-
nenten Cl	+
pH pH	
TOC	-
AOX ? ? ? ? ? .	?
Sulfat -	+
Metalle Cu ? ? ? ?	?
S .º (Anhang Cr	
8 y viii) Zn ? ? ? ?	?
AMPA AMPA	
:o g PSM Mecoprop	
(Anhang Metamitron	+
VIII) Metazachlor	
(Anhang Metamitron VIII) Metazachlor Metolachlor Industrie- PCB-101 PCB-101 PCB-101 PCB-101	+
Industrie- PCB-101 ?	?
Cr Cr Cr Cr Cr Cr Cr Cr	?
(Anhang PCB-153 ?	?
VIII) PCB-180 ?	?
PCB-52 ?	?
Übrige (Anhang VIII)	?
Metalle Cd -	?
(Anhang Hg	?
	?
Pb ? ? ?	?
PSM (An- Atrazin	+
hang IX, X) Isoproturon	+
Simazin	+
IX, X Ni	-
Industrie- Benzo(a)anthracen	
chem. (Anh. Benzo(a)pyren	
IX, X) Fluoranthen	
Übrige (Anhang IX, X) + + + + + ?	
Ökologischer Zustand	?
Chemischer Zustand ? ? ? ? ? .	?
Gesamtbewertung	

Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 32b)

- A	Analyse der Belastungen	(Teil 32b)							
WK-	Nr.	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW	DE_NRW
		3442	3444	3444	3444	34454	3446	3448	3448
		0	0	2600	6500	0	0	1494	15075
Gewäs	ser	Haupt- graben		Strootbach		Meer- becke	Breische- ner Bruch- graben	Dreierwa	alder Aa
von [k	n]	0,000	0,000	2,600	6,500	0,000	0,000	1,494	15,075
bis [k	n]	9,801	2,600	6,500	9,336	5,221	7,160	15,075	31,200
Länge [k	n]	9,801	2,600	3,900	2,836	5,221	7,160	13,581	16,125
		Mettingen bis Westerkappeln	Recke	Recke bis Ibbenbüren	Ibbenbüren	Hopsten bis Ibbenbüren	Hopsten	Spelle bis Hörstel	Hörstel bis Tecklenburg
	KomARA								х
	IGL-ARA							х	х
	Regenwassereinleitungen	?	?	?	?			х	?
	Kühlwassereinleitungen								
	Sümpfungswassereinleitungen							х	х
	Kleinkläranlagen								
	Schmutzwasser ohne								
	Behandlung								
	Erosion								
	Auswaschung	?							
	Altlasten								
DEN	Sonstige diffuse Quellen, auch Sediment							х	Х
ž	Einleitungen							х	Х
AS	Entnahmen								
ANALYSE DER BELASTUNGEN	Abflussregulierungen durch Talsperren								
Ψ O	Wasserverluste								
LYS	Über- und Umleitungen								
N N	Querbauwerke und Rückstau								Х
	Sonstige Abflussregulierungen								
	Gewässerstrukturgüte	X	_			Х	Х	Х	Х
	Querbauwerke und Aufwärts- passierbarkeit	?	?	Х				Х	Х
	Sonstige morphologische Belastungen							х	
	Sonstige signifikante anthropogene Belastungen								
	Unbekannt								
	Oberlauf							х	
	Zufluss Nebengewässer								
	Kommentar								



x = relevant

			– Ein	schätzung (Teil 33a)							
			WK-Nr.		DE_NRW		DE_NRW				
					3448	01022	34486	01014	01023		
					31200		1839				
			Gewässer		Dreierwal-	Altenrheir	ner Bruch-	Bramscher	DEK		
					der Aa	gral	ben	Mühlen-			
								bach			
			von [km]		31,200	0	1,839	0	0		
			bis [km]		36,104	1,839	8,012	10,115	16,400		
			Länge [km]		4,904	1,813	6,173	10,141	16,585		
									S		
			Bezeichnung			<u>-</u> ⊏		ے ا	Grenze NRW bis Gleesen		
			_		Fecklenburg	Altenrheiner Bruchgraben	Hörstel bis Rheine	Bramscher Mühlenbach	NR _		
			jej.		klen	snrh	stel	Bramscher Mühlenbac	nze eser		
			Bez		Tecl	Alte Bru	Hörstel Rheine	Bra Mü	Grenze N Gleesen		
		<u>.e</u>	Stufe I	Gewässergüte	+	-	-	+	-		
		<u>o</u>		Gewässerstruktur	-	-	-	?	-		
		Bio	Stufe II	Fischfauna	?	?	?	?	?		
		P		N	?	?		?	?		
		ısta	Stufe III	Р		?		?	?		
		Ž	Allgemeine	T		+		+	+		
		Ökologischer Zustand Biologie	chemphys.	02	?						
		gis	Kompo-	NH ₄		?		?	?		
		8	nenten	Cl		?		?	-		
	₽	ΞŌ		pH		?		?	?		
	ÖKOLOGISCHER ZUSTAND			TOC	?	?	-	?	?		
	US			AOX	?	?	?	?	?		
	RZ			Sulfat							
	뿡		Metalle	Cu		?		?	?		
	Sis	E.	(Anhang	Cr		?		?	?		
	2	를	VIII)	Zn		?		?	?		
	8	핕		AMPA		?		?	?		
_	:0	staı	PSM	Mecoprop		?		?	?		
<u> </u>		Zn	(Anhang	Metamitron	+	?		?	?		
Einschätzung		Ökologischer Zustand Chemie	VIII)	Metazachlor		?		?	?		
SC		gisc		Metolachlor	+	?		?	?		
造		8	Industrie-	PCB-101	?	?		?	?		
		ö	chem.	PCB-138	?	?		?	?		
			(Anhang	PCB-153	?	?		?	?		
			VIII)	PCB-180	?	?		?	?		
				PCB-52	?	?		?	?		
			Metalle	Übrige (Anhang VIII)	?	?	+ ?	?	?		
				Cd	?	?	?	?	?		
			(Anhang IX, X)	Hg Ni	?	?	?	?	?		
	N		IA, A)	Pb	,	?	·	?	?		
	ST		PSM (An-	Atrazin	+	?		?	?		
	Z		hang IX, X)	Isoproturon	+	?	?	?	?		
	E		nung iA, A)	Simazin	+	?		?	?		
	CHEMISCHER ZUSTAND			Diuron	?	?	?	?	?		
	E		Industrie-	Benzo(a)anthracen		?		?	?		
	끙		chem. (Anh.	Benzo(a)pyren		?		?	?		
			IX, X)	Fluoranthen		?		?	?		
				Übrige (Anhang IX, X)	?	?	+	?	?		
				Ökologischer Zustand	-	-	-	?	-		
				Chemischer Zustand	?	?	?	?	?		
				Gesamtbewertung	-	?	-	?	?		

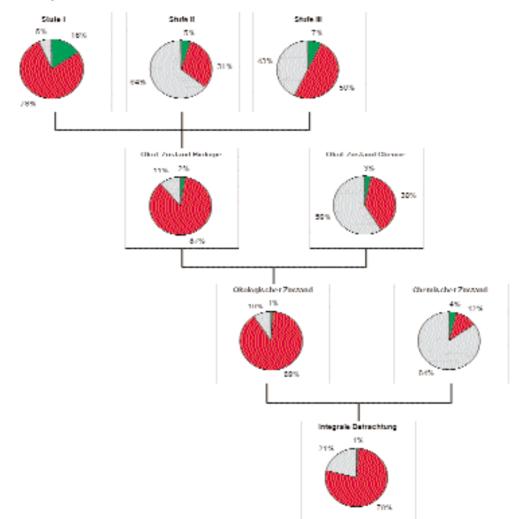
Zusammenfassende Darstellung zur Betrachtung der Zielerreichung – Analyse der Belastungen (Teil 33b)

- Ana	alyse der Belastungen	(Teil 33b)						
WK-Nr.		DE_NRW		DE_NRW				
		3448	01022	34486	01014	01023		
		31200		1839				
Gewässer		Dreierwal-	Altenrhei	ner Bruch-	Bramscher	DEK		
		der Aa	qra	ben	Mühlen-			
					bach			
von [km]		31,200	0	1,839	0	0		
bis [km]		36,104	1,839		10,115	16,400		
Länge [km]		4,904	1,813		10,141	16,585		
Bezeichnung		Tecklenburg	Altenrheiner Bruchgraben	Hörstel bis Rheine	Bramscher Mühlenbach	Grenze NRW bis Gleesen		
	KomARA							
	IGL-ARA							
	Regenwassereinleitungen							
	Kühlwassereinleitungen							
	Sümpfungswassereinleitungen							
	Kleinkläranlagen							
	Schmutzwasser ohne							
	Behandlung							
	Erosion							
	Auswaschung							
	Altlasten							
Z	Sonstige diffuse Quellen,							
S S S S S S S S S S S S S S S S S S S	auch Sediment							
ANALYSE DER BELASTUNGEN	Einleitungen							
AS	Entnahmen							
և	Abflussregulierungen durch							
E	Talsperren							
E D	Wasserverluste							
r.	Über- und Umleitungen							
ĕ	Querbauwerke und Rückstau							
⋖	Sonstige Abflussregulierungen							
	Gewässerstrukturgüte	х		Х				
	Querbauwerke und Aufwärts-	х		Х				
	passierbarkeit							
	Sonstige morphologische							
	Belastungen							
	Sonstige signifikante							
	anthropogene Belastungen							
	Unbekannt							
	Oberlauf							
	Zufluss Nebengewässer							
	Kommentar							

x = relevant

Beiblatt 4.1-2 Zielerreichung Zustand Fließgewässer im Bearbeitungsgebiet Obere Ems

Einschätzung Zustand Fließgewässer (Stand 2004)


Zielerreichung wahrscheinlich

Zielerreichung unwahrscheinlich

Zielerreichung unklar

Keine Daten vorhanden.

Gesamtergebnis

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1. Bestandsaufnahme

Flusgebietseinheit Eins, Bearbeitungsgebiet Obere Eins

Beiblatt zu K 4.1 - 2:

Zielerreichung Zustand Fließgewässer im Bearbeitungsgebiet Obere Ems

4.1.2.2

Betrachtung der Gesamtsituation im Bearbeitungsgebiet Obere Ems

Nachfolgend werden die Ergebnisse der integralen Betrachtung in zusammenfassender Form erläutert.

Die Karten 4.1-2a und 4.1-2b zeigen, wie sich die Betrachtung der Zielerreichung im Rahmen der integralen Betrachtung von Stufe I bis zur Gesamtbetrachtung entwickelt.

Zusammenfassend und unter Berücksichtigung des stufenweisen Vorgehens stellt sich die Situation im Bearbeitungsgebiet Obere Ems wie folgt dar:

Stufe I

Stufe I der Integralen Betrachtung ergibt sich aus der Überschneidung der Gewässergütekarte mit der Gewässerstrukturkarte. Hieraus entsteht gemäß den in Kapitel 4.1.1 beschriebenen Aggregationsregeln die Integrale Betrachtung der Stufe I auf Basis der Wasserkörper. Sie verknüpft den Saprobienindex als Maßzahl der Lebensbedingungen des Makrozoobenthos mit der Gewässerstruktur. Das Makrozoobenthos ist eine biologische Qualitätskomponente nach Anhang V der WRRL.

In dieser ersten Stufe der integralen Betrachtung ist für knapp 16 % der Gewässerstrecken die Zielerreichung wahrscheinlich. Neben zahlreichen kürzeren Gewässerabschnitten handelt es sich hierbei um bedeutende Gewässerabschnitte (> 10 km Lauflänge) von Ölbach, Bever, Eltingmühlenbach, Bevergener Aa (Hemelter Bach), Münsterscher Aa, Frischhofsbach und Ahrenhorster Bach.

Die Gewässer Furlbach, Speckengraben, Beilbach und der Umlaufsbach sowie die niedersächsischen Gewässer Giegel Aa und Elsbach erfüllen die Kriterien der Stufe I in ihrer gesamten Gewässerlänge (vgl. Tab. 4.1.2.1-1).

Integrale Betrachtung Stufe I im Bearbeitungsgebiet Obere Ems ► Tab. 4.1.2.2-1

vorläufiger Grad der Zielerreichung	Länge Anteil NRW	prozentuale Einstufung Anteil NRW	Länge Anteil NI	prozentuale Einstufung Anteil NI	Länge Obere Ems	prozentuale Einstufung Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	1.445	81,4	1.209	57,8	1.654	77,4
unklar	9	0,5	135	37,3	144	6,7
wahrscheinlich	322	18,1	18	4,9	340	15,9
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Bei 77,4 % der Fließstrecke im Bearbeitungsgebiet ist die Zielerreichung unwahrscheinlich. Im Oberlauf, der ein dichter besiedeltes und industrialisiertes Einzugsgebiet hat, muss der Ems und ihren Nebengewässern überwiegend die Gewässergüteklasse II-III (kritisch belastet) zugeordnet werden. Einleitungen aus kommunalen Kläranlagen, Fischteichen sowie diffuse Einträge aus der bis unmittelbar am Gewässer praktizierten, intensiven landwirtschaftlichen Nutzung belasten den Stoffhaushalt. Als stark verschmutzt (Güteklasse III) müssen Lichtebach, Reiherbach, Welzplagebach, Ruthenbach und Hamelbach angesehen werden. Hier finden sich viele gewerblich genutzte Bereiche, so dass neben den großen Niederschlagswassereinleitungen und strukturellen Defiziten

u. a. auch die Abwässer der ansässigen Industriebetriebe zur Gewässerbelastung beitragen.

Im Bearbeitungsgebiet stellt sich im Mittellauf der Ems die Gewässergüte in Klasse II dar. Die Emissionen gereinigter Abwässer der Städte Warendorf, Telgte, Münster, Greven, Emsdetten und Rheine haben keinen negativen Einfluss. Abrooksbach, Maarbecke, Werse, Angel, Lengericher Aabach und Leddener Mühlenbach (Ibbenbürener Aa) sind durch Kläranlageneinleitungen (kommunal und industriell) belastet. Es handelt sich hierbei um Kläranlageneinleitungen in quellnahe Bereiche bzw. in die abflussschwachen Oberläufe dieser Gewässer. Zum Teil liegt eine Mehrfachbelastung durch z.B. landwirt-

Integrale Betrachtung des Zustands der Oberflächenwasserkörper

4.1

schaftliche Einflüsse oder die Verstärkung der Belastung durch die negativen Folgen der Stauhaltungen der Gewässer vor.

Im Fließverlauf ist die Ibbenbürener/Hörsteler/ Dreierwalder/Speller Aa ab der Einleitung salzhaltiger Grubenwässer der DSK Anthrazit Ibbenbüren GmbH biologisch weitgehend verödet und wird daher in Güteklasse III–IV eingestuft. Zudem ist das Gewässer geogen bedingt stark verockert.

Wie Tabelle 4.1.1-5 im vorangegangenen Kapitel zeigt, kann für 32,3 % der niedersächsischen Gewässerstrecke noch keine abschließende Bewertung der Gewässergüte vorgenommen werden. Für 39 % ist die Zielerreichung als unwahrscheinlich einzustufen. Neben der durch die Salzbelastung aus Nordrhein-Westfalen biologisch verödeten Speller Aa sind dies die mit Güteklasse III stark verschmutzten Gewässer im Oberlauf von Ahe und Reetbach sowie ein Abschnitt der Moosbeeke.

Strukturell wurde die Ems in der Vergangenheit durch den technischen Ausbau stark geschädigt. Sie wurde begradigt und in einem Trapezprofil festgelegt. Einzige nennenswerte Ausnahme stellt die rund 7,5 km lange Gewässerstrecke im Bereich zwischen Telgte und Münster-Handorf dar. Zur Laufverlängerung der Ems wurden hier im Rahmen des Emsauen-Schutzkonzepts drei ehemalige Altarme angeschlossen und eigendynamische Prozesse initiiert. Mit wenigen Ausnahmen finden sich auch in den größeren Nebengewässern der Ems keine langen naturnahen Fließstrecken. Ausnahmen bilden z.B. der Frischhofsbach und der Eltingsmühlenbach. Darüber hinaus ist zu bemerken, dass viele Gewässer nach Eintritt in die Emsaue bessere Strukturen aufweisen als in ihren Oberläufen.

Spätestens seit Vorliegen der Bestandsaufnahme ist klar, dass Maßnahmen zur Verbesserung der Gewässerstruktur der richtige Weg sind, um Gewässerstrecken, bei denen die Zielerreichung derzeit unwahrscheinlich ist, soweit zu verbessern, dass zukünftig die Zielerreichung wahrscheinlich ist. Die Umstellung der Gewässerunterhaltung in Richtung naturnahe Entwicklung ist ein Ziel, welches zur Erreichung eines guten Zustands von Gewässerstruktur und Gewässergüte in den Umweltbehörden mit Nachdruck verfolgt wird.

Die Strukturkartierung hat aber auch gezeigt, dass viele Nebengewässer innerhalb der Emsaue bis zur Einmündung noch wesentlich besser eingestuft werden können.

Stufe II

Bei der Integralen Betrachtung Stufe II handelt es sich um die in Kapitel 2.1.3.4 beschriebene Analyse der Ausgangssituation der Fischfauna, die einen Indikator für die Durchgängigkeit darstellt und damit die hydromorphologischen Qualitätskomponenten nach Anhang V der WRRL repräsentiert.

Die vorliegenden Ergebnisse belegen deutlich den hohen Monitoringbedarf. Im nordrhein-westfälischen Teil des Bearbeitungsgebiets liegen nur für etwa 14 % der zu beurteilenden Gewässerstrecken Elektrobefischungen als Basis der Analyse der Ausgangssituation der Fischfauna vor. Mit Hilfe von Expertenwissen konnten rund 35 % der nordrhein-westfälischen Gewässerstrecken abschließend bewertet werden. Im niedersächsischen Teil des Bearbeitungsgebiets ist für 9,2 % der Fließstrecke die Zielerreichung unwahrscheinlich. Bei knapp über 90 % der Fließstrecke ist die Datenlage unzureichend, so dass derzeit keine Bewertung möglich ist.

Voraussichtlich werden die Monitoringergebnisse zeigen, dass viele der Wasserkörper, bei denen die Zielerreichung derzeit noch unklar ist, den guten ökologischen Zustand hinsichtlich der Fischfauna nicht erreichen werden. Durch die integrale Betrachtung der Fischfauna ist die Durchgängigkeit der Gewässer implizit mitbewertet.

Im Bearbeitungsgebiet Obere Ems gibt es zahlreiche Querbauwerke (NRW: 1.377, NI: 128 Sohlbauwerke und 489 Durchlassbauwerke). Die Querbauwerke dienen dem Hochwasserschutz, dem Schutz der Gründungen historischer Bauwerke, der Energieerzeugung oder als Kulturstau der Anhebung des Grundwasserspiegels.

Die Wiederherstellung der Durchgängigkeit der Gewässersysteme stellt eine Grundvoraussetzung für die Wiederansiedlung einer natürlichen Fischfauna dar.

4.1

Integrale Betrachtung des Zustands der Oberflächenwasserkörper

► Tab. 4.1.2.2-2 Integrale Betrachtung Stufe II im Bearbeitungsgebiet Obere Ems

vorläufiger Grad der Zielerreichung	Länge	prozentuale Einstufung	Länge	prozentuale Einstufung	Länge	prozentuale Einstufung
	Anteil NRW	Anteil NRW	Anteil NI	Anteil NI	Obere Ems	Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	621	35,0	33	9,2	654	30,6
unklar	1.050	59,2	329	90,8	1.379	64,5
wahrscheinlich	104	5,9	0	0,0	104	4,9
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Stufe III

In der dritten Stufe der Integralen Betrachtung "Ökologischer Zustand Biologie" wurden die physikalisch-chemischen Qualitätskomponenten Temperatur, Sauerstoff, Chlorid, pH-Wert, Gesamt-Phosphor, Ammonium-Stickstoff und Gesamt-Stickstoff eingestuft und miteinander zur Integralen Betrachtung der Stufe III verschnitten. Tab. 4.1.2.2-3 zeigt, dass hier die Datenbasis ausreicht, um den überwiegenden Teil der Gewässerstrecken einzustufen (57,1 %). Die Zielerreichung ist lediglich an den Oberläufen im südöstlichen Emsquellgebiet und vereinzelt an den linksseitigen Nebenbächen wahrscheinlich.

Für 42,9 % der Fließstrecke kann erst durch Überprüfung in der Monitoringphase eine abschließende Einstufung vorgenommen werden.

Die Stickstoffparameter Nitrat und Ammonium sowie der Parameter Phosphor sind als Nährstoffe für die schlechte Einstufung der Gewässer hauptverantwortlich. Bei der Ergebnisbetrachtung ergibt sich eine Zweiteilung der Belastungssituation des Bearbeitungsgebiets. Sind im Oberlauf vor allem die Kläranlagen belastungsrelevant, sind im Rest des Bearbeitungsgebiets vor allem die diffusen Einträge für die Überschreitung der Qualitätskriterien ursächlich. Die diffusen Einträge sind bei hoher Auswaschungsgefährdung der Böden und erheblicher Grundwasserbelastung der intensiven landwirtschaftlichen Nutzung zuzuschreiben.

Die Punktquellen (einschließlich Regen- und Mischwasserkanalisation) machen nur etwa ¹/₄ der gesamten in der Ems an der Landesgrenze zu Niedersachsen gemessenen Stickstofffrachten aus. Die noch weitergehende Verbesserung der Reinigung bei kommunalen und industriellen Einleitungen würde ³/₄ der Stickstoffbelastungen nicht beeinflussen. Daher muss gemeinsam mit der Landwirtschaft an Maßnahmen gearbeitet werden, um vermeidbare Nährstoffeinträge über Boden, Wasser und Luft zu verringern.

► Tab. 4.1.2.2-3 Integrale Betrachtung Stufe III im Bearbeitungsgebiet Obere Ems

7 1001 1111212						
vorläufiger Grad der Zielerreichung	Länge Anteil NRW	prozentuale Einstufung Anteil NRW	Länge Anteil NI	prozentuale Einstufung Anteil NI	Länge Obere Ems	prozentuale Einstufung Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	995	56,1	62	17,0	1.057	49,5
unklar	617	34,7	300	83,0	917	42,9
wahrscheinlich	163	9,2	0	0,0	163	7,6
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Integrale Betrachtung des Zustands der Oberflächenwasserkörper

4.1

Ökologischer Zustand Biologie

Als letzte Stufe bei der integralen Betrachtung des ökologisch-biologischen Zustands werden die Ergebnisse der drei vorangegangenen Stufen zusammengefasst. Bis auf wenige Ausnahmen ist die Zielerreichung für das Gewässernetz im Bearbeitungsgebiet Obere Ems unwahrscheinlich (86,3 %). Hier spiegelt sich in erster Linie das Ergebnis der Stufe I und damit der Bewertung der Gewässergüte und der Gewässerstruktur wider.

Ausnahmen bilden lediglich Wasserkörper der Bever, des Furlbachs und des Hasselbachs in der Senne. Auch für den Schlautbach, als ein Seitengewässer der Münsterschen Aa, ist für die Komponenten der ökologisch-biologischen Betrachtung die Zielerreichung wahrscheinlich. Für nur 53 km bzw. 2,5 % der erfassten Gesamtstrecke von 2.137 km ist die Zielerreichung damit als wahrscheinlich einzustufen.

Tab. 4.1.2.2-4 Integrale Betrachtung des ökologischen Zustands Biologie im Bearbeitungsgebiet Obere Ems

vorläufiger Grad der Zielerreichung	Länge Anteil NRW	prozentuale Einstufung Anteil NRW	Länge Anteil NI	prozentuale Einstufung Anteil NI	Länge Obere Ems	prozentuale Einstufung Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	1.605	90,4	240	66,3	1.845	86,3
unklar	117	6,6	122	33,7	239	11,2
wahrscheinlich	53	3,0	0	0,0	53	2,5
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Ökologischer Zustand Chemie

Bei dieser Auswertungsstufe gehen außer TOC, AOX, Nitrit und Sulfat die Stoffe des Anhangs VIII der WRRL, also Metalle, Pflanzenschutzmittel, PCBs sowie die sonstigen Stoffe (Industriechemikalien; schwerflüchtige Stoffe) ein. Die integrale Betrachtung hat ergeben, dass für 58,8% der Gewässerstrecke im Bearbeitungsgebiet noch keine abschließende Bewertung vorgenommen werden konnte. Insbesondere für den niedersächsischen Teil des Bearbeitungsgebiets sind die Datenlücken mit über 90% noch groß.

Gewässerabschnitte, für die die Zielerreichung wahrscheinlich ist, liegen in einigen Bächen im Oberlauf der Ems. Zu nennen sind der Furlbach, der Sennebach sowie Wasserkörper des Schwarzwasserbachs, des Walgenbachs, des Rodenbachs, des Hasselbachs und des Hamelbachs.

Bei der integralen Betrachtung des ökologischchemischen Zustandes sind in Nordrhein-Westfalen zahlreiche Annahmen über die potenziellen Belastungen getroffen worden. Dies trifft in besonderem Maße auf Nebengewässer belasteter Hauptgewässer zu. Wenn die Belastungsquelle unklar ist, müssen die Nebengewässer solange als möglicherweise belastet angenommen werden, bis die Datenlage hier zu einer sicheren Einstufung ausreicht.

Entsprechend ist bezüglich des ökologisch-chemischen Zustands ein wesentlich höherer Anteil der Gewässerstrecke (58,8 %) mit "Zielerreichung unklar" eingestuft als bezüglich des ökologisch-biologischen Zustands (11,2 %). In der Monitoringphase wird es erforderlich sein, zu einer sichereren Datengrundlage zu kommen. In vielen Fällen reichte vor allem die Analysengenauigkeit der vorliegenden Daten in der komplexen Matrix Oberflächengewässer nicht aus, um die oft schon im Spurenbereich für die Gewässerorganismen wirksamen Stoffe nachzuweisen. Dieses Problem wird durch empfindlichere Nachweisverfahren in der Wasserphase oder das Ausweichen auf eine andere Matrix (Schwebstoff) zum Teil, aber nicht für alle Stoffe, lösbar sein.

4.1 Integrale Betrachtung des Zustands der Oberflächenwasserkörper

Die Tabelle 4.1.2.2-5 zeigt deutlich, dass bei den in der ökologisch-chemischen Stufe erfassten Parametern noch erheblicher Monitoringbedarf besteht. Um 2009 zu einer sicheren Einstufung

zu kommen, muss die Datenlage bei 52 bzw. 92,4 % der Gewässer, die derzeit nicht abschließend eingestuft werden konnten, verbessert werden.

Integrale Betrachtung ökologisch-chemischer Zustand im Bearbeitungsgebiet Obere Ems Tab. 4.1.2.2-5

vorläufiger Grad der Zielerreichung	Länge Anteil NRW	prozentuale Einstufung Anteil NRW	Länge Anteil NI	prozentuale Einstufung Anteil NI	Länge Obere Ems	prozentuale Einstufung Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	782	44,0	27	7,6	809	37,9
unklar	923	52,0	335	92,4	1.258	58,8
wahrscheinlich	70	4,0		0,0	70	3,3
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Ökologischer Zustand

Der ökologische Zustand eines Fließgewässers zeichnet sich gemäß den Ausführungen in Anhang V der WRRL durch die Qualität der Gewässerstruktur und die Funktionsfähigkeit der aquatischen Ökosysteme aus. Dabei geht neben der Bewertung der Gewässerstruktur, der Gewässergüte und der Fischfauna auch die Betrachtung verschiedener chemischer Parameter aus dem Bereich der "Ökochemie" in die Betrachtung ein.

Für nur insgesamt 7 Oberflächenwasserkörper der Ems, des Furlbachs und des Hasselbachs mit zusammen 22 km Lauflänge (1,0 % der Gewässerlänge im Bearbeitungsgebiet Obere Ems) ist nach dieser Abschätzung die Zielerreichung wahrscheinlich. Diese liegen alle in der Senne, dem Quellgebiet der Ems (Kreis Gütersloh).

Die Beurteilung des ökologischen Zustands spiegelt das Bewertungsergebnis des ökologisch-biologischen Zustands wider. Die Mängel bei Gewässerstruktur und Gewässergüte prägen auch an dieser Stelle die Einschätzung maßgeblich. Für 89,4 % der Fließstrecke im Bearbeitungsgebiet ist die Zielerreichung unwahrscheinlich. Für weitere 9,5 % (NRW 6,4 %, NI 27,1 %) der Gewässer ist die Zielerreichung letztendlich noch unklar. Hier muss das Monitoring Klarheit erbringen.

► Tab. 4.1.2.2-6 Integrale Betrachtung ökologischer Zustand im Bearbeitungsgebiet Obere Ems

vorläufiger Grad der Zielerreichung	Länge Anteil NRW	prozentuale Einstufung Anteil NRW	Länge Anteil NI	prozentuale Einstufung Anteil NI	Länge Obere Ems	prozentuale Einstufung Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	1.639	92,3	246	72,9	1.903	89,4
unklar	114	6,4	98	27,1	203	9,5
wahrscheinlich	22	1,3	0	0,0	22	1,0
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Integrale Betrachtung des Zustands der Oberflächenwasserkörper

4.1

Chemischer Zustand

In die Bewertung des chemischen Zustands der Fließgewässer gehen Metalle, Pflanzenschutzmittel, Industriechemikalien und Sonstige Stoffe der Anhänge IX und X ein. Außerdem wird hier u. a. das Totalherbizid Diuron berücksichtigt.

Bei 11,6% der Gewässerstrecken ist bei der heutigen Schadstoffbelastung die Zielerreichung unwahrscheinlich. Dies betrifft vor allem die Hauptwasserläufe im Bearbeitungsgebiet (Ems, Werse, Ibbenbürener Aa/Speller Aa, Grosse Aa).

84,6 % der Fließstrecke im Bearbeitungsgebiet können nicht abschließend bewertet werden. Es handelt sich hierbei um fast alle Nebengewässer im Einzugsgebiet der Ems. Für diese Gewässer besteht aufgrund vorliegender Überschreitungen der Qualitätsziele bzw. Qualitätskriterien im Hauptgewässer der Anfangsverdacht einer signifikanten Belastung. Nur bei 3,8 % der Gewässer ist die Zielerreichung wahrscheinlich.

Die Unsicherheit bei der Bewertung erklärt sich vor allem aus der als nicht ausreichend anzusehenden Datenlage und ist hier noch stärker als bei der Bewertung des ökologisch-chemischen Zustands von Bedeutung. Diese Wissenslücken wird man durch die Antworten auf die schon bei der "Ökochemie" angeschnittenen Fragen schließen können.

Tab. 4.1.2.2-7 Integrale Betrachtung chemischer Zustand im Bearbeitungsgebiet Obere Ems

vorläufiger Grad der Zielerreichung	Länge Anteil NRW	prozentuale Einstufung Anteil NRW	Länge Anteil NI	prozentuale Einstufung Anteil NI	Länge Obere Ems	prozentuale Einstufung Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	234	13,2	14	3,9	248	11,6
unklar	1.453	81,8	348	96,1	1.801	84,6
wahrscheinlich	89	5,0	0	0,0	80	3,8
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Gesamtzustand

Aus der Verschneidung des ökologischen und des chemischen Zustands ergibt sich eine Gesamteinschätzung für den Zustand der Oberflächenwasserkörper im Bearbeitungsgebiet. Grundlage ist der jeweils schlechtere Wert aus der integralen Betrachtung. Nur beim Furlbach und beim Hasselbach in der Senne (je 2 Wasserkörper) sowie beim niedersächsischen Elsbach ist die Zielerreichung als wahrscheinlich anzusehen.

Für 77,7% der Gewässerstrecke ist das Ziel, der gute ökologische Zustand, zurzeit noch als unwahrscheinlich einzustufen. Der Anteil der Gewässer, bei denen die Zielerreichung noch unklar ist, liegt bei 21,1 %. Hierbei muss beachtet werden, dass die niedersächsische Bewertungsmethodik, wie in Kapitel 4.1.1 beschrieben, die Bewertungskomponenten Gewässergüte und Gewässerstruktur aus der Stufe Ökologie für alle als "vorläufig erheblich veränderten"

Wasserkörper in der Gesamtbewertung als "Zielerreichung unklar" einstuft.

Während für den niedersächsischen Teil des Bearbeitungsgebiets in der Stufe Ökologie noch 72,9 % der Fließstrecke hinsichtlich der Zielerreichung als "unwahrscheinlich" eingestuft wurden (s.o.), finden sich in der Gesamtbewertung nur noch 3,9 % der Fließstrecken mit "Zielerreichung unwahrscheinlich". Somit ist bedingt durch die Bewertungsmethodik allein der chemische Zustand ausschlaggebend für das Gesamtergebnis im niedersächsischen Teil des Bearbeitungsgebiets.

Obwohl in den Betrachtungsstufen Ökologie und Chemie (s.o.) kein niedersächsisches Gewässer den guten Zustand erreicht (Zielerreichung wahrscheinlich), kommt es in der Gesamteinschätzung durch fachliche Abwägungsprozesse zu einer positiven Prognose für das 8 km lange Gewässer Elsbach (WK Nr. 01013).

4.1 Lage und Abgrenzung

Gesamteinschätzung im Bearbeitungsgebiet Obere Ems ► Tab. 4.1.2.2-8

vorläufiger Grad der Zielerreichung	Länge	prozentuale Einstufung	Länge	prozentuale Einstufung	Länge	prozentuale Einstufung
	Anteil NRW	Anteil NRW	Anteil NI	Anteil NI	Obere Ems	Obere Ems
Stand 2004	km	%	km	%	km	%
unwahrscheinlich	1.639	92,3	14	3,9	1.653	77,7
unklar	117	6,6	340	94	449	21,1
wahrscheinlich	19	1,1	8	2,1	26	1,2
Summe Fließstrecke*	1.775	100,0	362	100,0	2.137	100,0

^{*}ohne Kanäle für NRW

Betrachtet man die Bestandsaufnahme für das gesamte Bearbeitungsgebiet Obere Ems, so fällt die unterschiedliche Ausprägung der Datenlücken in den verschiedenen Bewertungsstufen auf. Während bei der Betrachtung der Gewässergüte und der Gewässerstruktur in der Stufe I die Datendefizite mit insgesamt 6,7 % (NRW 0,5 %, NI 37,3%) gering sind, sind die Defizite im ökologisch-chemischen Zustand mit derzeit 58,8 % und beim chemischen Zustand mit 84,6 % noch sehr groß.

Wenn diese Datenlücken in der Monitoringphase geschlossen werden, ist zwar mit einer positiveren Einschätzung der Zielerreichung für den Bereich der Chemie zu rechnen, ein positiveres Gesamturteil für die integrale Betrachtung ist aber dennoch nicht zu erwarten. Durch die in den ökologisch-biologischen Zustand eingehenden Komponenten Gewässerstruktur und Durchgängigkeit sowie die physikalisch-chemischen Parameter der Stufe III (insbesondere Stickstoff) würde sich die Gesamtbewertung nur unwesentlich verbessern. Dies ist in den Mängeln der Gewässerstruktur, der großen Anzahl von Wanderungshindernissen und der erheblichen diffusen Belastung begründet.

Daher muss der bereits eingeschlagene Weg der Verbesserung von Gewässerstrukturen mit dem Ziel, eine eigendynamische Weiterentwicklung zu mehr Naturnähe zu initiieren, weiterverfolgt werden. Ebenso wichtig ist die Verbesserung der Durchgängigkeit für aufwärtswandernde Fische und andere Wasserorganismen.

Mit Nachdruck muss auch die Verringerung der Nährstoffeinträge in Grund- und Oberflächenwasser verfolgt werden.

Daneben gibt es noch Handlungsbedarf bei der Verringerung der hydraulischen und stofflichen Belastung aus der Trenn- und Mischwasserkanalisation in Nordrhein-Westfalen. Auch hier müssen zunächst Datenlücken geschlossen werden. Dann kann entschieden werden, ob weitergehende Anforderungen an die Behandlung von Regenwasser aus Trenn- und Mischkanalisation nötig sind.

4.2

Erheblich veränderte Wasserkörper

Erheblich veränderte Wasserkörper sind Gewässer oder Gewässerabschnitte, die infolge physikalischer Veränderungen durch Eingriffe des Menschen in ihrem Wesen so verändert sind, dass die Erreichung des guten ökologischen Zustands nicht möglich ist.

Eine Ausweisung als erheblich verändert ist möglich, wenn

- die Wasserkörper bestimmten Nutzungen unterliegen **und**
- die Maßnahmen, die zum Erreichen eines guten ökologischen Zustands notwendig sind, signifikant negative Auswirkungen auf die Nutzungen haben und
- die nutzbringenden Ziele durch andere Möglichkeiten, die eine wesentlich bessere Umweltoption darstellen, nicht erreicht werden können, weil diese technisch nicht durchführbar oder unverhältnismäßig teuer sind.

Für die erheblich veränderten Wasserkörper muss anstelle des guten ökologischen Zustands das gute ökologische Potenzial erreicht werden.

Das gute ökologische Potenzial kann sich mit Blick auf die

- zu erreichenden biologischen Qualitätskomponenten
- zu unterstützenden hydromorphologischen Parameter und
- zu unterstützenden chemisch-physikalischen Parameter

vom guten ökologischen Zustand unterscheiden. Die Ziele für die spezifischen Schadstoffe der Anhänge VIII bis X ändern sich durch die Ausweisung eines Wasserkörpers als erheblich verändert **nicht.**

Die Ausnahmeregelung des Art. 4 (3) der Wasserrahmenrichtlinie wurde vorgesehen, um für Wasserkörper, die aufgrund spezifizierter Nutzungen umfangreichen hydromorphologischen Veränderungen irreversibel unterworfen wurden, weiterhin die Nutzungen zu ermöglichen bei gleichzeitiger ökologischer Schadensbegrenzung.

Die Ausweisung erheblich veränderter sowie die Bewertung erheblich veränderter und künstlicher Wasserkörper stellt einen hochkomplexen Vorgang dar.

Grundlagen für die Ausweisung sind die Kenntnis der Ist-Situation des betrachteten Wasserkörpers und die Abwägung zwischen gewässerökologischen Ansprüchen und konkurrierenden Nutzungen bzw. Zielen. Wird aus diesem Abwägungsprozess resümiert, dass ein Verzicht auf die bestehenden Nutzungen nicht möglich ist, muss das konkrete Umweltziel für den Wasserkörper festgelegt werden, d. h. es muss festgestellt werden, welches ökologische Potenzial trotz der gegebenen Nutzungen im Wasserkörper maximal erreicht werden könnte. Dieses ökologische Potenzial ist festzulegen.

Diese Prüfschritte können schon aufgrund zeitlicher Restriktionen, aber auch aufgrund der Tatsache, dass die Referenzbedingungen für natürliche Gewässer noch nicht abschließend festgelegt sind, nicht im Rahmen der Bestandsaufnahme durchgeführt werden.

Lediglich für Talsperren, die generell als erheblich veränderte Wasserkörper eingestuft werden, kann ein vorläufiger Vergleich auf Basis einer ersten Einschätzung des höchsten ökologischen Potenzials vorgenommen werden (s. Kap. 4.2.2). Konsequenterweise ist damit während der Bestandsaufnahme lediglich eine vorläufige Ausweisung von erheblich veränderten Wasserkörpern möglich.

Die für die Ausweisung weiterhin notwendigen Prüfschritte

 Ausweisungsprüfung nach Art. 4 (3) a der WRRL:

Prüfung der notwendigen Verbesserungsmaßnahmen.

 Ausweisungsprüfung nach Art. 4 (3) b der WRRL:

Prüfung alternativer Möglichkeiten zum Erhalt der nutzbringenden Ziele,

Festlegung des höchsten ökologischen Potenzials:

Potenzial, das bei gegebenen Nutzungen maximal erreichbar ist,

sind der Bewirtschaftungsplanung vorbehalten.

► 4.2 Erheblich veränderte Wasserkörper

Dies kann bedeuten,

- dass Wasserkörper, die vorläufig als erheblich verändert ausgewiesen wurden, bei der abschließenden Ausweisung den natürlichen Wasserkörpern zugerechnet werden,
- dass umgekehrt Wasserkörper, die in der Bestandsaufnahme als natürlich ausgewiesen sind, aufgrund weitergehender Erkenntnisse über bestehende Nutzungen bzw. die Irreversibilität hydromorphologischer Veränderungen als erheblich verändert ausgewiesen werden.

Wegen dieser Unwägbarkeiten wurden im Rahmen der Bestandsaufnahme für die erstmalige Einschätzung des Zustands der vorläufig als erheblich verändert ausgewiesenen Wasserkörper die gleichen Kriterien zugrunde gelegt wie für die Einschätzung des Zustands der natürlichen Wasserkörper.

4.2.1

Vorläufige Ausweisung von erheblich veränderten Wasserkörpern

Methodik in Nordrhein-Westfalen

Die vorläufige Ausweisung von erheblich veränderten Wasserkörpern erfordert die Überprüfung auf hydromorphologische Veränderungen und darauf, ob diese hydromorphologischen Veränderungen als erheblich angesehen werden. Die Prüfung auf Erheblichkeit erfolgt dabei in zwei Gruppen:

- Bestimmte hydromorphologische Veränderungen sind so erheblich, dass eine vorläufige
 Ausweisung des entsprechenden Wasserkörpers unmittelbar und vorbehaltlich der weitergehenden Prüfung im Zusammenhang mit der Bewirtschaftungsplanung gerechtfertigt erscheint.
- Andere hydromorphologische Veränderungen werden dann als erheblich eingestuft, wenn aufgrund der bestehenden Nutzungen – und vorbehaltlich der weitergehenden Prüfung im Zusammenhang mit der Bewirtschaftungsplanung – eine Irreversibilität angenommen wird.

► Tab. 4.2.1-1

Kriterien zur vorläufigen Ausweisung von erheblich veränderten Wasserkörpern

	Mittelgroße bis große Fließgewässer	Kleine bis mittelgroße Fließgewässer
Prüfung auf hydromorpho-	Gewässerstruktur > 5 und mindestens eine	Gewässerstruktur > 5 und mindestens eine
logische Veränderungen	der folgenden Parameterausprägungen:	der folgenden Parameterausprägungen:
Prüfung auf Erheblichkeit	Massivsohle mit/ohne Sediment oder	Massivsohle mit/ohne Sediment oder
der Veränderung	Rückstau > 50 % oder	Rückstau stark oder
	Überbauung > 20 % oder	Verrohrung > 20 m oder
	Fahrrinne (alle Ausprägungen)	
Prüfung auf Irreversibilität	Laufform > 5 und mindestens eine der	Laufkrümmung > 5 und mindestens eine der
der Veränderung	folgenden Parameterausprägungen für die	folgenden Ausprägungen der Parameter Flä-
	Flächennutzung:	chennutzung bzw. schädliche Umfeldstruktur:
	Bebauung mit/ohne Freiflächen oder	Bebauung mit/ohne Freiflächen oder
	Abgrabung oder	Abgrabung oder
	Verkehrsflächen oder	Verkehrswege, befestigt oder
	Deponie	Kombination: Laufkrümmung > 5 und
		Querprofil: Trapez-/Doppeltrapezprofil oder Kastenprofil/V-Profil

Die in NRW angewandten Kriterien sind in der Tabelle 4.2.1-1 angegeben:

Die auf Basis der Strukturkartierung durchgeführte, den o. a. Kriterien folgende Prüfung wurde aufgrund von Ortskenntnissen verifiziert und ergänzt, wenn mindestens eines der folgenden Kriterien erfüllt war:

- beidseitige Bebauung bis an die obere Böschungskante **oder**
- beidseitige gewässernahe Deichlage (< zweifache Gerinnebreite auf jeder Seite) mit angrenzender Bebauung **oder**
- beidseitige gewässernahe Deichlage (< zweifache Gerinnebreite auf jeder Seite) mit angrenzender Geländedepression/Polderlage oder
- Wasserkraft: Ausleitungen > 2 km oder
- Fließgewässersysteme, die aufgrund von Bergbausenkungen eine vollständig geänderte Hydrologie aufweisen (Fließrichtungsumkehr, Pumpen)

Methodik in Niedersachsen

Die Ausweisung künstlicher und erheblich veränderter Gewässer wird im Bewirtschaftungsplan dargelegt und begründet (Artikel 4 (3) der WRRL). Während die endgültige Ausweisung der erheblich veränderten Gewässer (Heavily Modified Water Body, HMWB) spätestens bis 2009 durchgeführt und alle sechs Jahre überprüft wird, werden bereits bis 2004 die künstlichen Oberflächenwasserkörper ausgewiesen und erheblich veränderte Oberflächengewässerkörper vorläufig identifiziert (Anhang II der WRRL).

Die vorläufige Identifizierung als erheblich verändert erfolgt in Niedersachsen für die Wasserkörper, die aufgrund hydromorphologischer Eingriffe den guten ökologischen Zustand vermutlich nicht erreichen und in ihrem Wesen physikalisch erheblich verändert sind. Anschließend sind bis 2009 die erforderlichen Verbesserungsmaßnahmen zum Erreichen des guten ökologischen Zustands und ihrer Auswirkung auf die Nutzungen zu prüfen sowie andere Umweltoptionen zu untersuchen (Artikel 4 (3) a, b). Das Ergebnis dieser Prüfung bestimmt die endgültige Ausweisung oder Nichtausweisung.

Alle anderen Oberflächenwasserkörper werden zunächst wie natürliche Gewässer behandelt. Als Referenzbedingung wird entsprechend der sehr gute ökologische Zustand angesetzt. Sofern belegt werden kann, dass zumindest der gute ökologische Zustand im Rahmen des Bewirtschaftungsplans innerhalb von 15 Jahren nach Inkrafttreten der WRRL erreicht werden kann, ist eine Ausweisung des Gewässers / des Oberflächenwasserkörpers als "erheblich verändert" nicht möglich.

Sollte das Umweltziel "guter ökologischer Zustand" nach Art. 4 in einem gekennzeichneten Oberflächenwasserkörper nicht erreichbar sein, wird untersucht, ob der Grund für die Zielverfehlung tatsächlich in anthropogen bedingten physikalischen Veränderungen liegt. Wenn dies der Fall ist und die Bedingungen gemäß Art. 4 (3) a und b (negative Auswirkungen, technisch nicht machbar, unverhältnismäßige Kosten...) erfüllt sind, kann das Gewässer oder der Oberflächenwasserkörper als "erheblich verändert" ausgewiesen werden. Das "ökologische Potenzial" wird abgeleitet von dem Gewässertyp, dem der Oberflächenwasserkörper am ähnlichsten ist. Für die Bewertung des chemischen Zustands künstlicher oder erheblich veränderter Oberflächenwasserkörper gelten die gleichen Anforderungen wie für die natürlichen Gewässer.

In Niedersachsen wurden die vorläufig erheblich veränderten Wasserkörper anhand der vorliegenden Daten aus der Gewässerstrukturkartierung ermittelt. Anschließend wird geprüft, ob und welche Nutzungen an den Wasserkörpern vorliegen und inwieweit diese eine Einstufung als HMWB erfordern. Beispiele für intensive und dauerhafte oder irreversible Nutzungen können sein: Schifffahrt einschließlich Hafenanlagen und Ausweisung als Bundeswasserstraße, Freizeit/Erholung, Eingriffe zur Speicherung des Wassers (z. B. für die Trinkwasserversorgung), Stromerzeugung, Bewässerung, Wasserregulierung, Hochwasserschutz, Landentwässerung, Ortslagen, Straßen, Eisenbahntrassen, Industrie, Gewerbe, Verrohrung.

► 4.2 Erheblich veränderte Wasserkörper

Ergebnisse

Im Bearbeitungsgebiet Obere Ems wurden die auf der nachfolgenden Karte 4.2-1 ausgewiesenen 33 Wasserkörper als vorläufig erheblich verändert eingestuft.

Wie in Tabelle 4.2.1-2 aufgeführt, wurden im nordrhein-westfälischen Teil des Bearbeitungsgebietes sieben Wasserkörper als vorläufig erheblich verändert eingestuft. Hierbei handelt es sich um durch Rückstau beeinflusste, verrohrte und sonstige erheblich veränderte Gewässerstrecken, die überwiegend in die Strukturklassen 6 und 7 eingestuft sind. Außerdem wurden kurze Gewässerstrecken mit Strukturklasse ≤ 5 zwischen zwei Abschnitten mit Strukturklasse > 5 vorläufig als erheblich veränderte Wasserkörper ausgewiesen.

- Die Münstersche Aa durchfließt auf einer Länge von fast 5 km die Stadt Münster im ausgebauten Zustand. Die Strukturgüteklasse ist hier mit 7 eingestuft (WK Nr. DE_NRW _332_15857).
- Die Werse in Ahlen ist auf 2,8 km durch eine dichte Folge von Staubereichen mit wechselndem starkem und mäßigem Rückstau beeinträchtigt. Die Strukturgüte liegt in diesem Bereich zwischen 5 und 7 (WK Nr. DE_NRW _32_48200).
- Die Ems wurde auf einer Länge von 20 km im Bereich der Talgräben an der Grenze der Kreise Gütersloh und Warendorf als irreversibel eingestuft. Sie besitzt hier die Strukturgüteklasse 6 (WK Nr. DE NRW 3 296800).

- Der Dalkebach durchfließt im ausgebauten Zustand Gütersloh. Die zwei 1 km und etwa 10 km langen Wasserkörper werden überwiegend in die Strukturgüteklasse 6-7 eingestuft. Rückstau aus der Ems und mehrere Querbauwerke der Einstufung 5-6 bewirken ein anomales Abflussverhalten (WK Nr. DE_NRW_312_0 und WK Nr. DE_NRW_312_21762).
- Der Abrookbach durchfließt Harsewinkel und weist im ausgewiesenen Bereich von 9,6 km die Strukturgüte 7 auf (WK Nr. DE_NRW_ 3134_0).
- Der Schwarzwasserbach durchfließt weitgehend verrohrt das Stadtgebiet von Hövelhof und wird im gesamten Fließverlauf überwiegend in die Gewässergüte 6-7 eingestuft (2,2 km) (WK Nr. DE NRW 31112 3990).

Die Ausweisung für den niedersächsischen Teil des Bearbeitungsgebiets hat die in Tab. 4.1.2.-2 aufgelisteten 26 vorläufig erheblich veränderten Wasserkörper ergeben.

Im Rahmen der Emslanderschließung ("Beschluss des Deutschen Bundestags zur Erschließung der Ödländereien des Emslands" vom 05.05.1950, so genannter Emslandplan) wurde in Niedersachsen in den Nachkriegsjahren durch die Kultivierung von Ödland und Moor eine Vergrößerung der nutzbaren Flächen und durch verbesserte Landbaumethoden eine Steigerung der landwirtschaftlichen Erträge erreicht. Gleichzeitig wurde die Flurbereinigung begonnen. Dieses Maßnahmenbündel beinhaltete eine grundlegende Veränderung der Wasserverhältnisse. U. a. ist hierin die Ausweisung eines großen Teils der Wasserkörper im niedersächsischen Teil des Bearbeitungsgebiets als erheblich verändert begründet.

Erheblich veränderte Wasserkörper

4.2

► Tab. 4.2.1-2

Erheblich veränderte und künstliche Oberflächenwasserkörper im Bearbeitungsgebiet Obere Ems (Teil 1)

Gewässer	von	bis	Länge	Bezeichnung	Wasserkörper-		
Gewasser	[km]	[km]	[km]	bezeichnung	Nummer		
Ems	296,800	316,800	20,000	Warendorf bis Gütersloh	DE_NRW_3_296800		
Schwarz- wasserbach	3,990	6,228	2,238	Hövelhof	DE_NRW_31112_3990		
Dalkebach	0,000	0,949	0,949	Herzebrock-Clarholz bis Gütersloh	DE_NRW_312_0		
Dalkebach	0,949	9,950	9,001	Bielefeld	DE_NRW_312_949		
Abroocksbach	0,000	9,590	9,590	Harsewinkel bis Steinhagen	DE_NRW_3134_0		
Nerse	48,200	50,960	2,760	Dissener Bach	DE_NRW_32_48200		
Münstersche Aa	15,857	20,800	4,943	Bever, Süßbach	DE_NRW_332_15857		
Dortmund Ems- Kanal	50,331	120,276	69,945	Senden bis Spelle	DE_NRW_70501_50331		
DEK Altkanal Hiltrup	59,125	61,953	2,828	Münster	DE_NRW_70507_59125		
DEK Altkanal Fuestrup	77,52	80,242	2,722	Münster bis Greven	DE_NRW_70508_77520		
DEK Erste Fahrt Bergeshövede	108,545	110,203	1,658	Hörstel	DE_NRW_70509_108545		
DEK Fahrt bei Rodde	111,8	113,111	1,311	Rheine	DE_NRW_705091_11180		
Mittellandkanal	0	22,505	22,505	Hörstel bis Westerkappeln	DE_NRW_73101_0		
_			_	iesene Wasserkörper gsgebiets Obere Ems			
Ems	175,792	206,483	30,74	Salzbergen bis Lingen	01001		
Grosse Aa	0	7,271	7,27	Einmündung Speller Aa bis Ems	01002		
Grosse Aa	7,271	24,267	17	bis Einmündung Speller Aa	01003		
Speller Aa, Dreierwalder Aa	0	13,963	13,96	Speller Aa	01004		
Schaler Aa	0	2,556	2,58	Schaler Aa	01005		
Voltlager Aa	6,049	18,109	12,01	Voltlager Aa	01030		
Weeser Aa, Vorderer Kölzenkanal	14,597	31,006	19,11	Weeser Aa	01031		
Lünner Graben	0	7,022	7,02	Lünner Graben	01017		
Giegel Aa	0	10,089	10,08	Giegel Aa	01018		
Moosbeeke	0	8,343	8,33	Moosbeeke	01019		
Bardelgraben	0	4,736	4,74	Bardelgraben	01020		
Deeper Aa, Fürstenauer Mühlenbach, Andervenner Graben	24,267	35,018	19,4	Deeper Aa	01006		
Fürstenauer Mühlenbach	4,491	12,921	8,43	Oberlauf	01007		
Reetbach	0	12,242	12,24	Reetbach	01008		
Ahe, Wolfsberg- bach, Meme-	0	15,172	28,99	Ahe	01009		

► 4.2 Erheblich veränderte Wasserkörper

► Tab. 4.2.1-2

Erheblich veränderte und künstliche Oberflächenwasserkörper im Bearbeitungsgebiet Obere Ems (Teil 2)

Gewässer	von [km]	bis [km]	Länge [km]	Bezeichnung	Wasserkörper Nummer
Elberger Grab., Kanalgraben, Verbundgraben	0	7,193	7,19	Elberger Graben	01010
Fleckenbach	0	6,839	6,84	Fleckenbach	01011
Listruper Bach	0	7,679	7,68	Listruper Bach	01012
Elsbach	0	7,647	7,63	Elsbach	01013
Bramscher Mühlenbach	0	10,115	10,12	Bramscher Mühlenbach	01014
Schinkenkanal	0	10,472	10,47	Schinkenkanal	01015
Reitbach, Thuiner Mühlenbach	0	6,845	12,93	Reitbach	01016
Hopstener Aa	12,482	14,915	2,44	Hopstener Aa	01021
Altenrheiner Bruchgraben	0	1,839	1,81	Altenrheiner Bruchgraben	01022
DEK	0	16,4	16,59	Grenze NRW bis Gleesen	01023
Dissener Bach	1,063	11,509	10,68	Dissener Bach	01024
Bever, Süßbach	25,966	39,407	13,44	Bever, Süßbach	01025
Rankenbach, Remseder Bach, Linksseitiger Talgraben	0	17,173	17,17	Rankenbach, Remseder Bach, Linksseitiger Talgraben	01026
Glaner Bach, Dedingberger Bach, Wispen- bach, Kolb	27,569	51,337	23,85	Glaner Bach, Oedingberger Bach, Wispenbach, Kolbach	01027
Recktebach	32,502	35,117	2,8	Recktebach	01028
Dümmer Bach	1,757	9,912	8,32	Dümmer Bach	01029

▶ Beiblatt 4.2-1

Erheblich veränderte und künstliche Oberflächenwasserkörper im Bearbeitungsgebiet Obere Ems

	Gewasser (Finzugsgebiet > 10 km²)				
	Kanal				
4000000	Staatsgrenze				
ennon-	Dundeslandgrenze				
Fluss	gebietseinheit Ems				
	Bearberlungsgebiet Obere Ems				
	Bearbertungsgebiete Hase, Ems / Nordradde				
Benac	hbarte Flussgebietseinheiten				
	Hussgebietseinheiten Khein, Weser				
Obert	lächenwasserkörper				
810300	natürlich				
	erheblich verandert				
-	künstlich				
Abgre	enzung Oberflächenwasserkörper				
0	Beginn				
	Ende				

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Normgholf 22, 48147 Münster

Umsetzung der Europaischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgebietseinheit Eins, Bearbeitungsgebiet Obere Eins

Beiblatt zu K 4,2 - 1: Erheblich veränderte und künstliche Oberflächenwasserkörper im Bearbeitungsgebiet Obere Ems

► 4.3 Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen

4.2.2

Talsperren

Im Bearbeitungsgebiet Obere Ems existieren keine Talsperren.

4.2.3

Künstliche Wasserkörper

Methodik in Nordrhein-Westfalen

Künstliche Wasserkörper sind vom Menschen geschaffene Gewässer an Stellen, an denen zuvor kein relevanter Wasserkörper lag. Dies kann z. B. für Schifffahrtskanäle, Drängewässer von Moorgebieten oder Abgrabungsgewässer entsprechender Größe gelten.

Künstliche Gewässer beinhalten jedoch nicht wasserbaulich die zu Kanälen, Teichen oder Talsperren oder ähnlichem veränderten natürlichen Gewässer. Dies sind i. d. R. erheblich veränderte Gewässer (siehe Kapitel 4.2.2). Künstliche Gewässer müssen Bestandteil des EG-Gewässernetzes sein und eine Mindestlänge von 1.000 m aufweisen.

Methodik in Niedersachsen

Ein künstlicher Wasserkörper (Artificial Water Body, AWB) ist "ein von Menschenhand geschaffener Oberflächenwasserkörper" (Art. 2 Nr. 8 WRRL). Es handelt es sich dabei um einen Oberflächenwasserkörper, der an einer Stelle geschaffen wurde, an der zuvor kein Wasserkörper vorhanden war. Ein künstlicher Wasserkörper ist zudem weder durch die direkte physikalische Veränderung noch durch eine Verlegung oder Begradigung eines bestehenden Wasserkörpers entstanden. Falls ein bestehender Wasserkörper verändert oder verlegt wurde, sollte dieser ggf. als erheblich veränderter Wasserkörper und nicht als künstlicher Wasserkörper eingestuft werden. Das gleiche gilt für Wasserkörper, die infolge physikalischer Veränderungen in eine andere Gewässerkategorie eingeordnet wurden. Unter die Kategorie der künstlichen Oberflächenwasserkörper fallen somit z. B.

- Kanäle für Zwecke der Schifffahrt, für Wasser kraftnutzung und zur Be- und Entwässerung
- Baggerseen, Tagebaurestseen, Teiche (im Nebenschluss)
- Talsperren (im Nebenschluss) und künstlich angelegte Staubecken, gespeist mit Überleitungswasser
- Hafenbecken (diese werden jedoch aufgrund ihrer geringen Größe meist benachbarten Wasserkörpern als "bauliche Gewässerelemente" zugeordnet)

Ergebnisse in Nordrhein-Westfalen und Niedersachsen

Gemäß den o. g. Kriterien wurden in Nordrhein-Westfalen für das Bearbeitungsgebiet Obere Ems sechs künstliche Wasserkörper ausgewiesen. Es handelt sich hierbei um Abschnitte des Dortmund-Ems-Kanals und des Mittellandkanals. Diese Wasserkörper wurden nicht in die integrale Betrachtung gemäß Kapitel 4.1 einbezogen.

Für den niedersächsischen Teil des Bearbeitungsgebiets wurden vier künstliche Wasserkörper ausgewiesen.

Insgesamt sind damit im Bearbeitungsgebiet Obere Ems zehn Wasserkörper als künstlich eingestuft (siehe Tab. 4.2.1-2 und Karte 4.2-1).

4.3

Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen

Bei der erstmaligen und weitergehenden Beschreibung der Belastungssituation des Grundwassers wurden sowohl Emissions- als auch Immissionsdaten ausgewertet. Für die **Prüfung der Auswirkungen menschlicher Tätigkeit** im Hinblick auf die Umweltziele der WRRL wurden keine zusätzlichen Daten mehr erfasst bzw. berücksichtigt, sondern es erfolgte im Wesentlichen eine Bewertung der Analysen/Ergebnisse der in Kapitel 3.2 dargestellten Belastungssituation.

Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen

4.3

Die Beurteilung der Auswirkungen orientiert sich an der Frage, ob für die betrachteten Grundwasserkörper die Erreichung der Umweltziele nach Anhang V der WRRL zum Stand 2004 in Nordrhein-Westfalen als wahrscheinlich oder unwahrscheinlich bzw. in Niedersachsen als wahrscheinlich oder unklar/unwahrscheinlich angesehen wird. Die Umweltziele bestehen darin, dass Grundwasserkörper einen guten mengenmäßigen Zustand und einen guten chemischen Zustand aufweisen müssen. Die näheren Kriterien zur Einstufung des mengenmäßigen und chemischen Zustands gemäß Anhang V der WRRL wurden zu Beginn des Kapitels 2.2.3 erläutert.

Für die Grundwasserkörper erfolgt folgende Klassifizierung zur Bewertung der Auswirkungen menschlicher Tätigkeit gemäß WRRL:

- "Zielerreichung wahrscheinlich (Stand 2004)": Grundwasserkörper, deren Ist-Zustand zum Stand 2004 wahrscheinlich dem Soll-Zustand entsprechen wird (zukünftig überblicksweises Monitoring)
- "Zielerreichung unwahrscheinlich bzw. unklar/ unwahrscheinlich (Stand 2004)": Grundwasserkörper, deren Ist-Zustand zum Stand 2004

deutlich vom Soll-Zustand abweicht und für die weiterer Untersuchungs- und Entscheidungsbedarf besteht (zukünftig operatives Monitoring)

Die Einstufungen "Zielerreichung wahrscheinlich (Stand 2004)" und "Zielerreichung unwahrscheinlich bzw. unklar/unwahrscheinlich (Stand 2004)" haben unmittelbare Auswirkungen auf die Konzeption des nachfolgenden Monitorings (s. o.).

Die Beurteilung der Auswirkungen erfolgt im Weiteren zunächst getrennt für den mengenmäßigen und den chemischen Zustand. Abschließend erfolgt eine zusammenfassende Erläuterung der Ergebnisse der Bestandsaufnahme für das Grundwasser im Bearbeitungsgebiet Obere Ems.

4.3.1

Mengenmäßiger Zustand

Die Auswirkungen der Belastungen im Hinblick auf den mengenmäßigen Zustand der Grundwasserkörper wurden auf Basis der Belastungsanalyse (siehe Kapitel 3.2) anhand folgender Matrix bewertet:

Vorgehensweise in Nordrhein-Westfalen

Ergebnis der Analyse der mengenmäßig	Ergebnis der Bewertung	
Trendanalyse	überschlägige Wasserbilanz	
kein relevanter negativer Trend	-	"Zielerreichung wahrscheinlich (Stand 2004)"
relevanter negativer Trend	positive/ausgeglichene Bilanz	"Zielerreichung wahrscheinlich (Stand 2004)"
ý ,	negative Bilanz	"Zielerreichung unwahrscheinlich (Stand 2004)"
nicht genügend Messstellen und mindestens mittlere	positive/ausgeglichene Bilanz	"Zielerreichung wahrscheinlich (Stand 2004)"
wasserwirtschaftliche Bedeutung	negative Bilanz	"Zielerreichung unwahrscheinlich (Stand 2004)"
nicht genügend Messstellen und geringe wasserwirtschaftliche Bedeutung	-	"Zielerreichung wahrscheinlich (Stand 2004)"

► 4.3 Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen

Vorgehensweise in Niedersachsen

Ergebnis der Analyse der mengenmäßig	Ergebnis der Bewertung	
Trendanalyse	Trendanalyse und Vor-Ort-Kenntnisse	
zugelassene Grundwasserentnahme < 10 % der jährlichen Grundwasserneubildung		"Zielerreichung wahrscheinlich (Stand 2004)"
zugelassene Grundwasserentnahme > 10 % der jährlichen Grundwasserneubildung	kein negativer Trend und Vor-Ort-Kennt- nisse über nachteilige Auswirkungen der GW-Entnahmen, wenn diese bereits Gegenstand eines Wasserrechtsverfah- rens sind	"Zielerreichung wahrscheinlich (Stand 2004)"
zugelassene Grundwasserentnahme > 10 % der jährlichen Grundwasserneubildung	negativer Trend und Vor-Ort-Kenntnisse über nachteilige Auswirkungen der GW-Entnahmen, die nicht Gegenstand eines Wasserrechtsverfahrens sind	"Zielerreichung unklar/unwahrscheinlich (Stand 2004)"

Gemäß WRRL sind für grenzüberschreitende Grundwasserkörper und solche, für die die Zielerreichung hinsichtlich ihres mengenmäßigen Zustands als "unwahrscheinlich bzw. unklar/unwahrscheinlich (Stand 2004)" angesehen wird, die Grundwasserentnahmen mit mehr als 10 m³/d mit ihrer Lage und ihren Entnahmeraten zu erfassen, sofern sie relevant sind.

In NRW sind nach den Ergebnissen der Bestandsaufnahme nur solche Grundwasserkörper im Hinblick auf den mengenmäßigen Zustand als "Zielerreichung unwahrscheinlich (Stand 2004)" einzustufen, die sich in Gebieten mit bergbaubedingter Grundwasserabsenkung befinden. In diesen Gebieten existieren großflächige Grundwassermodelle, die auch die kleineren Entnahmen berücksichtigen. Die Erfassung weiterer Entnahmen wird in diesem Zusammenhang für Nordrhein-Westfalen und Niedersachsen als nicht relevant im Sinne der WRRL angesehen.

Prüfungen hinsichtlich einer möglichen Beeinflussung grundwasserabhängiger Ökosysteme wurden im Rahmen der Bestandsaufnahme in Nordrhein-Westfalen nicht durchgeführt; sie werden im Rahmen der Konzeption, Umsetzung und Auswertung des Monitorings bearbeitet.

Die Auswertungen des Kapitels 3.2.3 haben gezeigt, dass im Bearbeitungsgebiet Obere Ems kein Grundwasserkörper einen signifikanten negativen Trend der Grundwasserstände oder eine negative Wasserbilanz aufweist. Die umfangreichen Entnahmen für die öffentliche Wasserversorgung im Bereich der wasserwirtschaftlich bedeutenden Grundwasservorkommen (insbesondere der Lockergesteinsablagerungen der Niederung der Oberen Ems und des Münsterländer Kiessandzugs) erschließen zu rd. 85 % originäres Grundwasser. In Gebieten mit größerem Bedarf werden nachhaltige Defizite des mengenmäßigen Zustands durch die Einflüsse von Uferfiltrat und durch gezielte künstliche Grundwasseranreicherungen mit Oberflächenwasser aus der Ems, der Glane, dem Hemelter Bach und dem DEK vermieden. Aus diesem Grund führen dort die Entnahmen nicht dazu, dass die Bilanz negativ beeinflusst und die Zielerreichung im Hinblick auf den mengenmäßigen Zustand gemäß WRRL zum Stand 2004 als unwahrscheinlich angesehen wird.

Die Zielerreichung im Hinblick auf den mengenmäßigen Zustand wird somit in allen 20 Grundwasserkörpern des Bearbeitungsgebietes Obere Ems zum Stand 2004 als wahrscheinlich angesehen (siehe Karte 4.3-1). ► Beiblatt 4.3-1

Zielerreichung mengenmäßiger Zustand Grundwasserkörper im Bearbeitungsgebiet Obere Ems

	Gewässer (Einzugsgebiet > 10 km²)				
	Seen und Laisperren (Wassertläche > 0,5 km²)				
	Kanal				
00101001	Staatsgrenze				
distrib.	Bundeslandgrenze				
Fluss	gebietseinheit Ems				
	Bearbeitungsgebiet Obere Erns				
	Bearbeitungsgebiete Hase, Ems / Nordradde				
Benachbarte Flussgebietseinheiten					
	Flussgebietseinheiten Rhein, Weser				
	Grundwasserkörper mit GWK - Nummer				
	∠ielerreichung mengenmäßiger ∠ustand (Stand 2004)				
	Zielerreichung wahrscheinlich				
	∠ielemeichung unwahrscheinlich				

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Novemphori 22, 46147 Mündor

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgehietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 4.3 - 1: Zielerreichung mengenmäßiger Zustand Grundwasserkörper im Bearbeitungsgebiet Obere Ems

► 4.3 Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen

4.3.2

Chemischer Zustand

Die Auswirkungen der Belastungen im Hinblick auf den chemischen Zustand der Grundwasserkörper wurden auf Basis der Belastungsanalyse (s. Kap. 3.2) anhand folgender Matrix bewertet: Die Tabelle 4.3.2-1 enthält eine Übersicht über die im Kapitel 3.2.1, 3.2.2 und 3.2.4 analysierten chemischen Belastungen der Grundwasserkörper im Einzugsgebiet der Ruhr und das Ergebnis der abschließenden Beurteilung gemäß der zuvor erläuterten Systematik. Die Karte 4.3-2 zeigt die Grundwasserkörper, deren Zielerreichung im Hinblick auf den chemischen Zustand der Grundwasserkörper zum Stand 2004 als unwahrscheinlich angesehen wird.

Vorgehensweise in Nordrhein-Westfalen

Ergebnis der Analyse der chemischen Belastung (Kap. 3.2.1, 3.2.2, 3.2.4)	Ergebnis der Bewertung
Grundwasserkörper mit einer Überdeckung durch Wirkungsbereiche punktueller Schadstoffquellen > 33%	"Zielerreichung unwahrscheinlich (Stand 2004)"
Grundwasserkörper mit einem Anteil von Siedlungsflächen > 33 %	"Zielerreichung unwahrscheinlich (Stand 2004)"
Grundwasserkörper mit Nitratmittelwerten > 25 mg/l und/oder Stickstoff- aufträgen > 170 kg/ha/a (bei > 33 % landwirtschaftl. genutzter Fläche) und/oder nachgewiesene signifikante Belastung aus landwirtschaftlicher Nutzung (Expertenwissen)	"Zielerreichung unwahrscheinlich (Stand 2004)"
Grundwasserkörper mit Nitratmittelwerten > 25 mg/l und/oder Stickstoff-aufträgen > 170 kg/ha/a (bei > 33 % landwirtschaftl. genutzter Fläche) ohne nachgewiesene signifikante Belastung aus landwirtschaftlicher Nutzung (Expertenwissen)	"Zielerreichung wahrscheinlich (Stand 2004)"
Grundwasserkörper mit einer signifikanten Belastung durch sonstige anthropogene Eingriffe (Expertenwissen)	"Zielerreichung unwahrscheinlich (Stand 2004)"

Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen

4.3

Vorgehensweise in Niedersachsen

Ergebnis der Analyse (Kap. 3.2.1, 3.2.2, 3.3	e der chemischen Belastung 2.4)	Ergebnis der Bewertung	
Grundwasserkörper m punktueller Schadstof	it einer Überdeckung durch Wirkungsbereiche ffquellen > 33%	"Zielerreichung unklar/unwahrscheinlich (Stand 2004)"	
Immission [mg NO ₃ /l]	potenzielle Nitratkonzentration im Sickerwasser [mg/l]		
< 25	-	"Zielerreichung wahrscheinlich (Stand 2004)"	
25 - 50	< 25 25 - 40 > 40	"Zielerreichung wahrscheinlich (Stand 2004)" "Zielerreichung wahrscheinlich (Stand 2004)" "Zielerreichung unklar/unwahrscheinlich (Stand 2004)"	
> 50	< 25 25 - 40 > 40	"Zielerreichung unklar/unwahrscheinlich (Stand 2004)"	
< 25	< 25 25 - 50 50 - 65 65 - 80 > 80	"Zielerreichung wahrscheinlich (Stand 2004)" "Zielerreichung wahrscheinlich (Stand 2004)" "Zielerreichung unklar/unwahrscheinlich (Stand 2004)" "Zielerreichung unklar/unwahrscheinlich (Stand 2004)" "Zielerreichung unklar/unwahrscheinlich (Stand 2004)"	
25 - 50	< 25 25 - 40 40 - 60 >60	"Zielerreichung wahrscheinlich (Stand 2004)" "Zielerreichung wahrscheinlich (Stand 2004)" "Zielerreichung unklar/unwahrscheinlich (Stand 2004)" "Zielerreichung unklar/unwahrscheinlich (Stand 2004)"	
> 50		"Zielerreichung unklar/unwahrscheinlich (Stand 2004)"	

Die Tabelle 4.3.2-1 enthält eine Übersicht über die in den Kapitel 3.2.1, 3.2.2 und 3.2.4 analysierten chemischen Belastungen der Grundwasserkörper im Bearbeitungsgebiet Obere Ems und das Ergebnis der abschließenden Beurteilung gemäß der zuvor in Kap. 4.3 erläuterten Klassifizierung. Die Karte 4.3-2 zeigt die Grundwasserkörper, deren Zielerreichung im Hinblick auf den chemischen Zustand der Grundwasserkörper zum Stand 2004 als unklar/unwahrscheinlich angesehen wird.

► 4.3 Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen

► Tab. 4.3.2-1 Übersicht über die integrale Betrachtung im Hinblick auf den chemischen Zustand der Grundwasserkörpergruppe Obere Ems

GWK- Nr.	Bezeichnung	Signifikante Belastung durch punktuelle Schadstoff- quellen	Signifikante Belastung durch diffu- se Quellen: Besiedlung	Belastung	Signifikante Belastung durch sonst. anthropo- gene Eingriffe	
3_01	Plantlünner Sandebene (West)	nein	nein	ja	nein	"Zielerreichung unwahrscheinl. bzw. unklar/unwahrscheinl. (Stand 2004)"
3_02	Plantlünner Sandebene (Mitte)	nein	nein	ja	nein	"Zielerreichung unwahrscheinl. bzw. unklar/unwahrscheinl. (Stand 2004)"
3_03	Plantlünner Sandebene (Ost)	nein	nein	ja	nein	"Zielerreichung unwahrscheinl. bzw. unklar/unwahrscheinl. (Stand 2004)"
3_04	Niederung der Oberen Ems (Emsdetten/Saerbeck)	nein	nein	ja	ja	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_05	Niederung der Oberen Ems (Greven/Ladbergen)	nein	nein	nein	ja	"Zielerreichung unwahrscheinl. bzw. unklar/unwahrscheinl. (Stand 2004)"
3_06	Niederung der Oberen Ems (Sassenberg/Versmold)	nein	nein	ja	ja	"Zielerreichung unwahrscheinl. bzw. unklar/unwahrscheinl. (Stand 2004)"
3_07	Niederung der Oberen Ems (Beelen/Harsewinkel)	nein	nein	nein	ja	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_08	Niederung der Oberen Ems (Rietberg/Verl)	nein	nein	ja	nein	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_09	Sennesande (Nordost)	nein	nein	ja	nein	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_10	Münsterländer Kiessand- zug (Süd)	nein	ja	ja	ja	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_11	Münsterländer Oberkreide (Oelde/Herzebrock)	nein	nein	nein	ja	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_12	Münsterländer Oberkreide (Sendenhorst/Beckum)	nein	nein	nein	ja	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_13	Münsterländer Oberkreide (Altenberge/Aschenberg)	nein	nein	nein	ja	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_14	Teutoburger Wald (Südost)	nein	nein	nein	nein	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_15	Teutoburger Wald (Nordwest)	nein	nein	nein	ja	"Zielerreichung unwahrscheinl. bzw. unklar/unwahrscheinl. (Stand 2004)"
3_16	Südhang des Schafbergs	nein	ja	nein	nein	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_17	Karbon des Schafbergs	nein	nein	nein	nein	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_18	Nordosthang des Schafbergs	nein	nein	ja	nein	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_19	Nordosthang der Baumberge	nein	nein	ja	nein	"Zielerreichung unwahrscheinlich (Stand 2004)"
3_20	Thieberg bei Rheine	nein	nein	ja	nein	"Zielerreichung unwahrscheinlich (Stand 2004)"

Im Bearbeitungsgebiet Obere Ems wurde nach Auswertung der punktuellen und diffusen Gefährdungspotenziale für **18 Grundwasserkörper** die Zielerreichung hinsichtlich des chemischen Zustands zum Stand 2004 als unwahrscheinlich bzw. unklar/unwahrscheinlich eingestuft. Die Belastungen, die im Rahmen der integralen Betrachtung zu dieser Einstufung geführt haben, lassen sich folgendermaßen zusammenfassen:

- Die Zielerreichung des Grundwasserkörpers 3_16 (überwiegend Stadtgebiet Ibbenbüren) wird aufgrund vermuteter diffuser Schadstoffeinträge aus städtischen Flächen zum Stand 2004 als "unwahrscheinlich" klassifiziert.
- Die Zielerreichung des Grundwasserkörpers 3_10 (Stadtgebiet Münster) wird sowohl aufgrund diffuser Schadstoffeinträge aus städtischer und landwirtschaftlicher Nutzung als auch aufgrund sonstiger anthropogener Einwirkungen zum Stand 2004 als "unwahrscheinlich" klassifiziert.
- Die Zielerreichung der Grundwasserkörper 3_01, 3_02, 3_03, 3_08, 3_09, 3_18, 3_19 und 3_20 wird aufgrund diffuser Schadstoffeinträge aus landwirtschaftlicher Nutzung zum Stand 2004 als "unwahrscheinlich bzw. unklar/unwahrscheinlich" klassifiziert.
- Die Zielerreichung der Grundwasserkörper 3_04 und 3_06 wird sowohl aufgrund diffuser Schadstoffeinträge aus landwirtschaftlicher

Nutzung als auch aufgrund sonstiger anthropogener Einwirkungen zum Stand 2004 als "unwahrscheinlich bzw. unklar/unwahrscheinlich" klassifiziert.

 Die Zielerreichung der Grundwasserkörper 3_05, 3_07, 3_11, 3_12, 3_13 und 3_15 wird alleine aufgrund sonstiger anthropogener Einwirkungen zum Stand 2004 als "unwahrscheinlich bzw. unklar/unwahrscheinlich" klassifiziert.

Bezüglich der Grundwasserkörper 3_04, 3_05, 3_06, 3_07, 3_11, 3_12 und 3_13 wird derzeitig davon ausgegangen, dass die im Rahmen der Ermittlung sonstiger anthropogener Einwirkungen ausgewiesenen Ammoniumbelastungen ebenfalls diffusen Schadstoffeinträgen aus landwirtschaftlicher Nutzung zuzuordnen sind. Demzufolge ist in der Summe die Zielerreichung für 16 Grundwasserkörper aufgrund landwirtschaftlicher Einflüsse zum Stand 2004 als "unwahrscheinlich bzw. unklar/unwahrscheinlich" anzunehmen.

Von den 18 Grundwasserkörpern, bei denen die Zielerreichung zum Stand 2004 als unwahrscheinlich bzw. unklar/unwahrscheinlich angesehen wird, besitzen 13 insbesondere aufgrund der Nutzung für die öffentliche Wasserversorgung eine mittlere bis hohe wasserwirtschaftliche Bedeutung. Es handelt sich dabei um folgende Grundwasserkörper:

Plantlünner Sandebene (West)	(3 01)
,	\ _ /
• Plantlünner Sandebene (Mitte)	(3_02)
• Plantlünner Sandebene (Ost)	(3_03)
 Niederung der Oberen Ems (Emsdetten/Saerbeck) 	(3_04)
 Niederung der Oberen Ems (Greven/Ladbergen) 	(3_05)
 Niederung der Oberen Ems (Sassenberg/Versmold) 	(3_06)
 Niederung der Oberen Ems (Beelen/Harsewinkel) 	(3_07)
 Niederung der Oberen Ems (Rietberg/Verl) 	(3_08)
Sennesande (Nordost)	(3_09)
 Münsterländer Kiessandzug (Süd) 	(3_10)
Teutoburger Wald (Südost)	(3_14)
Teutoburger Wald (Nordwest)	(3_15)
 Karbon des Schafberg≤s 	(3_17)

26

► 4.3 Grundwasserkörper, die die Umweltziele möglicherweise nicht erreichen

Wie bereits erläutert, fordert die WRRL für jeden Grundwasserkörper – als Umweltziel – die Erreichung des guten mengenmäßigen Zustands und des guten chemischen Zustands. Da hinsichtlich des mengenmäßigen Zustands im Bearbeitungsgebiet Obere Ems für alle Grundwasserkörper zum Stand 2004 die Zielerreichung als wahrscheinlich angesehen wird, resultiert die Gesamteinschätzung für das Bearbeitungsgebiet Obere Ems auf den Auswertungen im Hinblick auf die Erreichung des chemischen Zustands (s. Tab. 4.3.2-1).

Im Bearbeitungsgebiet Obere Ems wird somit im Hinblick auf die Umweltziele der WRRL in 18 von 20 Grundwasserkörpern zum Stand 2004 die Zielerreichung als unwahrscheinlich bzw. unklar/unwahrscheinlich angesehen. Von diesen 18 Grundwasserkörpern besitzen 13 eine mittlere bis hohe wasserwirtschaftliche Bedeutung.

► Beiblatt 4.3-2

Zielerreichung chemischer Zustand Grundwasserkörper im Bearbeitungsgebiet Obere Ems

	Gewässer (Einzugsgebiet > 10 km²) Seen und Talsperren (Wassertläche > 0,5 km²) Kanal
00181001	Staatsgrenze
400000	Bundeslandgrenze
Fluss	gebietseinheit Erns
	Bearbeitungsgebiet Obere Ems
10	Bearbeitungsgebiete Hase, Erns / Nordradde
Bena	chbarte Flussgebietseinheiten Flussgebietseinheiten Rhein, Weser
	Crundwasserkörper mit GWK - Nummer Zielerreichung chemischer Zustand (Stand 2004) Zielerreichung wahrscheinlich Zielerreichung unwahrscheinlich

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

Norsyghol 22, 46147 Milhelor

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgehietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 4.3 - 2: Zielerreichung ehemischer Zustand Grundwasserkörper im Bearbeitungsgebiet Obere Ems

4.3.3

Zusammenfassende Beurteilung der Ergebnisse der Bestandsaufnahme im Einzugsgebiet der Oberen Ems

Die Grundwasserkörpergruppe Obere Ems gliedert sich in 20 Grundwasserkörper mit Größen von 6,32 km² bis 572,6 km². Von diesen 20 Grundwasserkörpern sind 13 als ergiebig bis sehr ergiebig bzw. wechselnd bis gering ergiebig eingestuft. Ihnen wird überwiegend wegen der Nutzung für die öffentliche Wasserversorgung eine mittlere bis hohe wasserwirtschaftliche Bedeutung zugewiesen.

Im Hinblick auf den guten mengenmäßigen Zustand wird die Zielerreichung aller Grundwasserkörper zum Stand 2004 als wahrscheinlich eingestuft. Die umfangreichen Entnahmen im Lockergestein der Niederung der Oberen Ems und des Münsterländer Kiessandzugs werden z. T. durch die Einflüsse von Uferfiltraten der Ems und der Werse sowie durch künstliche Grundwasseranreicherungen mit Oberflächenwasser der Ems, der Glane, des Hemelter Baches und des DEK kompensiert, so dass das natürliche Grundwasser zu einem verringerten Anteil genutzt wird und die Bilanz positiv bzw. ausgeglichen ist.

Die Zielerreichung des guten chemischen Zustands wurde bei 18 Grundwasserkörpern zum Stand 2004 als unwahrscheinlich bzw. unklar/ unwahrscheinlich eingestuft. Hierbei bildeten sich fast flächendeckend die landwirtschaftlichen Einflüsse als Schwerpunkt der Belastungen heraus.

Zur Erreichung eines guten chemischen Zustands des Grundwassers sind weitere Anstrengungen zur Reduzierung von Schadstoffeinträgen aus diffusen Quellen notwendig. Dies betrifft z.B. die Fortsetzung der Bemühungen, die landwirtschaftlichen Stickstoffeinträge durch Verminderung der atmosphärischen Stickstoffdeposition sowie durch bedarfsgerechte Düngegaben in Verbindung mit der Umsetzung einer sachgerechten Bewirtschaftungspraxis zu senken.

Die Handlungsschwerpunkte im Bearbeitungsgebiet Obere Ems werden in den Grundwasserkörpern mit mittlerer bis hoher wasserwirtschaftlicher Bedeutung liegen. Zukünftig ist in diesen Bereichen eine Intensivierung der Grundwassergütebeobachtung notwendig, sowohl durch Optimierung der landesweiten Grundwassergüteüberwachung als auch durch Einbeziehung von Daten Dritter, wie der Kreise, Städte und Gemeinden, der Wasserwerke und letztendlich auch der Verursacher.

32

5.1 Gebiete für die Entnahme von Wasser für den menschlichen Gebrauch (Wasserschutzgebiete)

Nach Artikel 6 der WRRL ist ein Verzeichnis aller Gebiete in den einzelnen Flussgebietseinheiten zu erstellen, für die ein besonderer Schutzbedarf festgestellt wurde. Dieser Teil der Bestandsaufnahme ist als Erklärung der Mitgliedsstaaten zu sehen und spielt keine Rolle bei der Bewertung der Zielerreichung der Wasserkörper im Rahmen der Bestandsaufnahme.

Die zu berücksichtigenden Schutzkategorien und Richtlinien sind in Anhang IV der Wasserrahmenrichtlinie aufgeführt. Abgesehen von den nach nationalem Recht ausgewiesenen Wasserschutzgebieten sind nur Schutzgebiete relevant, die nach Europarecht ausgewiesen wurden.

Im Rahmen der Bestandsaufnahme wurden demnach folgende schutzbedürftige Bereiche betrachtet:

Thema	EG-Richtlinie bzw. Gesetzesgrundlagen
Festgesetzte Wasserschutzgebiete	Wasserhaushaltsgesetz
Ç C	Landeswassergesetz Nordrhein-Westfalen
	Niedersächsisches Wassergesetz
FFH-Gebiete (wasserabhängig)	Richtlinie 92/43/EWG
EU-Vogelschutzgebiete (wasserabhängig)	Richtlinie 79/409/EWG
Badegewässer	Richtlinie 76/160/EWG
Muschelgewässer (im Bearbeitungsgebiet Obere Ems nicht relevant)	Richtlinie 79/923/EWG
Fischgewässer	Richtlinie 78/659/EWG
Nationalparks (im Bearbeitungsgebiet Obere Ems nicht relevant)	Landschaftsgesetz Nordrhein-Westfalen
	Naturschutzgesetz Niedersachsen
Biosphärenreservate (im Bearbeitungsgebiet Obere Ems nicht relevant)	Bundesnaturschutzgesetz
Nährstoffsensible Gebiete	Richtlinie 91/676/EWG
Gefährdete Gebiete	Richtlinie 91/271/EWG

Muschelgewässer sowie Biosphärenreservate und Nationalparks sind im Bearbeitungsgebiet Obere Ems zurzeit nicht vorhanden.

5.1

Gebiete für die Entnahme von Wasser für den menschlichen Gebrauch (Wasserschutzgebiete)

Zur Sicherstellung der öffentlichen Trinkwasserversorgung können die zuständigen Wasserbehörden auf der Basis des Wasserhaushaltsgesetzes (WHG) in Verbindung mit dem Landeswassergesetz NRW (LWG) bzw. dem niedersächsischen Landeswassergesetz (NWG) für bestehende oder künftige Wassergewinnungsanlagen Wasserschutzgebiete festsetzen.

Innerhalb der Wasserschutzgebiete können zum Schutz der genutzten Wasserressourcen bestimmte Handlungen, Nutzungen oder Maßnahmen verboten oder aber nur beschränkt zugelassen werden.

Gemäß Art. 6 sowie Anhang IV der WRRL ist im Rahmen der Bestandsaufnahme ein Verzeichnis der Gebiete zu erstellen, die für die Entnahme von Wasser für den menschlichen Gebrauch ausgewiesen wurden. In Nordrhein-Westfalen wurde ein Verzeichnis der Trinkwasserschutzgebiete erstellt, die auf Basis der o.g. Rechtsbestimmungen festgesetzt wurden (Stand Ende 2003). Geplante oder im Verfahren befindliche Trinkwasserschutzgebiete sowie Heilquellenschutzgebiete wurden in Nordrhein-Westfalen nicht berücksichtigt. In Niedersachsen werden gemäß den spezifischen Vorgaben des NWG Verzeichnisse über Wasserund Heilquellenschutzgebiete geführt. Aus diesen Katastern wurden die festgesetzten Wasserschutzgebiete selektiert.

Die Trinkwasserschutzgebiete sind in Karte 5.1-1 dargestellt und auf dem entsprechenden Beiblatt tabellarisch aufgelistet. Die abgebildeten Flächen stellen die äußere Schutzzone dar.

▶ Beiblatt 5.1-1

Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet Obere Ems

Gewässer (Einzugsgebiet > 10 km²)

Seen und Lalsperren (Wassertläche > 0,5 km²)

Kanal

Slastsgrenze
Bundeslandgrenze

Flusagebietseinheit Ems
Bearbeitungsgebiet Obere Ems
Bearbeitungsgebiete Hase, Ems / Nordradde

Benachbarte Flusagebietseinheiten

Flussgebietseinheiten Rhein, Wesen

Ausgewiesenes Trinkwasserschutzgebietes mit Nummer

Fläche außerhalb des Arbeitsgebietes

Bezirksregierung Weser - Ems

Umsetzung der Europaischen Wasserrahmemiehtlinie, Phase 1. Bestandsaufnahme

Flussychictseinheit Eins, Bearbeitungsychiet Obere Eins

Beiblatt zu K 5.1 - 1: Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet Obere Ems

▶ Beiblatt 5.1-1 Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet Obere Ems

Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet

Bearbeitsgebiet	Nummer	Wasserschutzgebiet	Gesamtfläche [ha]	Fläche innerhalb des Bearbeltungsgebletes [ha]
Obere Ems	370803	Offlum	471,93	9,94
Obere Ems	371002	Hemelter Bach	601,62	601,62
Obere Ems	3/1004	St. Arnold / Neuenkirchen	699,32	354,13
Obere Ems	371006	Orlheide	799,80	799,80
Obere Ems	371202	Ibbenbüren-Lehen	207,86	207,86
Obere Ems	371203	Doerenthe	880,54	880,54
Obere Ems	371204	Brochlerbeck	1 661,41	1 681,41
Obere Ems	391001	Grevener Damm	584,26	584,26
Obere Ems	391004	Ahlintəl	1.406,95	1.406,95
Obere Ems	391005	Brennheide (Ahlintel IV)	470,63	470,63
Obere Erns	391009	Münster-Kinderhaus	645,41	645,41
Obere Ems	391012	Creven	555,06	555,06
Obere Ems	391201	Lengench	679,59	677,05
Obere Erns	391203	Gittrup	764,59	764,59
Obere Ems	391204	Hornheide / Haskenau	907,97	907,97
Obere Ems	391205	l elgte	548,01	548,01
Obere Ems	391206	Oslbevern	268,32	288,32
Obere Ems	391401	Borgholzhausen-Holland	352,50	180,07
Obere Ems	391403	Borgholzhausen-Hamlingdorf	134,80	65,62
Obere Ems	391404	Halle Bokel	475,22	475,22
Obere Ems	391604	Werther-Egge	134,86	3,55
Obere Ems	391606	Halle	544,10	544,10
Obere Ems	391607	Sleinhagen Pallhorsl	712,46	712,48
Obere Ems	391611	Werther-Kirchdornberg	299,77	176,76
Obere Ems	411004	Münster-Geist	649,29	649,29
Obere Ems	411201	Hohe Ward	1.199,64	1.199,64
Obere Ems	411202	Everswinkel	196,19	196,19
Obere Ems	411401	Warendorf	/6,/2	/6,/2
Obere Ems	411402	Vohren/Dackmar	3.135,33	3.135,33
Obere Erns	411404	Harsewinkel	431,13	431,13
Obere Ems	411405	Herzebrock-Quenhom	1.463,08	1.463,08
Obere Ems	411405	Rhedaer Forst	183,33	183,33
Obere Erns	411407	Gütersloh-Sudheide-Rheda	550,68	550,68
Obere Ems	411408	Rheda-Wiedenbruck	738,41	738,41
Obere Ems	411601	Wapel	82,04	82,04
Obere Erns	411602	Gütersloh-Isselhorst	236,38	236,38
Obere Ems	411603	Bielefeld-Ummeln	699,15	699,15
Obere Ems	411604	Bieleteld-Gadderbaum	424,53	225,11
Obere Erns	411605	Bielefeld-Sennestadt/West	787,65	787,65
Obere Ems	411606	Bielefeld-Sennestadt	715,31	715,31
Obere Ems	41160/	Lipperreihe	417,61	417,51

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 5.1 - 1: Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet Obere Ems

▶ Beiblatt 5.1-1 Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet Obere Ems

Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet

Bearbeitsgebiet	Nummer	Wasserschutzgebiet	Gesamtfläche [ha]	Fläche innerhalb des Bearbeitsgebietes [ha]
Obere Ems	411608	Oerlinghausen- Wistinghauser Senne	675,19	675,19
Obere Ems	411609	Verl-Mühlgrund	1.090,67	1.090,67
Obere Ems	411610	Spexard	555,86	555,86
Obere Ems	411612	Rietberg-Bokel	44,11	44,11
Obere Ems	411801	Oerlinghausen-Helpup- Asemissen	994,25	23,78
Obere Ems	411804	Donoper Teich	417,68	107,19
Obere Ems	411805	Detmold-Heidental	688,91	92,16
Obere Ems	454010101	Ahlde	533,98	11,43
Obere Ems	459004106	Bad Iburg	293,43	276,72
Obere Ems	459006101	Bad Rothenfelde	580,73	580,73
Obere Ems	459015101	Dissen	985,17	790,23
Obere Ems	459403101	Fürstenau	532,66	528,33
Obere Ems	459034101	Glandorf Ost	1508,55	1508,55
Obere Ems	454405101	Grumsmühlen	3329,46	31,16
Obere Ems	459034102	HQS Bad Laer	474,80	474,80
Obere Ems	459006102	HQS Bad Rothenfelde	1381,59	1381,59
Obere Ems	459022102	Hilter	181,35	181,35
Obere Ems	454032102	Mundersum	575,53	574,62
Obere Ems	459020106	Natrup-Hagen	996,97	0,38
Obere Ems	459019102	Oesede	237,91	0,60
Obere Ems	459404101	Plaggenschale	2151,27	2138,47
Obere Ems	459402103	Thiene	5041,44	658,42
Obere Ems	459024103	Wellingholzhausen II	571,20	83,90

Flussgebietseinheit Erns, Bearbeitungsgebiet Obere Erns

Beiblatt zu K 5.1 - 1: Ausgewiesene Trinkwasserschutzgebiete im Bearbeitungsgebiet Obere Ems

► 5.2 Gebiete zum Schutz wirtschaftlich bedeutender aquatischer Arten

▶ 5.3 Badegewässer (Richtlinie 76/160/EWG)

Insgesamt befinden sich 58 festgesetzte Trinkwasserschutzgebiete vollständig oder teilweise innerhalb des Bearbeitungsgebiets Obere Ems. In der Summe decken diese Schutzgebiete bzw. Schutzgebietsanteile eine Fläche von rd. 351 km² ab, was einem Gesamtanteil von 7,3 % des Bearbeitungsgebiets entspricht.

Bezüglich der Lage der Schutzgebiete lassen sich drei Schwerpunkte feststellen:

- am Südwestrand des Teutoburger Walds,
- entlang der Ems in den Niederungen der Oberen Ems und
- im Münsterländer Kiessandzug

5.2

Gebiete zum Schutz wirtschaftlich bedeutender aquatischer Arten

Zur Umsetzung der EU-Fischgewässer-Richtlinie (RL 78/659/EWG) wurde in Nordrhein-Westfalen im Jahr 1997 die Fischgewässerverordnung (FischgewV), in Niedersachsen wurde die Fischgewässerqualitätsverordnung vom 05.09.1997 in Verbindung mit dem Durchführungserlass vom 22.06.1999 verabschiedet.

In den jeweiligen Verordnungen sind Fischgewässer im Sinne der Richtlinie ausgewiesen. Im Bearbeitungsgebiet Obere Ems wurden folgende Fischgewässer ausgewiesen:

- Ems
- · Große Aa
- Bever
- · Hessel
- · Münstersche Aa
- Werse

Der Oberlauf der Ems bis zur Einmündung des Furlbachs und der Oberlauf der Hessel bis zur Einmündung des Bockhorster Baches sind als Salmonidengewässer gemeldet. Unterhalb der Einmündung des Furlbaches ist die Ems bis zur niedersächsischen Grenze als Cyprinidengewässer gemeldet. Die Hessel ist unterhalb der Einmündung des Bockhorster Baches ebenso wie die Werse, die Bever und die Münstersche Aa als Cyprinidengewässer gemeldet. Die Gesamtlänge der im Bearbeitungsgebiet Obere Ems nach Fischgewässerrichtlinie ausgewiesenen Gewässer beträgt 305 km.

5.3

Badegewässer (Richtlinie 76/160/EWG)

Im Hinblick auf den Schutz von Nutzungen ist die Richtlinie über die Ausweisung von Badegewässern (76/160/EWG) zu beachten. Zu den nach der o.g. Richtlinie gemeldeten Gewässern liegen landesweite Datensätze vor, auf die zur Erstellung des vorliegenden Verzeichnisses zurückgegriffen wurde.

Für das Bearbeitungsgebiet Obere Ems sind zurzeit fünf Badegewässer ausgewiesen:

- Baggersee Holsterfeldstraße bei Salzbergen
- · Blauer See bei Lünne
- · Torfmoorsee bei Hörstel
- Feldmarksee bei Sassenberg
- · Waldbad Steinhagen

Neben der Freizeitnutzung durch den Badebetrieb werden die Badeseen zum Teil auch für Bootsverleihe, Surf- und Segelschulen und ähnliche Freizeitaktivitäten genutzt.

Die o.g. Stillgewässer werden regelmäßig durch die Gesundheitsämter der Kreise überwacht. Die Ergebnisse der Überwachung der Seen werden in Nordrhein-Westfalen durch das MUNLV in der Karte "Badegewässer in NRW" jedes Jahr veröffentlicht. In Niedersachsen erfolgt die Veröffentlichung jährlich durch das niedersächsische Landesgesundheitsamt in der "Karte zur Badegewässerqualität in Niedersachsen". Die Badegewässerqualität 2003 wurde für alle genannten Gewässer nach den Kriterien der EU-Badegewässerrichtlinie als "gut" bewertet.

Nährstoffsensible Gebiete (Richtlinie 91/271/EWG und Richtlinie 91/676/EWG) Gebiete zum Schutz von Arten und Lebensräumen

5.4

5.5

Auswirkungen auf Grund- und Oberflächengewässer gehen von diesen Badegewässern nicht aus, es handelt sich um ehemalige Aussandungen bzw. Auskiesungen, die keine Verbindung zu Oberflächengewässern haben und das angeschnittene Grundwasser nicht signifikant beeinflussen.

5.4

Nährstoffsensible Gebiete (Richtlinie 91/271/EWG und Richtlinie 91/676/EWG)

Da nach Kommunal-Abwasserrichtlinie (Richtlinie 91/271/EWG) das gesamte Einzugsgebiet von Nord- und Ostsee als empfindlich eingestuft wurde, liegt das gesamte Bearbeitungsgebiet Obere Ems ebenfalls komplett in diesem als empfindlich eingestuften Bereich. Eine Kartendarstellung erübrigt sich daher.

Nach Nitratrichtlinie (Richtlinie 91/676/EWG) ist die Bundesrepublik Deutschland flächendeckend als nährstoffsensibel ausgewiesen. Eine Kartendarstellung für das Bearbeitungsgebiet Obere Ems entfällt daher.

5.5

Gebiete zum Schutz von Arten und Lebensräumen

Im Hinblick auf den Schutz von Arten und Lebensräumen wurden die Gebiete betrachtet, die gemäß den Richtlinien

- 92/676/EWG (FFH-Richtlinie)
- 79/409/EWG (EU-Vogelschutzrichtlinie)

ausgewiesen wurden. Diese Gebiete wurden in **Nordrhein-Westfalen** anhand der vorhandenen Gebietsbeschreibung durch die Landesanstalt für Ökologie, Biologie und Forsten (LÖBF) im Hinblick auf ihre Wasserabhängigkeit bewertet.

Für die Bestandsaufnahme gemäß Anhang IV der WRRL wurden so die wasserabhängigen Natura 2000-Gebiete selektiert.

Die Auswertungen der LÖBF bilden für Nordrhein-Westfalen die Grundlage für die Ergebnisdarstellung in dem vorliegenden Bericht.

Als Grundlage für die Methodik zur Auswahl der Gebiete wasserabhängiger Lebensraumtypen und Arten dienen in **Niedersachsen** u.a. die Ausführungen der Länderarbeitsgemeinschaft Wasser (LAWA (Erft-Verband 2003, unveröffentlicht)) und die Listen über wasserabhängige Lebensraumtypen und Arten nach der FFH-Richtlinie (Anhang I und II) sowie EG-Vogelschutzrichtlinie (Anhang I (Art. 4 Abs. 1 und Art. 4 Abs. 2) des Bundesamts für Naturschutz (BfN 2002 a, b, c).

Anhand dieser Vorgaben wurde eine Selektion aus den gemeldeten FFH- und Vogelschutzgebieten (Stand Oktober 2003, Tranche 1-3) vorgenommen. Aufgrund der noch ausstehenden Nachmeldungen weiterer FFH- und Vogelschutzgebiete sind ggf. zu einem späteren Zeitpunkt noch weitere Gebiete einzubeziehen.

Wasserabhängige FFH-Gebiete

Die wasserabhängigen FFH-Gebiete im Bearbeitungsgebiet Obere Ems sind in Karte 5.5-1 dargestellt und auf dem zugehörigen Beiblatt tabellarisch aufgelistet. FFH-Gebiete wurden dann als wasserabhängig ausgewiesen, wenn sie gewässer- und/oder grundwasserabhängige Lebensräume von gemeinschaftlichem Interesse umfassen.

Unter gewässerökologischen Aspekten sind insbesondere die FFH-Gebiete hervorzuheben, die sich durch naturnahe Ausprägungen von Gewässern und/oder Auen(relikten) auszeichnen (s. Beiblatt Karte 5.3-1).

Insgesamt befinden sich im Bearbeitungsgebiet Obere Ems 43 wasserabhängige FFH-Gebiete, die z.T. vollständig, teilweise jedoch auch nur mit Flächenanteilen innerhalb des Bearbeitungsgebiets liegen. Durch wasserabhängige FFH-Gebiete wird im Bearbeitungsgebiet eine Fläche von 212 km² abgedeckt, was einem Anteil von 4,4% der Gesamtfläche des Bearbeitungsgebiets entspricht.

Größere FFH-Gebiete liegen vor allem in der Senne und im Teutoburger Wald, in der Davert sowie entlang der Ems in den Emsauen.

► 5.5 Gebiete zum Schutz von Arten und Lebensräumen

Wasserabhängige EU-Vogelschutzgebiete

Insgesamt werden im Bearbeitungsgebiet Obere Ems fünf wasserabhängige Vogelschutzgebiete ausgewiesen (s. Karte 5.5-1).

Dazu gehören die Gebiete:

• DE-4118-401 "Senne und Teutoburger Wald"

• DE-3612-401 "Düsterdieker Niederung"

• DE-4116-401 "Rietberger Emsried mit Steinhorster Becken"

• DE-3911-401 "Rieselfelder Münster"

• DE-3509 "Engdener Wüste"

▶ Beiblatt 5.5-1

Wasserabhängige FFH- und EU-Vogelschutzgebiete im Bearbeitungsgebiet Obere Ems

Gewässer (Einzugsgebiet > 10 km²) Seen und Talsperren (Wasserfläche > 0,5 km²) Kanal mm Staatsgrenze Bundeslandgrenze Flussgebietseinheit Ems Bearbeitungsgebiet Obere Ems Bearbeitungsgebiete Hase, Ems / Nordradde Benachbarte Flussgebietseinheiten Hussgebietseinheiten Rhein, Weser ■ Wasserabhängiges FFII Gebiet Flache innerhalb des Arbeitsgebietes mil Kennung (DE - 4805 - 303) Flache außerhalb des Arbeitsgebietes EU - Vogelschutzgebiet Häche innerhalb des Arbeitsgebietes mrt Kennung (DE - 5605 - 301) ::::: Fläche außerhalb des Arbeitsgebietes

Staatliches Umweltamt Münster

Bezirksregierung Weser - Ems

November 22, 48147 Sidneter

Umsetzung der Europäischen Wasserrahmenrichtlinie, Phase 1: Bestandsaufnahme

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 5.5 - 1: Wasserabhängige FFH- und EU-Vogelschutzgebiete im Bearbeitungsgebiet Obere Ems

▶ Beiblatt 5.5-1

Wasserabhängige FFH- und EU-Vogelschutzgebiete im Bearbeitungsgebiet Obere Ems

FFH - Gebiete im Bearbeitungsgebiet:

Bearbeitungs- gebiet	Kennung	Kennung Name		Fläche innerhalb des Bearbeitungegebietes [ha]	
Obere Ems	DE - 3511 - 301	Kottrtuten	20,28	20,28	
Obere Ems	DE - 3512 - 301	Finkenfeld und Wiechholz	269,92	269,90	
Obere Ems	DE - 3611 - 301	Heiliges Meer - Heupen	230,78	230,78	
Obere Ems	DF 3812 301	Mettinger und Recker Moor	426,68	424.83	
Obere Ems	DE 3710 301	7achhom	21,51	21,51	
Obere Ems	DF - 3711 - 301	Emsauc -: MS, ST	2723,64	2722,63	
Obere Ems	DF 3810 301	Emsdettener Venn und Wiesen am Max - Clemens Kanal	479,08	479,08	
Obere Ems	DF 3810 302	Bagno mit Steinfurter Aa	486,70	81,53	
Obere Ems	DF - 3811 - 301	Eltingmuhlenbach	309,35	309,34	
Obere Ems	DF - 3811 - 303	Hanfteich	4,42	4,42	
Obore Ems	DF - 3813 - 302	Nördliche Leile des Leutoburger Waldes mit Intruper Berg	783,20	629,83	
Obere Ems	DF - 3911 - 302	Hanseller Floth	16,23	16,23	
Obere Ems	DF - 3912 - 301	Graße Bree	63,07	63,07	
Obere Ems	DF - 3915 - 301	Ruthebach, Laibach, Loddenbach, Nordbruch	474,53	474,53	
Obere Ems	DF - 3915 - 302	Barrelpaule	6,54	6,54	
Obere Ems	DF - 3915 - 303	Tatenhauser Wald bei Halle	177,23	177,23	
Obere Ems	DE - 4012 - 301	Wolbecker Liergarten	287,95	287,96	
Obere Ems	DE - 4012 - 302	Heidbusch	107,10	107,10	
Obere Ems	DE - 4013 - 301	Emsaue, Kreise Warendorf und Cütersich	1309,34	1309,34	
Obere Ems	DE - 4013 - 303	Wartenhorster Sundern südöstlich von Everswinkel	/6,34	/6,34	
Obere Ems	DE - 4014 - 301	Hergarten, Erweiterung Schachblumerwiese	90,82	90,82	
Obere Ems	DE - 4014 - 302	Wald östlich Freckenhorst	50,72	50,72	
Obere Ems	DE - 4017 - 301	Östlicher Leutoburger Wald	5312,11	2690,36	
Obere Ems	DE - 4111 - 301	Venner Moor	147,55	32,41	
Obere Ems	DE - 4111 - 302	Davert	2221,60	1966,05	
Obere Ems	DE - 4112 - 301	Waldgebiel Brock	76,31	76,31	
Obere Ems	DE - 4113 - 301	Bröckerholz	36,49	36,49	
Obere Ems	DE 4113 302	Waldgebiet Kettelerhorst	155,88	155,88	
Obere Ems	DF 4114 301	Bergeler Wald	104,78	104,78	
Obere Ems	DF 4114 302	Vellemer Brook und Hoher Hagen	146,05	146,04	
Obere Ems	DF - 4114 - 303	Geisterholz	299,43	299,43	
Obere Ems	DF - 4115 - 302	Stadtholz in Rheda	52,57	52,57	
Obere Ems	DE - 4117 - 301	Sennebäche	95,85	96,86	
Obere Ems	DE - 4117 - 302	Holter Wald	314,24	314,24	
Obere Ems	DE - 4118 - 301	Senne mit Stapelager Senne	11/54,63	3931,61	
Obere Ems	DE - 4211 - 301	Wälder Nordkirchen	325,90	58,54	
Obere Ems	DE - 4212 - 301	Gestricher Holl	299,77	200,39	
Obere Ems	DE 4213 303	Am Vinckewald / Düppe	8,94	8,94	
Obere Ems	DE 4214 302	Steinbruch Vellern	13,70	13,70	

Flusspebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 5.5 - 1: Wasserabhängige FFII - und EU - Vogelschutzgebiete im Bearbeitungsgebiet Obere Ems

▶ Beiblatt 5.5-1 Wasserabhängige FFH- und EU-Vogelschutzgebiete im Bearbeitungsgebiet Obere Ems

FFH Gebiele im Bearbeilungsgebiel

Bearbeltungs- gebiet	Kennung	Name	Gesamtfläche [ha]	Fläche Innerhalb des Bearbeltungs- gebietes [ha]
Obere Ems	DE-2809-301	Ems	8192,25	1304,74
Obere Ems	DE-3610-301	Gutswald Stovern	114,20	62,33
Obere Ems	DE-3508-301	Heseper Moor, Engdener Wueste	794,47	16,77
Obere Ems	DE-3814-301	Teutoburger Wald, Kleiner Berg	2163,54	1798,87

EU - Vogelschutzgebiete im Bearbeitungsgebiet:

Bearbeltungs- gebiet	Kennung	Name	Gesamtfläche [ha]	Fläche Innerhalb des Bearbeltungs- gebietes [ha]
Obere Ems	DE-3612-401	Vogelschutzgebiet "Düsterdieker Niederung"	2687,12	1574,35
Obere Erns	DE-3911-401	Vogelschutzgebiet "Rieselfelder Münster"	436,85	436,85
Obere Ems	DE-4116-401	Vogelschutzgebiet "Rietberger Emsnied, mit Steinhorster Becken"	929,38	929,38
Obere Ems	DE-4118-401	Vogelschutzgebiet Senne mit Teutoburger Wald	15385,44	5361,54
Obere Ems	DE-3509	Vogelschutzgebiet Engdener Wueste	790,03	12,33

Flussgebietseinheit Ems, Bearbeitungsgebiet Obere Ems

Beiblatt zu K 5.5 - 1: Wasserabhängige FFH - und EU - Vogelschutzgebiete im Bearbeitungsgebiet Obere Ems

▶ 6 Mitwirkung und Information der Öffentlichkeit

Nordrhein-Westfalen und Niedersachsen haben bereits in der Vergangenheit sehr großen Wert darauf gelegt, dass die Öffentlichkeit transparent und zeitnah über den Zustand der Gewässer und die auf die Gewässer einwirkenden Belastungen informiert wird. Beispielhaft sind die regelmäßigen Statusberichte über die Entwicklung und den Stand der Abwasserbeseitigung, die Gewässergüteberichte und die Grundwasserberichte zu nennen. Daneben gibt es Veröffentlichungen zu besonderen Themen und Veröffentlichungen wie der in Zusammenarbeit zwischen dem Staatlichen Umweltamt Münster und der Bezirksregierung Weser-Ems (Geschäftsstelle Ems) entstandene Flyer "Die Ems in Europa".

Entsprechend wurden auch bei den Aktivitäten zur Durchführung der Bestandsaufnahme in Nordrhein-Westfalen und Niedersachsen von Beginn an alle wasserwirtschaftlichen Akteure eingebunden und eine Information der Öffentlichkeit auf verschiedenen Ebenen vorgesehen. Dies entspricht den Anforderungen gemäß Artikel 14 der Wasserrahmenrichtlinie.

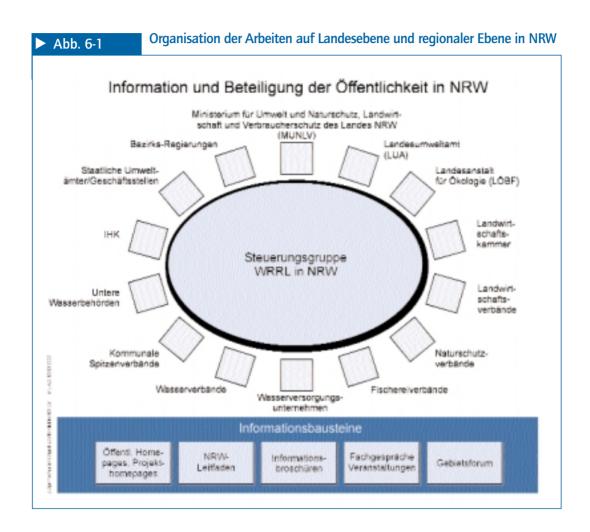
Mitwirkung der Fachöffentlichkeit in Nordrhein-Westfalen

An der Erarbeitung der vorliegenden umfassenden Analyse der Gewässersituation in Nordrhein-Westfalen waren neben den Staatlichen Umwelt-ämtern, dem Landesumweltamt und dem Umwelt-ministerium weitere Fachbehörden des Landes, die Bezirksregierungen, Vertreter der Selbstverwaltungskörperschaften, d.h. Kommunen und Kreise, die Wasserverbände sowie weitere interessierte Stellen wie z.B. Landwirtschafts-, Fischerei- und Naturschutzverbände sowie Wasserversorgungsunternehmen und Industrie- und Handelskammern beteiligt.

Die beteiligten Gruppen konnten hierbei ihre Interessen im Rahmen einer auf Landesebene installierten Steuerungsgruppe unter Leitung des Umweltministeriums vertreten sowie ihr Fachund Expertenwissen aktiv in mehrere, auf Landesebene agierende Facharbeitsgruppen einbringen.

Auf regionaler Ebene wurde unter Leitung der Geschäftsstelle Ems/NRW (StUA Münster) ein Kernarbeitskreis installiert. In diesem gebietsspezifischen Arbeitskreis für die Ems in NRW waren Vertreter der folgenden Institutionen organisiert:

- Umweltministerium NRW (MUNLV)
- Landesanstalt für Ökologie (LÖBF/LAfAO NRW)
- zuständige Bezirksregierungen in Nordrhein-Westfalen und Niedersachsen
- StAfUA OWL (ehemals StUA Bielefeld)
- · Untere Wasserbehörden
- · Landwirtschaftskammer NRW
- · Naturschutz- und Fischereiverbände NRW


Durch die Mitwirkung der Fachöffentlichkeit sollten und konnten ergänzende, auf Landesebene nicht verfügbare Daten, gewonnen und Vor-Ort-Kenntnisse genutzt werden.

Ergänzend wurden in Nordrhein-Westfalen auf regionaler Ebene zwei Gebietsforen veranstaltet. Über diese Foren erfolgte eine Einbeziehung auch der Stellen, die nicht unmittelbar in der Steuerungsgruppe oder in den Arbeitsgruppen auf Landesebene oder in den gebietsspezifischen Arbeitsgruppen (Kern-AK, Fisch-AK) beteiligt waren.

Bei der Besetzung von Kernarbeitskreis und thematischen Unterarbeitskreisen wurde eine enge personelle und fachliche Verzahnung des niedersächsischen und des nordrhein-westfälischen Teils des Bearbeitungsgebiets Obere Ems sichergestellt. Hierdurch war es möglich, den nun vorliegenden grenzüberschreitenden gemeinsamen Bericht anzufertigen.

Breite Resonanz fand in Nordrhein-Westfalen die Möglichkeit, durch Veröffentlichung der Bestandsaufnahme im Internet zum ersten Entwurf der Dokumentationen der wasserwirtschaftlichen Grundlagen Stellung zu beziehen. Die aus diesen Stellungnahmen resultierenden Änderungen sind soweit möglich und sinnvoll eingearbeitet worden.

Strukturen und Mitwirkende auf der nordrheinwestfälischen Landes- und Regionalebene sind in der folgenden Abbildung 7-1 dargestellt.

Die Ergebnisse der Arbeiten auf Landesebene sind im "Leitfaden zur Umsetzung der Bestandsaufnahme nach WRRL in NRW" dokumentiert.

Die Arbeiten auf regionaler Ebene haben sich an diesem Leitfaden orientiert. Sie sind in diesem Bericht sowie in der ausführlichen "Dokumentation der wasserwirtschaftlichen Grundlagen im Arbeitsgebiet Ems-NRW" niedergelegt.

Information des Parlaments in Nordrhein-Westfalen

Der Umweltausschuss des nordrhein-westfälischen Landtags wurde mehrfach über die Umsetzungsarbeiten zur Wasserrahmenrichtlinie informiert. Die Ergebnisse der Bestandsaufnahme sind dort in zwei Veranstaltungen ausführlich vorgestellt und diskutiert worden. Dies wird bei den weiteren Umsetzungsschritten fortgesetzt.

Mitwirkung der Fachöffentlichkeit in Niedersachsen

Seit 2001 erfolgt in Niedersachsen auf Bearbeitungs- und Flussgebietsebene ein regelmäßiger Informationsaustausch mit den interessierten Stellen und Nutzern im Rahmen von Auftaktveranstaltungen, Beiratssitzungen, Regionalveranstaltungen, Gebietsforen, Arbeitskreisen und Vortragsveranstaltungen über die Wasserrahmenrichtlinie und ihre Umsetzung, hier insbesondere die Bestandsaufnahme betreffend. Ein großer Teil der Informationen wurde für Benutzergruppen durch die Geschäftsstelle Ems in das Internetportal "Wasserblick" (www.wasserblick.net) eingestellt.

Durch die Mitwirkung der Fachöffentlichkeit sollten und konnten ergänzende, auf Landesebene nicht verfügbare Daten (z. B. Querbauwerke), gewonnen und Vor-Ort-Kenntnisse genutzt werden.

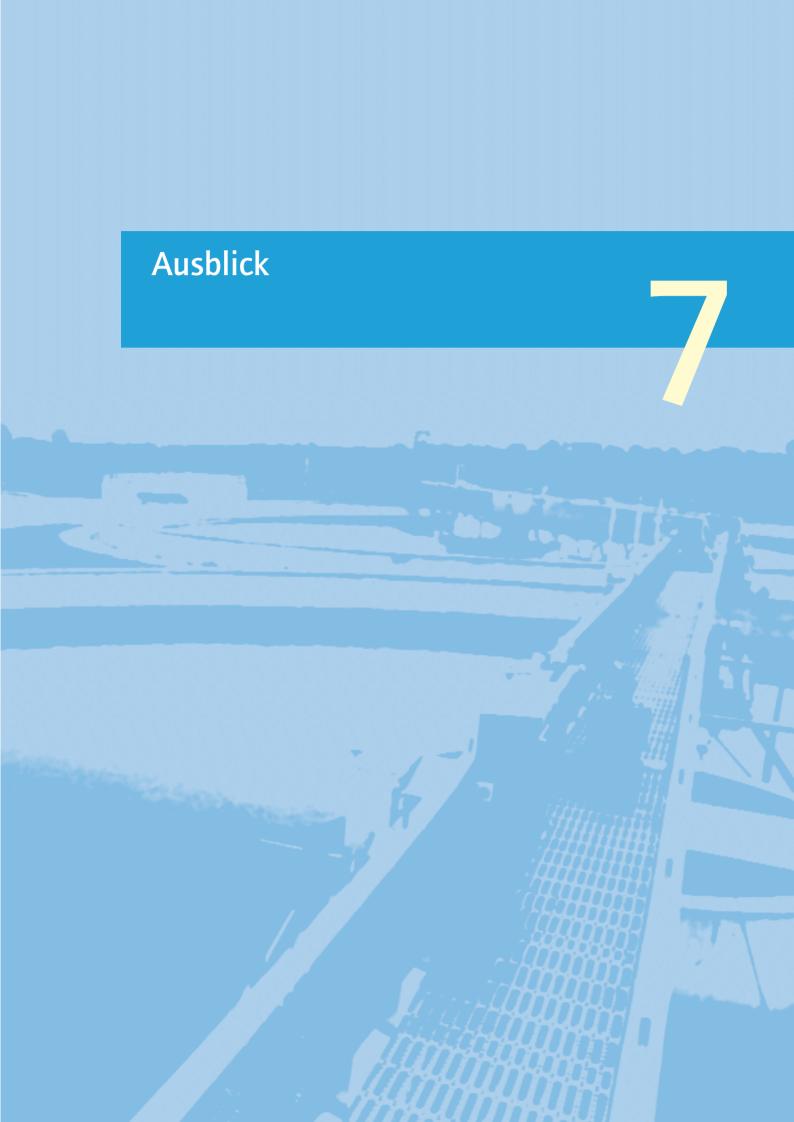
6 Mitwirkung und Information der Öffentlichkeit

Information der Öffentlichkeit

Die breite Öffentlichkeit wurde und wird sowohl über die Arbeiten zur Umsetzung der WRRL als auch über die nun vorliegenden Ergebnisse der Bestandsaufnahme informiert. Dies erfolgt über Broschüren, Pressemitteilungen etc.

Ergänzend sind ausführliche Informationen über Internet abrufbar; in Nordrhein-Westfalen sind landesweite Informationen über die Adresse www.flussgebiete.nrw.de zugänglich, Niedersachsen nutzt die bundesweite Internetseite www.wasserblick.net.

Informationen speziell zum Bearbeitungsgebiet Obere Ems sind über www.ems.nrw.de (NRW) und ebenfalls www.wasserblick.net (NI) zugänglich. Selbstverständlich stehen auch die Mitarbeiterinnen und Mitarbeiter der Geschäftsstellen als Ansprechpartner zur Verfügung.


Die "Dokumentation der wasserwirtschaftlichen Grundlagen – Arbeitsgebiet Ems/NRW (Obere Ems/NRW)" sowie der niedersächsische Teilbericht zur Oberen Ems/NI stehen zum Download auf o.g. Internetseiten zur Verfügung und sind in den Geschäftsstellen für jede interessierte Person einsehbar.

Der vorliegende Bericht selbst ist für die weitere Verteilung in der Öffentlichkeit vorgesehen.

Alle Interessierten können sich so detailliert über die Situation an jedem einzelnen Gewässer informieren.

Weiteres Vorgehen

In der nächsten Phase der Umsetzung der WRRL (zunächst bei der Konzeption der zukünftigen Monitoringprogramme) wird die Einbindung der Öffentlichkeit fortgesetzt und die Beteiligung der Fachöffentlichkeit über das während der Bestandsaufnahme aufgebaute Netz der Akteure im Bearbeitungsgebiet Obere Ems intensiviert. Dabei soll ein offener Datenaustausch angestrebt werden. Daher sind nach wie vor alle Interessierten eingeladen, sich weiterhin aktiv an der Umsetzung der Wasserrahmenrichtlinie zu beteiligen.

7 Ausblick

Die mit diesem Ergebnisbericht vorgelegte Analyse der wasserwirtschaftlichen Verhältnisse im Bearbeitungsgebiet Obere Ems stellt keine abschließende Bewertung dar, sondern hat den Charakter einer ersten Einschätzung des Gewässerzustandes nach den Regeln der Wasserrahmenrichtlinie. Eine abschließende Bewertung wird nach Abschluss des nun folgenden Monitorings erfolgen.

Im Bearbeitungsgebiet Obere Ems ist bereits in den letzten Jahrzehnten intensiv an einer Verbesserung des Gewässerschutzes gearbeitet worden, wobei die Wiederherstellung einer guten Wasserqualität bisher den Schwerpunkt bildete. Wasserwirtschaft gemäß der Wasserrahmenrichtlinie umfasst aber nun nicht mehr nur die Erreichung einer guten Gewässerqualität, sondern fordert darüber hinaus eine verstärkte Einbeziehung gewässerökologischer Fragestellungen.

Unter diesen veränderten Rahmenbedingungen wird der zum ersten Mal europaeinheitlich geforderte – nur geringfügig anthropogen beeinflusste – Zustand erwartungsgemäß zurzeit nur an wenigen Stellen im Bearbeitungsgebiet erreicht.

An die mit diesem Ergebnisbericht vorgelegte Bestandsaufnahme schließt sich als erstes ein Monitoring an. Ziel des Monitorings ist die künftige eindeutige Bewertung der Gewässer nach den Kriterien der Wasserrahmenrichtlinie. Bei der Erarbeitung und Umsetzung des Monitoringprogramms werden die Akteure der Wasserwirtschaft sowie die allgemeine Öffentlichkeit in bewährter Weise einbezogen.

Parallel zur Konzeption des Monitorings sind die Methoden zur Berücksichtigung sozio-ökonomischer Aspekte bei der Bewertung des Gewässerzustands weiterzuentwickeln. Hierzu gehört die Überprüfung der vorläufig als erheblich verändert eingestuften Gewässer und die Festlegung des für solche Gewässer erreichbaren ökologischen Potenzials.

Die Planung künftiger Maßnahmen wird in einem transparenten Abstimmungsprozess mit der Öffentlichkeit diskutiert werden. Neben den gewässerökologischen Ansprüchen werden hierbei sozio-ökonomische Ansprüche und Nutzungskonflikte berücksichtigt und abgewogen werden. Erst nach dieser Abwägung wird über die an den einzelnen Gewässern konkret zu realisierenden Ziele entschieden werden. Nicht für jeden Wasserkörper, der zurzeit den Anforderungen der Wasserrahmenrichtlinie nicht entspricht, werden Maßnahmen erforderlich sein.

Die im Einzelfall zukünftig erforderlichen Maßnahmen zur Verbesserung des Gewässerzustands können heute noch nicht konkret und umfassend benannt werden.

Für das Bearbeitungsgebiet Obere Ems werden folgende gewässerbeeinflussende menschliche **Nutzungen** ("driving forces") als prägend angesehen:

- Die landwirtschaftliche Nutzung auf 69 % der Fläche führt zu einer erheblichen diffusen Belastung mit Nährstoffen und Pflanzenbehandlungsmitteln
- Die Nutzungsansprüche der Landwirtschaft sind eine der Ursachen der tiefgreifenden morphologischen Veränderung der Gewässer. Befestigungen und Eintiefungen dienten vor allem der Sicherstellung der Drainagevorflut
- Geringere Auswirkungen haben die Einleitungen gereinigten Abwassers und von Regenwasser. Für abflussschwache Gewässer kann es durch Einleitungen zu hydraulischen Problemen kommen. Punktuell führen die Einleitungen außerdem zu Grenzwertüberschreitungen bei Schadstoffen
- Die öffentliche Trinkwasserversorgung kann durch die Stickstoffüberschüsse aus der landwirtschaftlichen Nutzung langfristig gefährdet werden

Aus den genannten Nutzungen ergeben sich folgende **Belastungen** ("pressures") für die Oberflächengewässer und das Grundwasser im Bearbeitungsgebiet:

- Stark geschädigte Gewässermorphologie
- Diffuser Nährstoffeintrag aus der Landwirtschaft in Grund- und Oberflächengewässer
- Einträge von Nähr und Schadstoffen aus der Kanalisation in Oberflächengewässer

7 <

Diese Belastungen führen zu signifikanten Auswirkungen ("impacts") auf den Zustand der Gewässer im Bearbeitungsgebiet Obere Ems. Zum Teil ist die Datenbasis für eine abschließende Bewertung allerdings noch nicht ausreichend.

- Mehr als die Hälfte der Gewässerstrecken erreichen allein wegen Mängeln in der Gewässerstruktur den "guten ökologischen und chemischen Zustand" nicht.
- ➤ Für 18 von 20 der betrachteten Grundwasserkörper wird aufgrund der landwirtschaftlichen Nutzung und den damit verbundenen erhöhten Nitrat- und Ammoniumgehalten die Zielerreichung als unwahrscheinlich eingestuft.
- ▶ Bei den Einträgen aus der Regenwasserkanalisation müssen Datenlücken geschlossen werden.
- ▶ Neben der Gewässerstruktur und Gewässergüte wurde die Fischfauna als Basis der integralen Betrachtung herangezogen. Für die Fischfauna sind vor allem die mehr als 1.300 Querbauwerke im Bearbeitungsgebiet als Beeinträchtigung für die Wanderungsbewegungen problematisch.

Mit dem schon heute zur Verfügung stehenden Instrumentarium der Wasserwirtschaftsverwaltung werden bereits erste Maßnahmen ergriffen, die den guten ökologischen Zustands zum Ziel haben. Dies gilt vor allem da, wo die bestehende Datenlage sichere Aussagen über den Gewässerzustand ermöglicht.

Die vom StUA Münster verfolgten Konzepte zur naturnahen Entwicklung von Fließgewässern (KNEF) und Auenschutzkonzepte (EASK) die die Entwicklung einer naturnahen Morphologie zum Ziel haben, gehen schon heute in die vom WRRL-Maßnahmenprogramm geforderte Richtung.

In Niedersachsen wurden in den zurückliegenden Jahren im Rahmen des Kooperationsmodells zum Trinkwasserschutz verschiedene Strategien entwickelt, um die diffusen Belastungen aus der Landwirtschaft zu reduzieren. Kernstück des Ansatzes bildet die enge Zusammenarbeit zwischen der Landwirtschaft und der Wasserwirtschaft in den regional eingerichteten Kooperationen. Angepasst an die örtlichen Gegebenheiten wurden gemeinsam tragfähige Konzepte für

einen effektiven Grundwasserschutz entwickelt. Der damit einhergehende Dialog zwischen den Beteiligten hat das Bewusstsein für die Belange des Gewässerschutzes gefördert und die Umsetzung von Maßnahmen zum Schutz des Grundwassers auch über die Grenzen der Trinkwassergewinnungsgebiete hinaus vorangetrieben. Die dabei gesammelten Erfahrungen haben Modellcharakter und stellen eine gute Grundlage für die künftige Umsetzung von WRRL-Maßnahmenprogrammen dar.

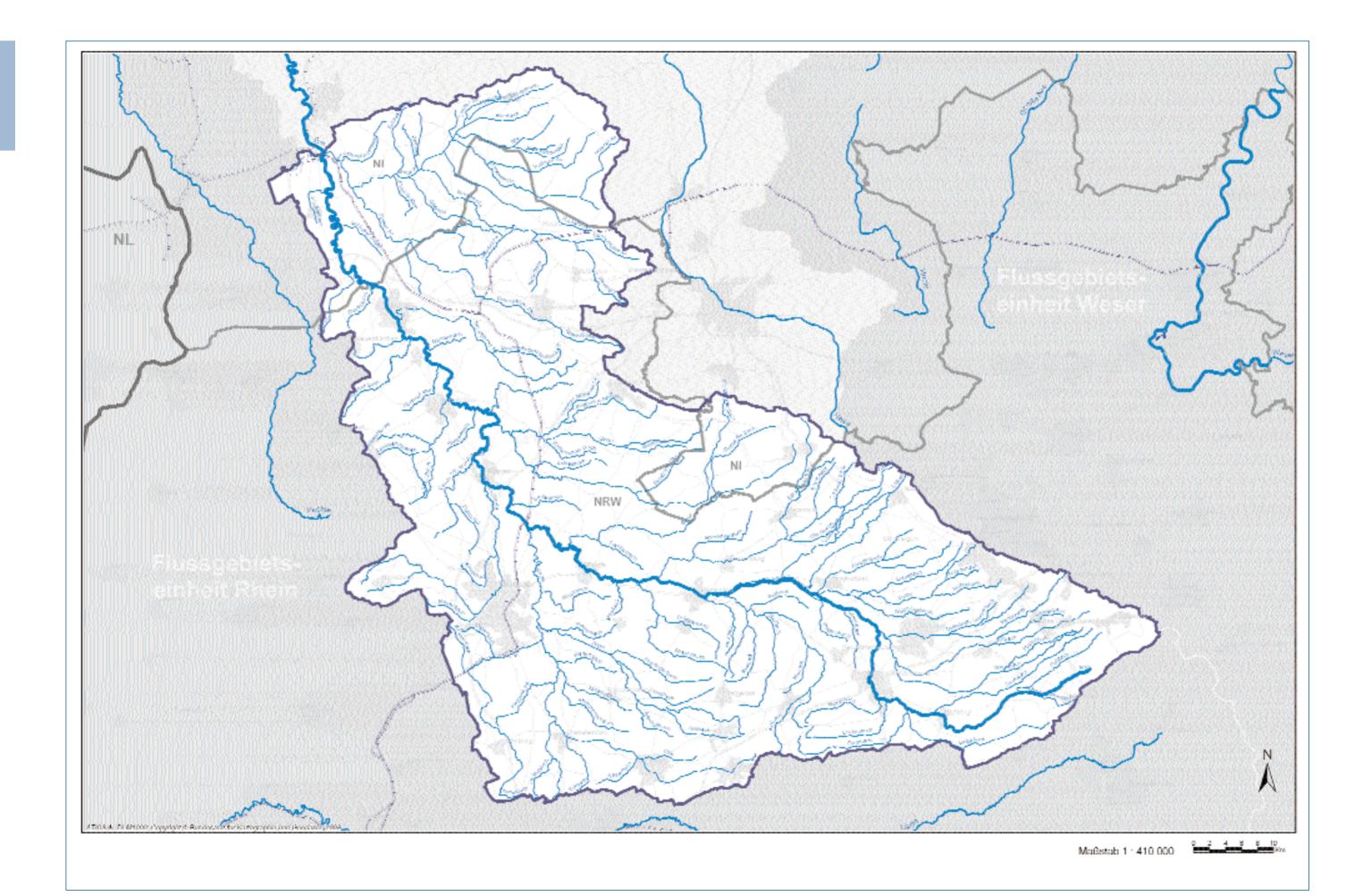
In Bezug auf die Stickstoffproblematik hat sich im StUA Münster ein internes Projektteam mit der Stickstoffproblematik auseinandergesetzt, um erste Maßnahmen zur Verringerung der diffusen Nährstoffeinträge zu entwickeln. Hierbei wurden als wichtiger Eintragspfad in Boden und Gewässer die luftbürtigen Stickstoffemissionen der Tierintensivhaltung erkannt. Da regional Grundlagendaten weitgehend fehlen, wird durch eigene Datenerhebungen und Untersuchungen an ausgewählten Anlagen Erkenntnisse gewinnen. Der medienübergreifende Ansatz wird bei der Anlagengenehmigung und Überwachung auch als Auftrag zur Minderung der Stickstoffeinträge über den Luftpfad gesehen. Die Erkenntnisse fließen dann in die Entscheidungen über Genehmigungsanträge insbesondere bei der Landwirtschaft ein.

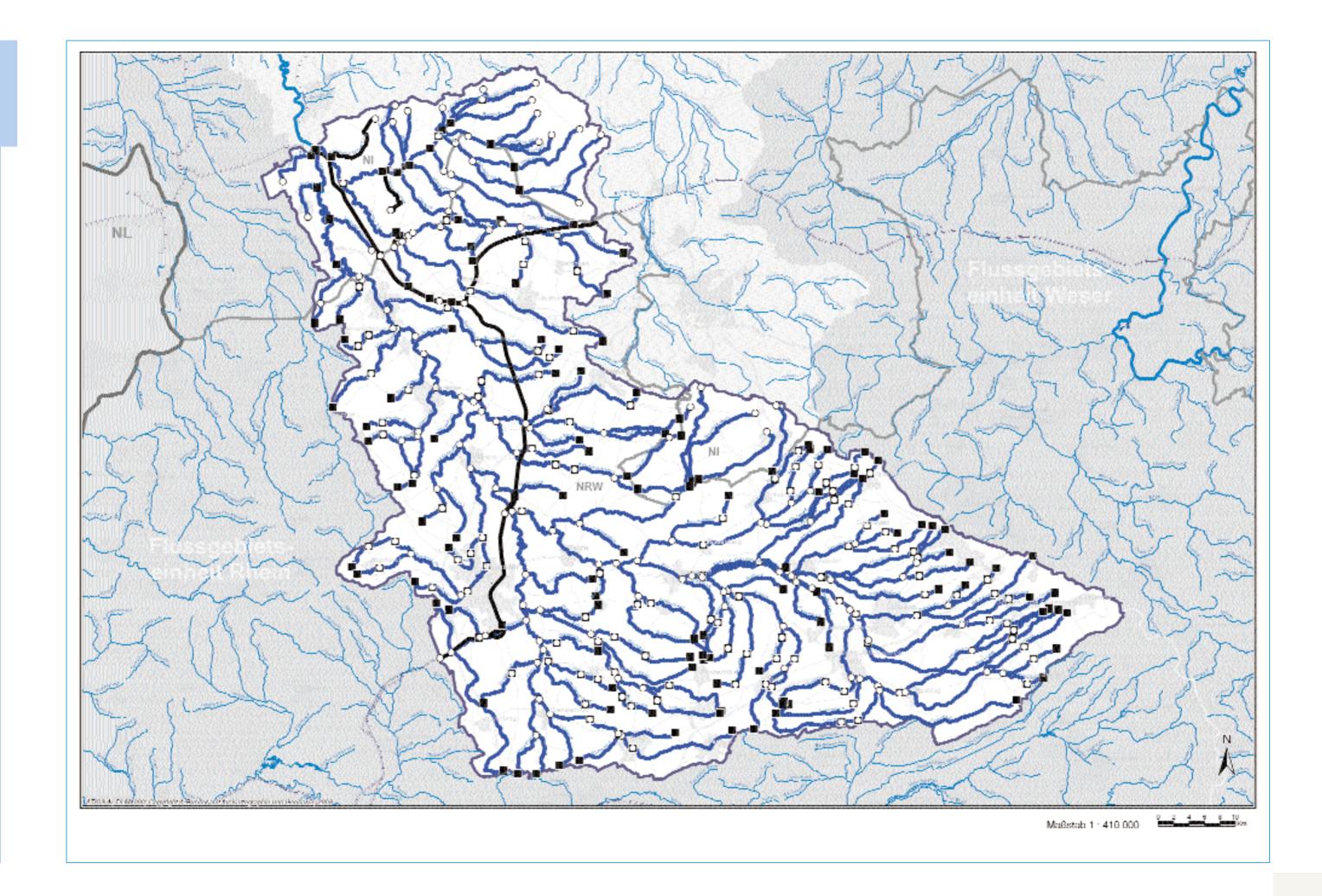
Zum Schließen von Datenlücken im Bereich der Regenwassereinleitungen wird der Einbau von Mengenmesseinrichtungen bei Regenwassereinleitungen forciert. Durch vermehrten Einbau von Retentionsbodenfiltern wird ein erhebliches Minderungspotential der hydraulischen Belastung der Gewässer sowie der gelösten und feinpartikulär gebundenen Stoffe erreicht.

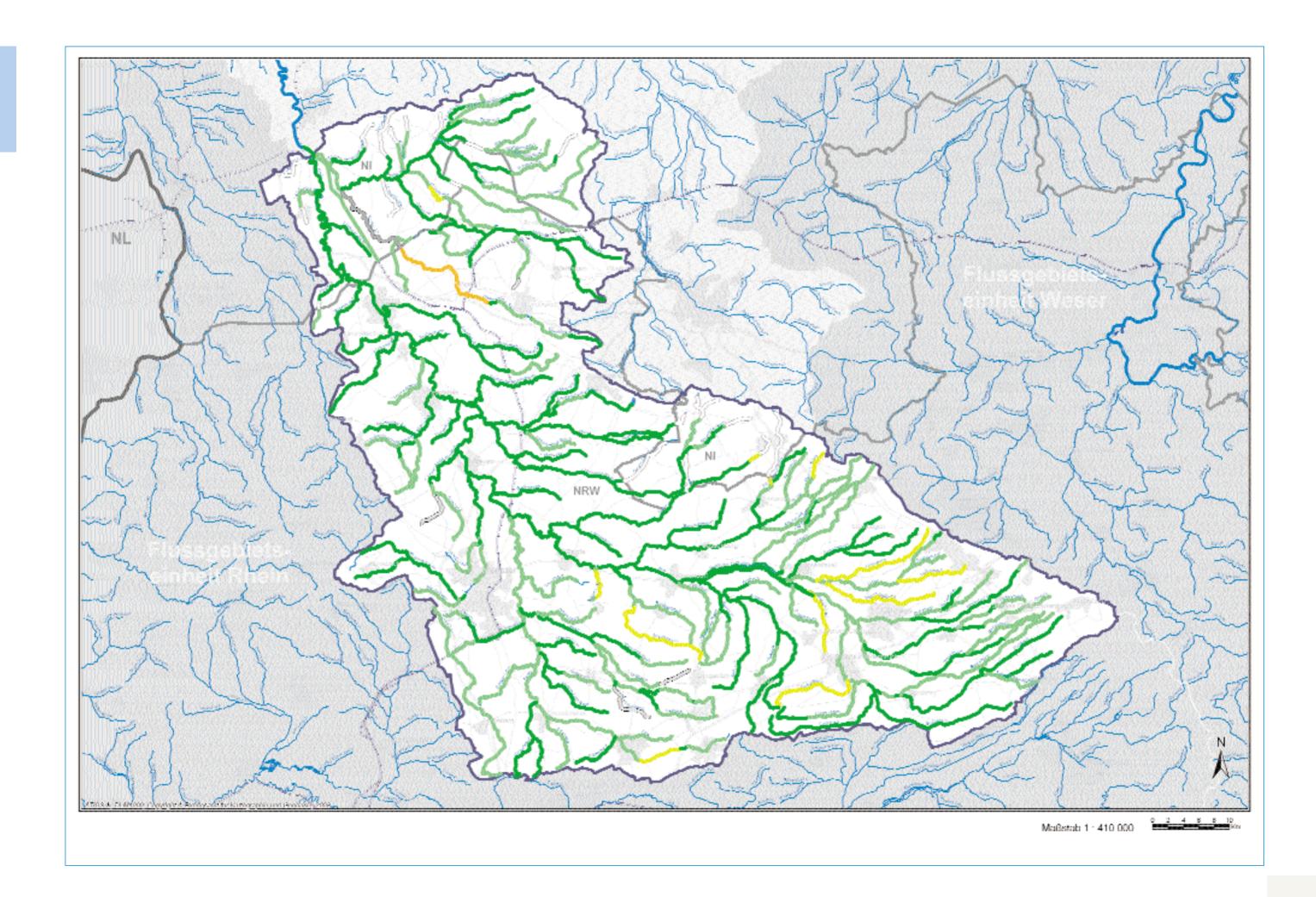
Als eine Konsequenz der mangelhaften Durchwanderbarkeit für die Fische wurde das Projekt "100 Querbauwerke 2005" initiiert. Ein Kernpunkt dieses Projektes ist die Gewässer in ihrer Durchgängigkeit von der Mündung bis zur Quelle zu betrachten und sich nicht auf lokale Einzelprojekte zu beschränken. In erster Linie sollen Sohlabstürze und "kleinere Wehre" in raue Rampen oder Sohlgleiten umgestaltet bzw. beseitigt werden. Dies ist in der Regel ohne größeren Aufwand mit geringen Kosten umsetzbar und erzielt dabei einen relativ großen ökologischen Erfolg. Außerdem soll die Akzeptanz durch intensive Einbindung der Unterhaltungsverbände

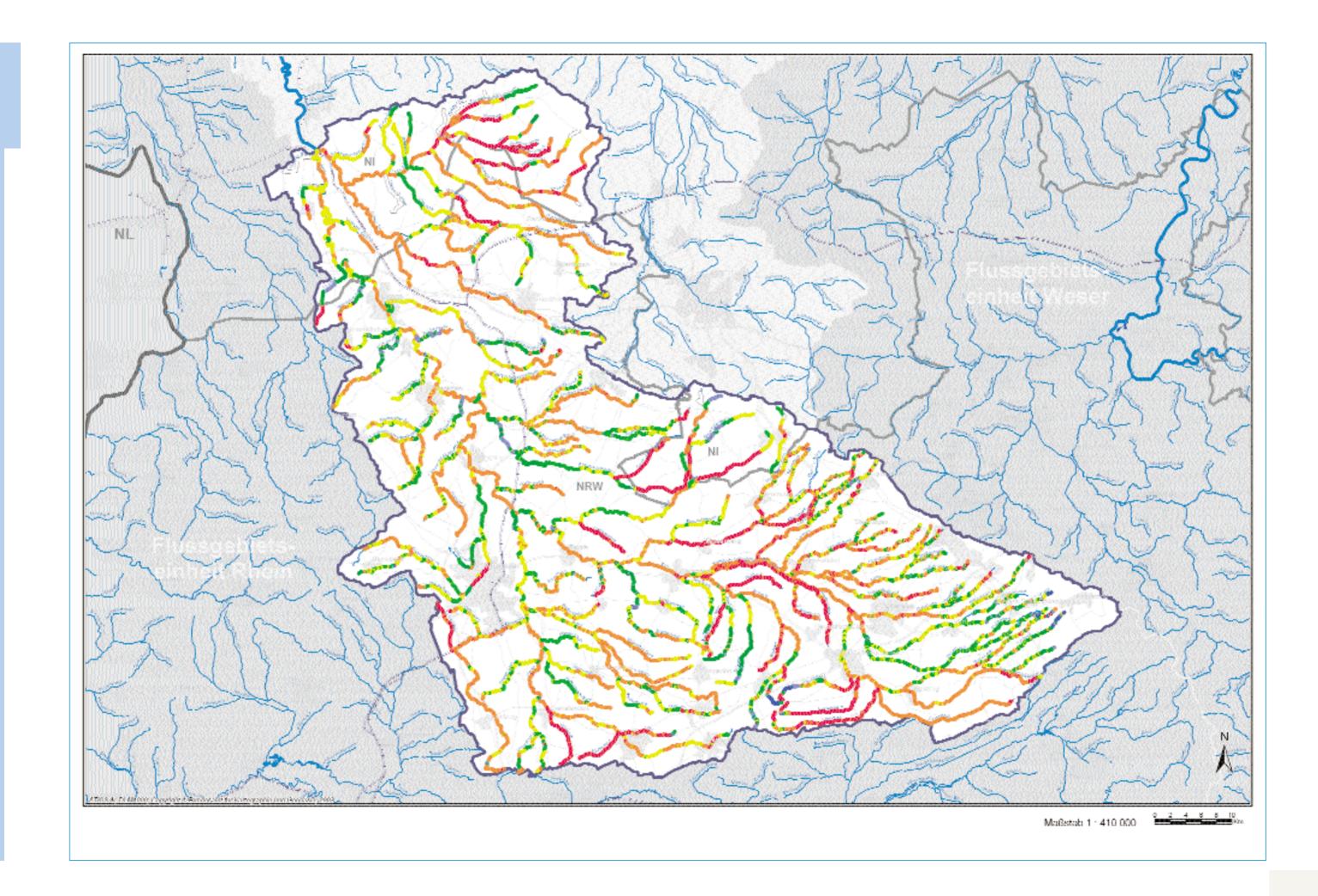
Ausblick

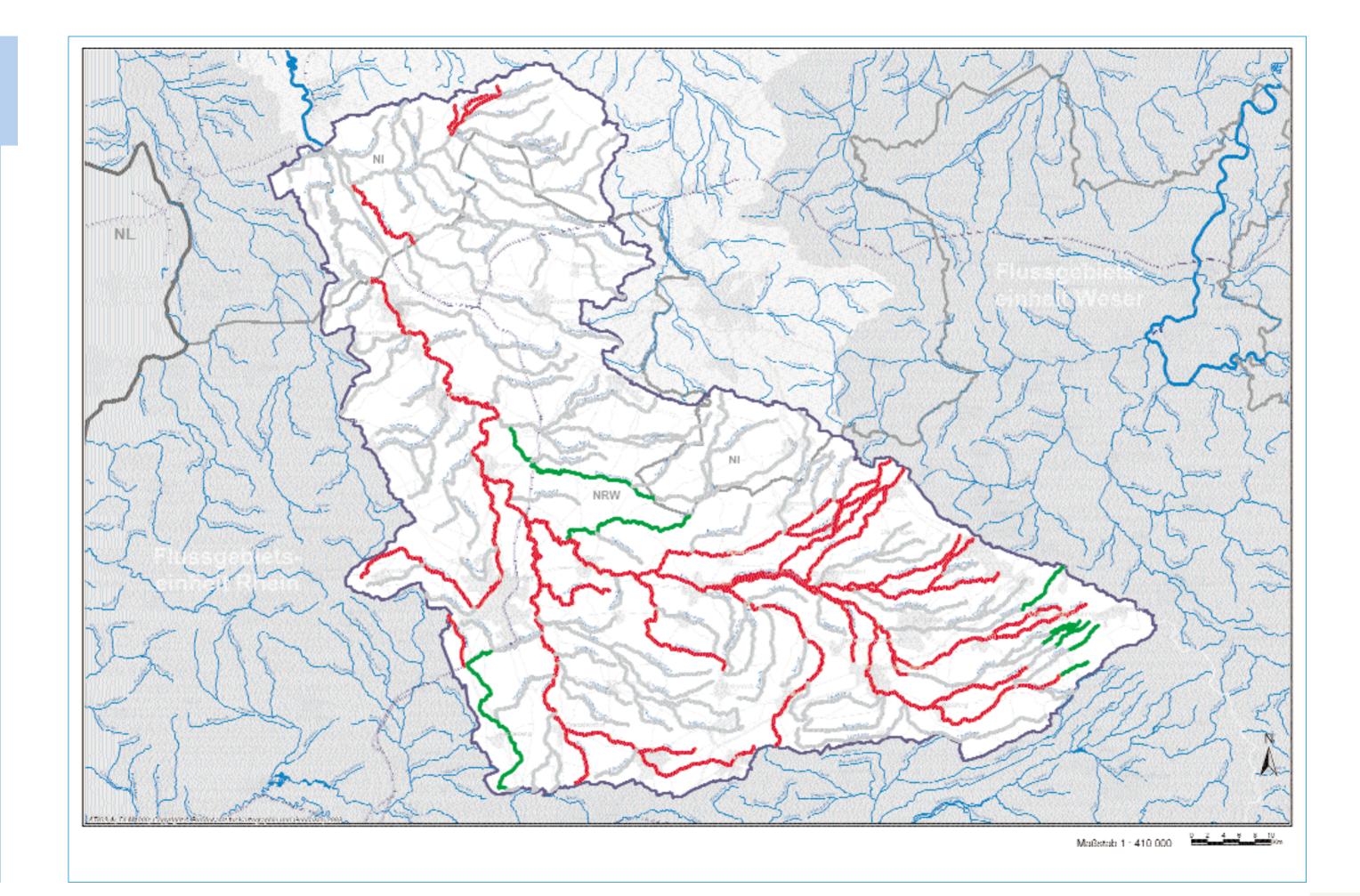
gefördert werden. Als weitere Konsequenz werden alle Einmündungen von Nebengewässern der Ems im Dienstbezirk des StUA Münster auf Durchgängigkeit überprüft. Es wird schon jetzt ein Maßnahmenkonzept zur Optimierung dieser Bereiche erstellt.

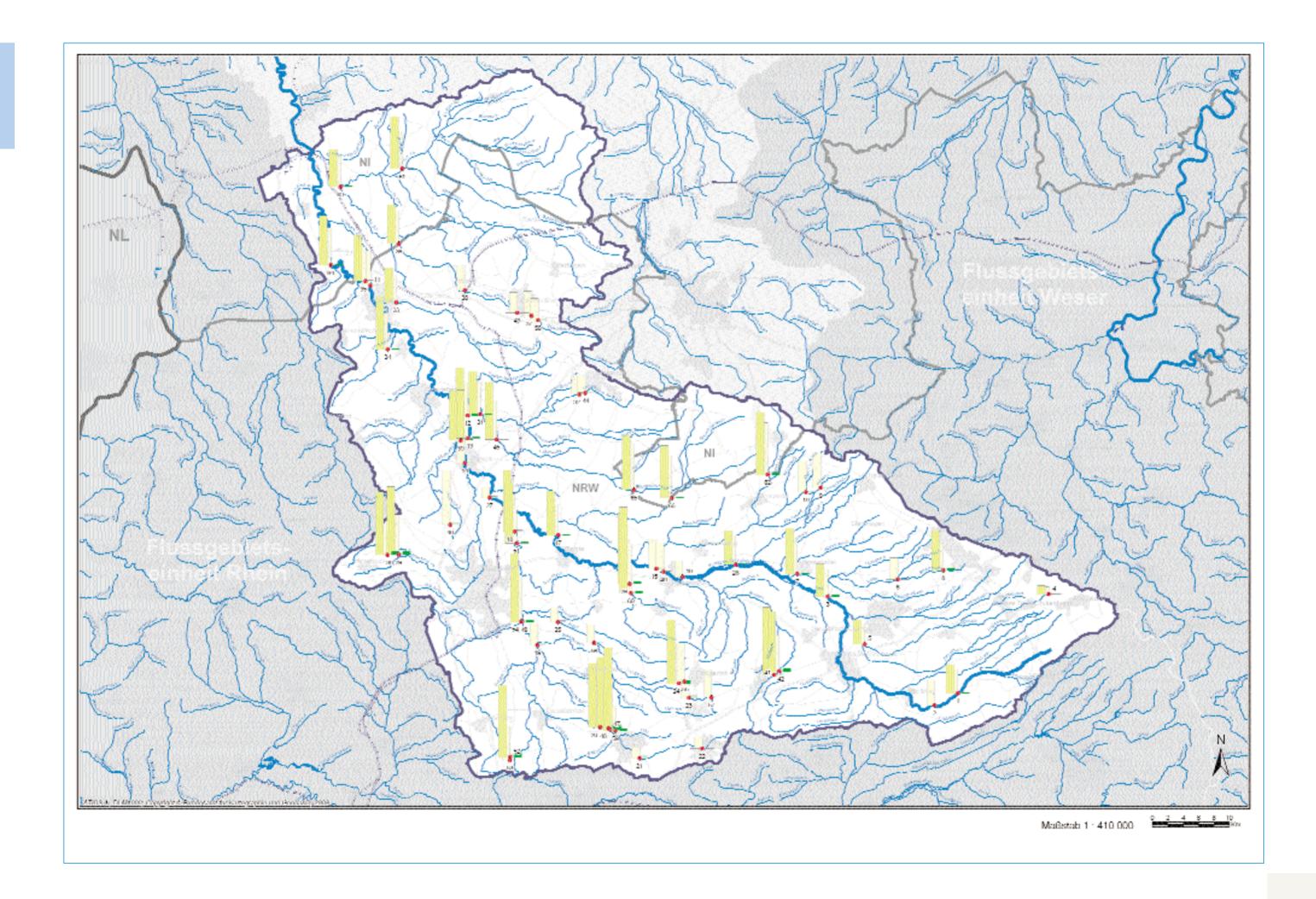

Das StAfUA OWL initiiert zahlreiche wasserwirtschaftlichen Maßnahmen, die vor der endgültigen Erarbeitung der Bewirtschaftungspläne im Jahre 2009 im Sinne der WRRL umgesetzt werden können.

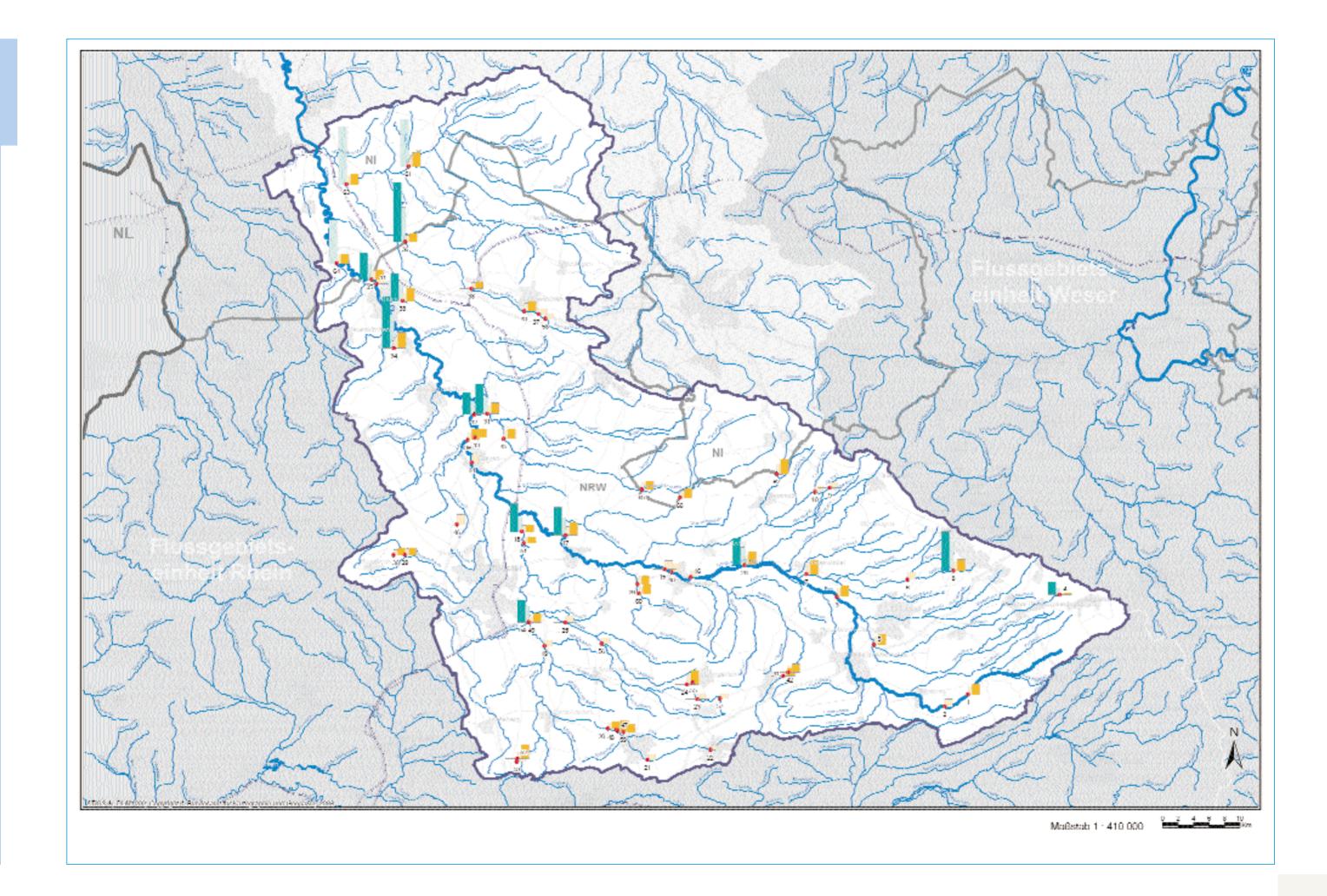

Dabei handelt es sich vor allem um

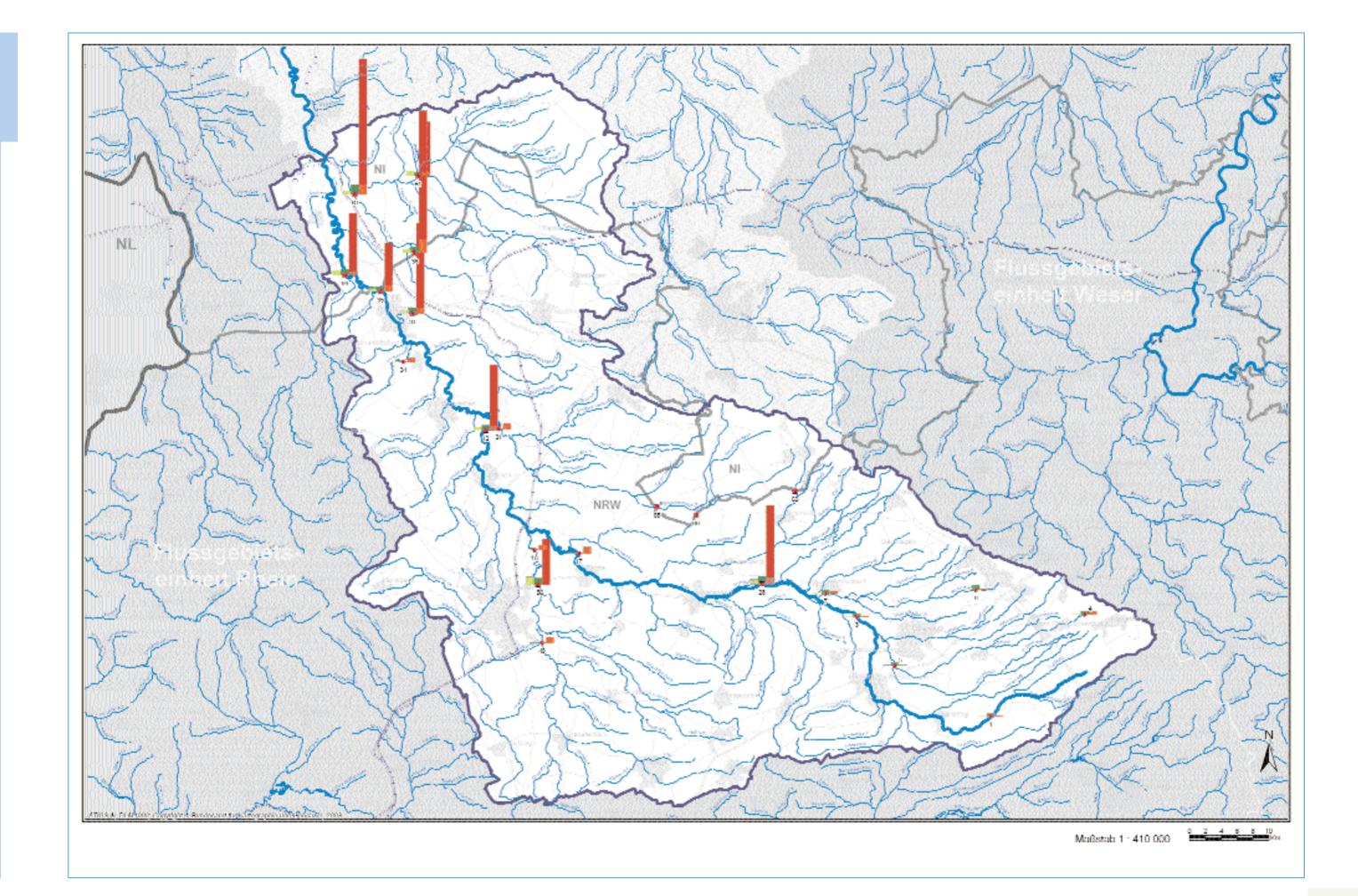

- die Beseitigung von künstlichen Hindernissen, die die Ausbreitung und Wanderbewegungen der Gewässerorganismen behindern,
- den Bau von Fischaufstiegshilfen oder den Umbau von Wehren zu Sohlgleiten,
- · Maßnahmen, die eine naturnahe Laufentwicklung von Fließgewässern ermöglichen sowie
- Uferrandstreifenprojekte, um beispielsweise wieder natürliche Mäandrierungen an Bächen und Flüssen zuzulassen oder um Nährstoffeinträge von benachbarten Flächen zurückzuhalten.

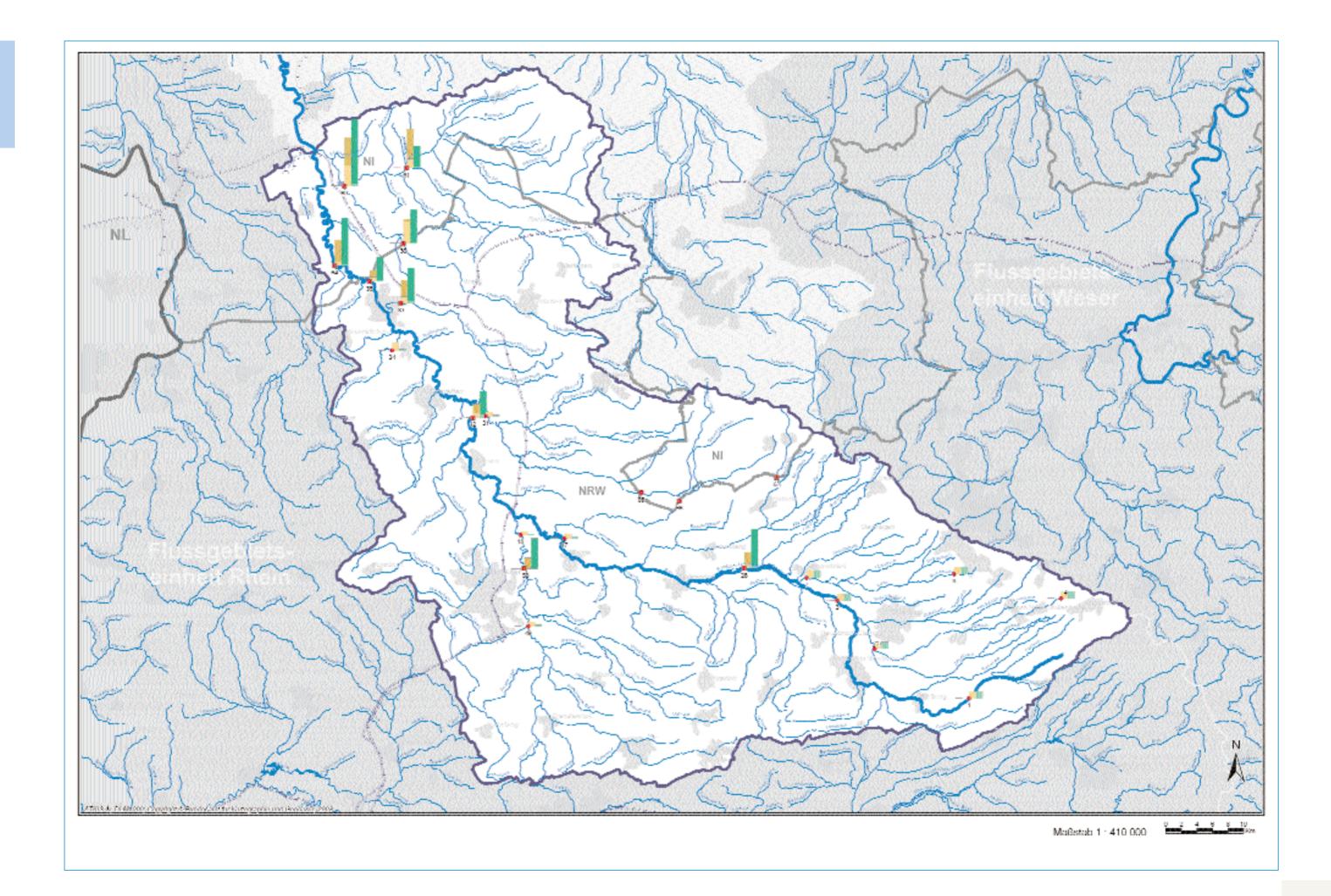

Des Weiteren werden Schritte zur Verbesserung der Niederschlagswasserbehandlung und Maßnahmen zu Beginn bzw. Fortführung der schrittweisen Minderung diffuser Belastungen (insbesondere Nährstoffbelastungen in Grundwasserkörpern durch Landwirtschaft) in Angriff genommen.

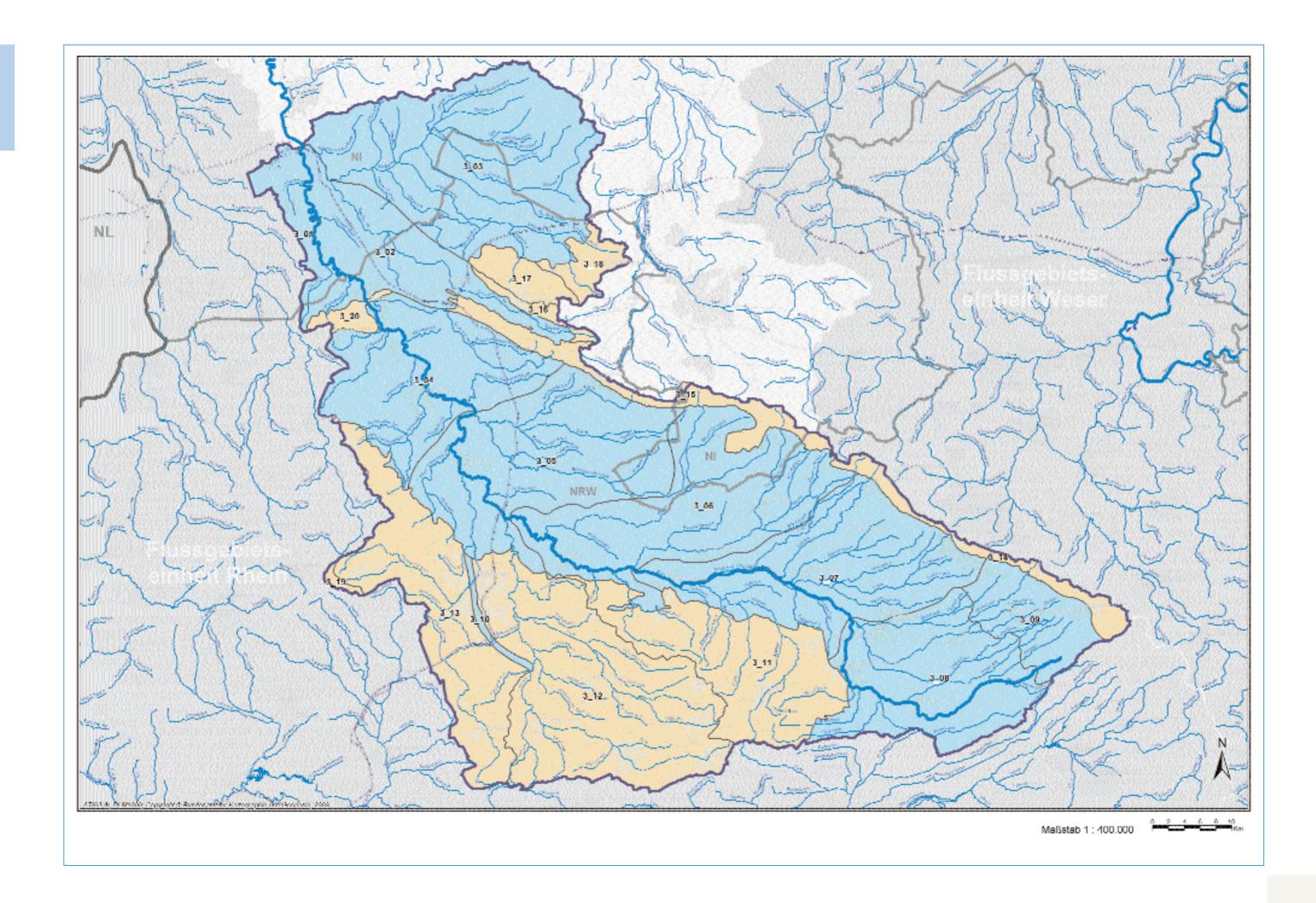

Die weitere Umsetzung der Wasserrahmenrichtlinie erfolgt entsprechend den Vorgaben der Wassergesetze in Niedersachsen und Nordrhein-Westfalen sowie des Wasserhaushaltsgesetzes (WHG).

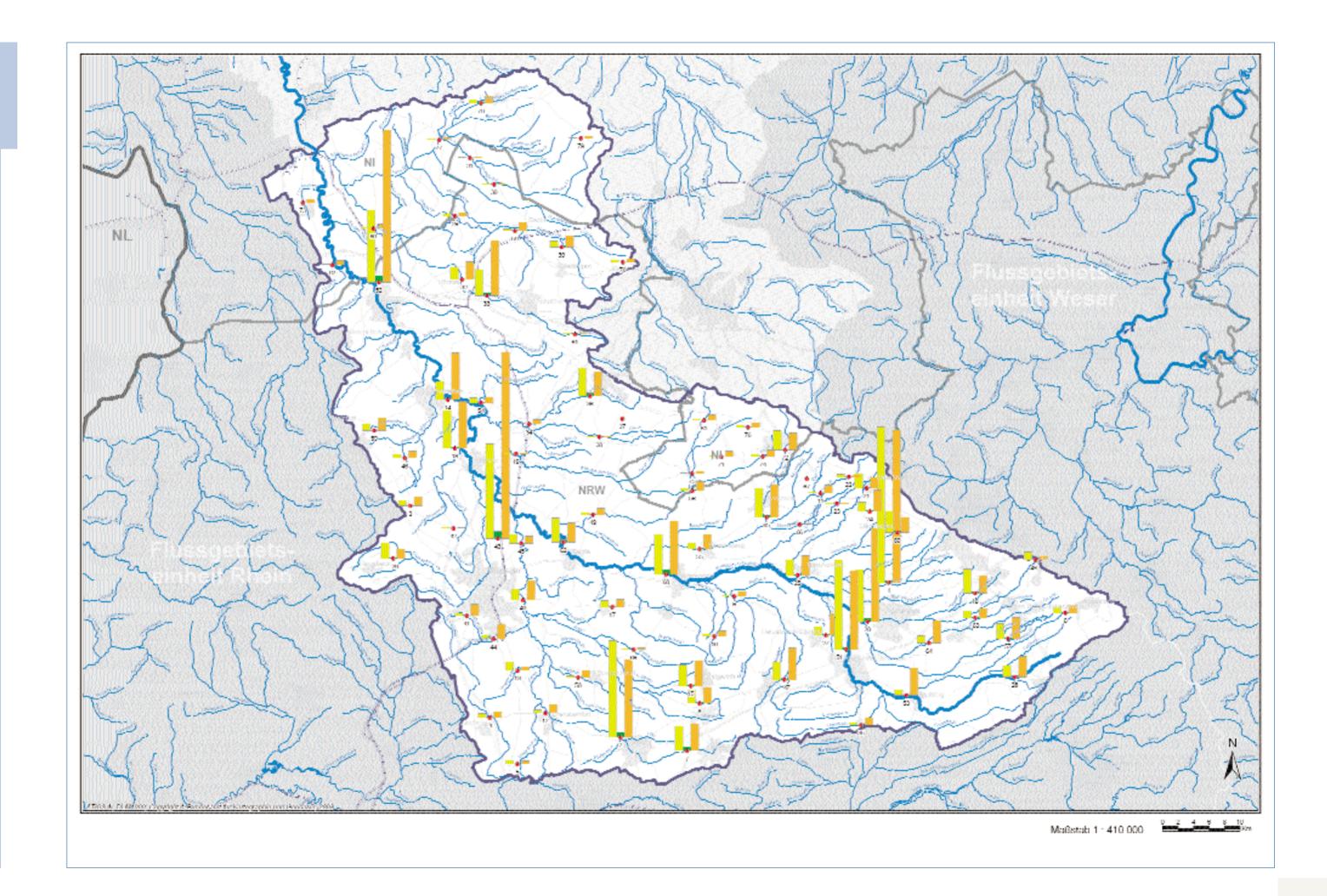


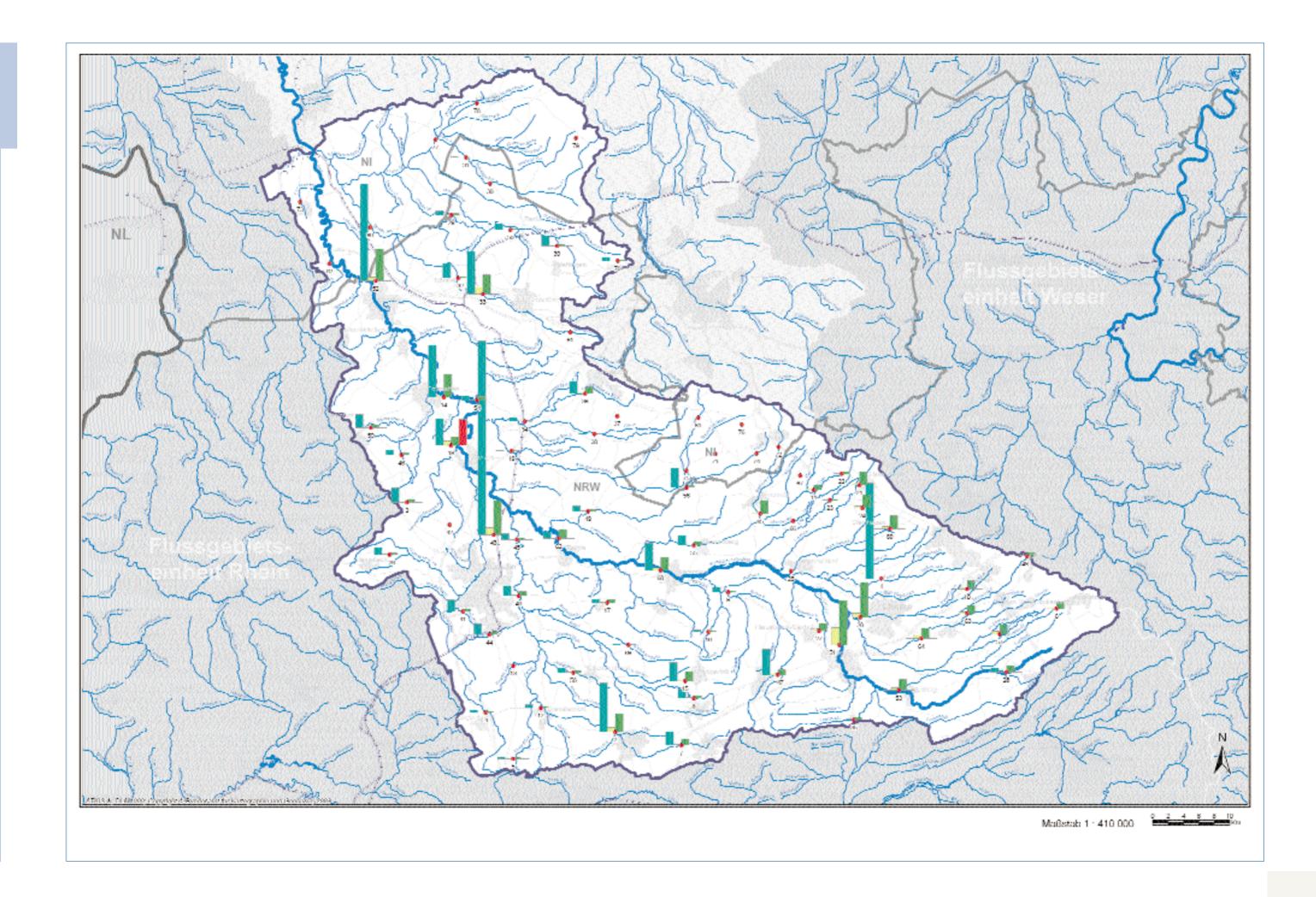


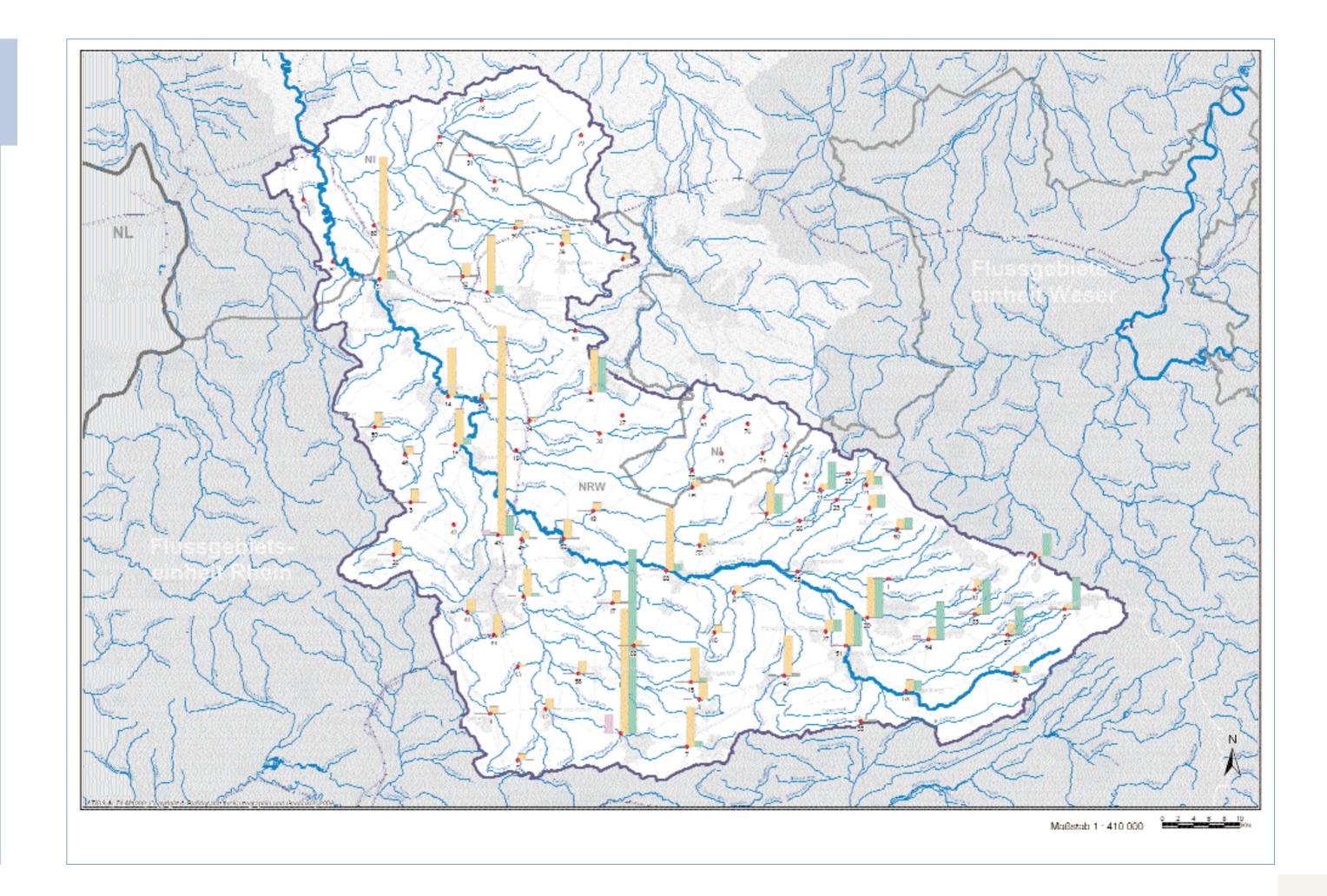


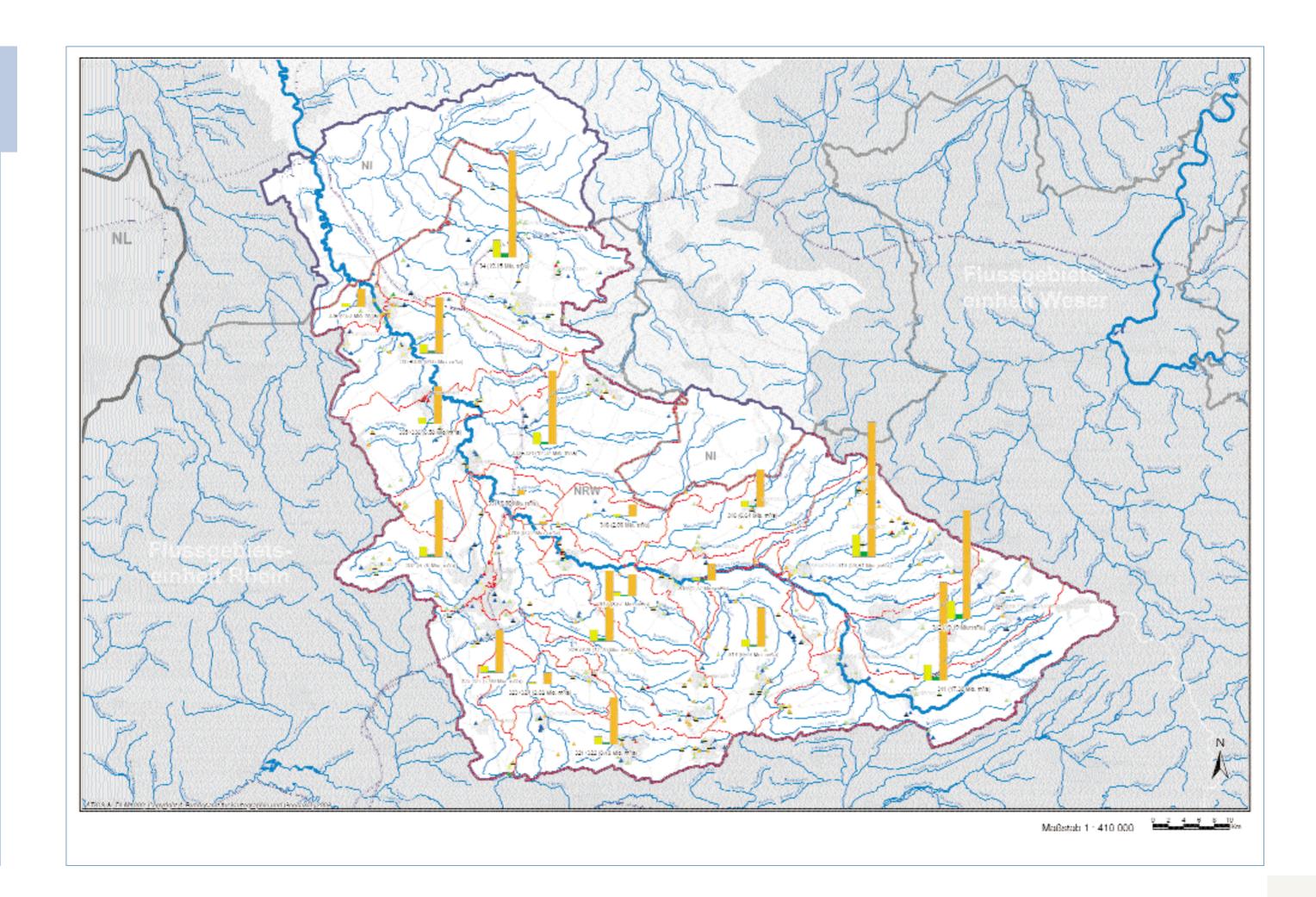


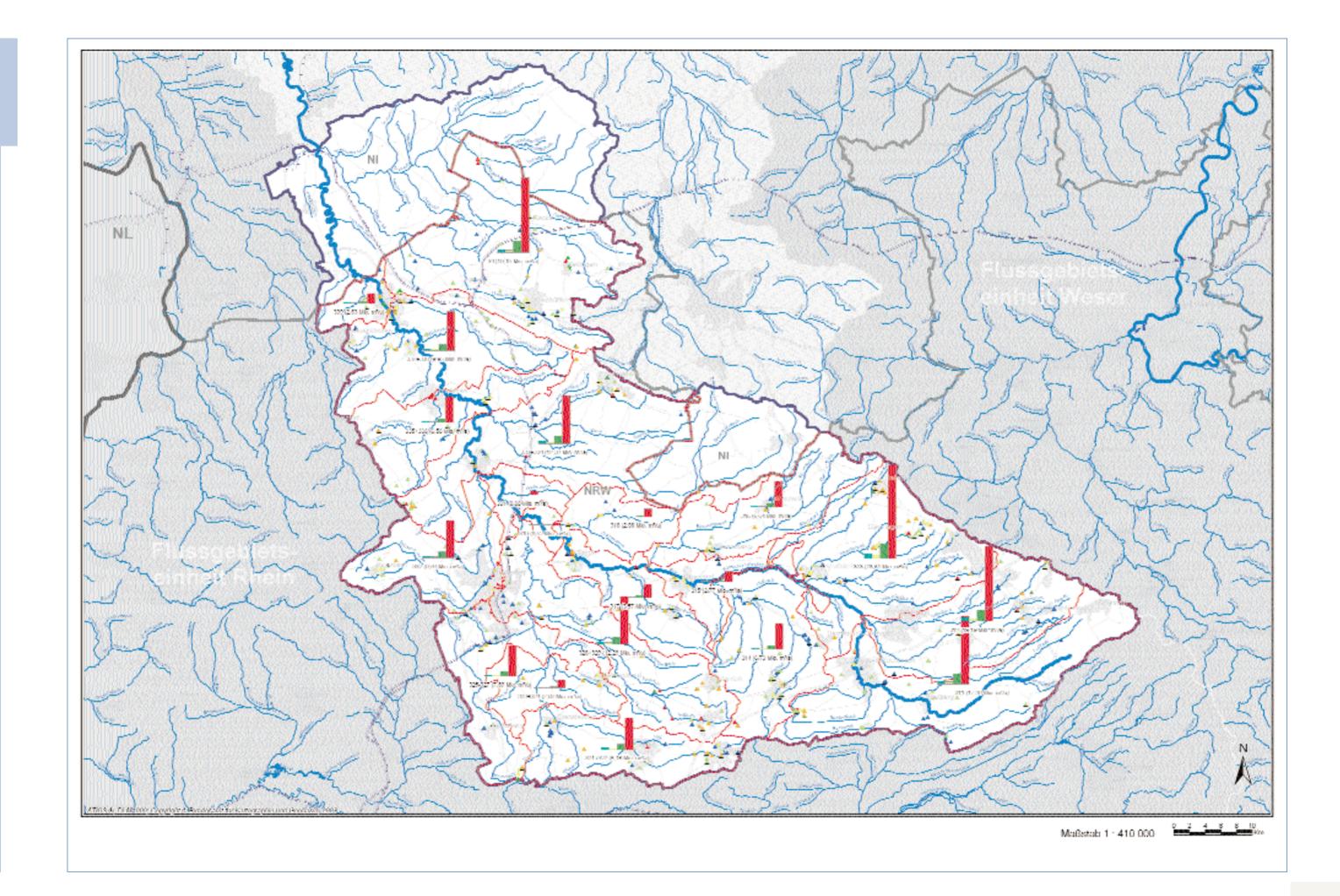


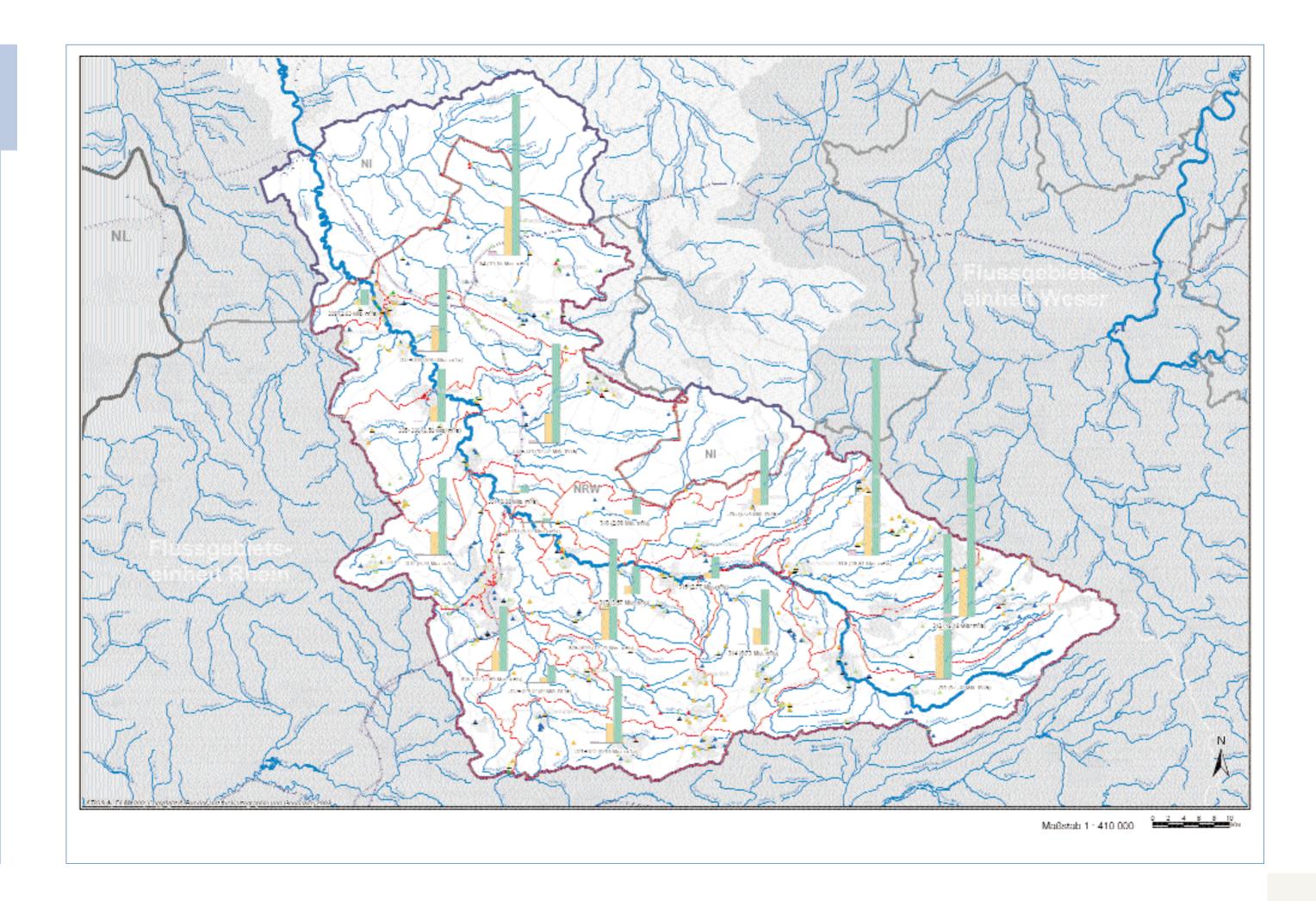


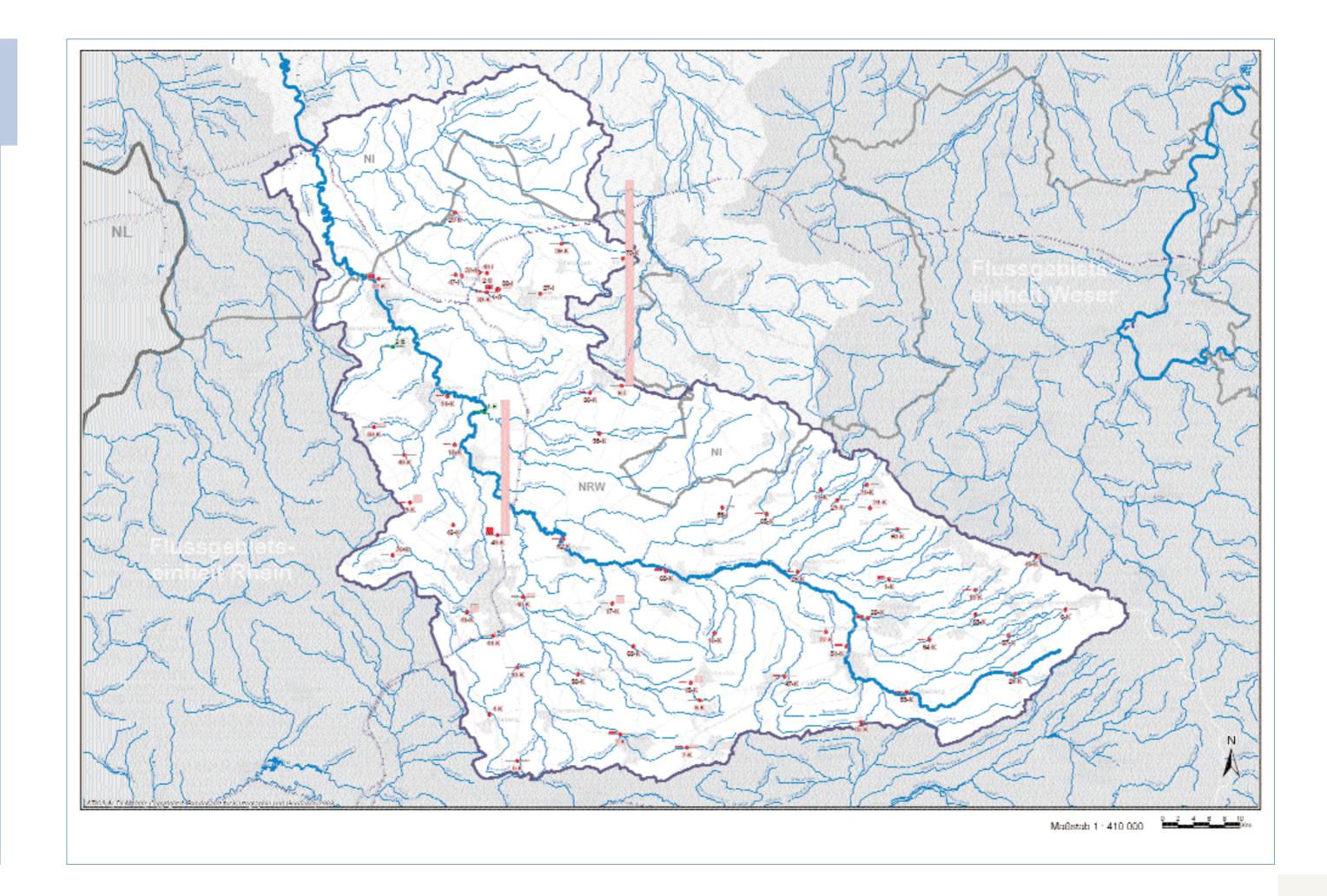


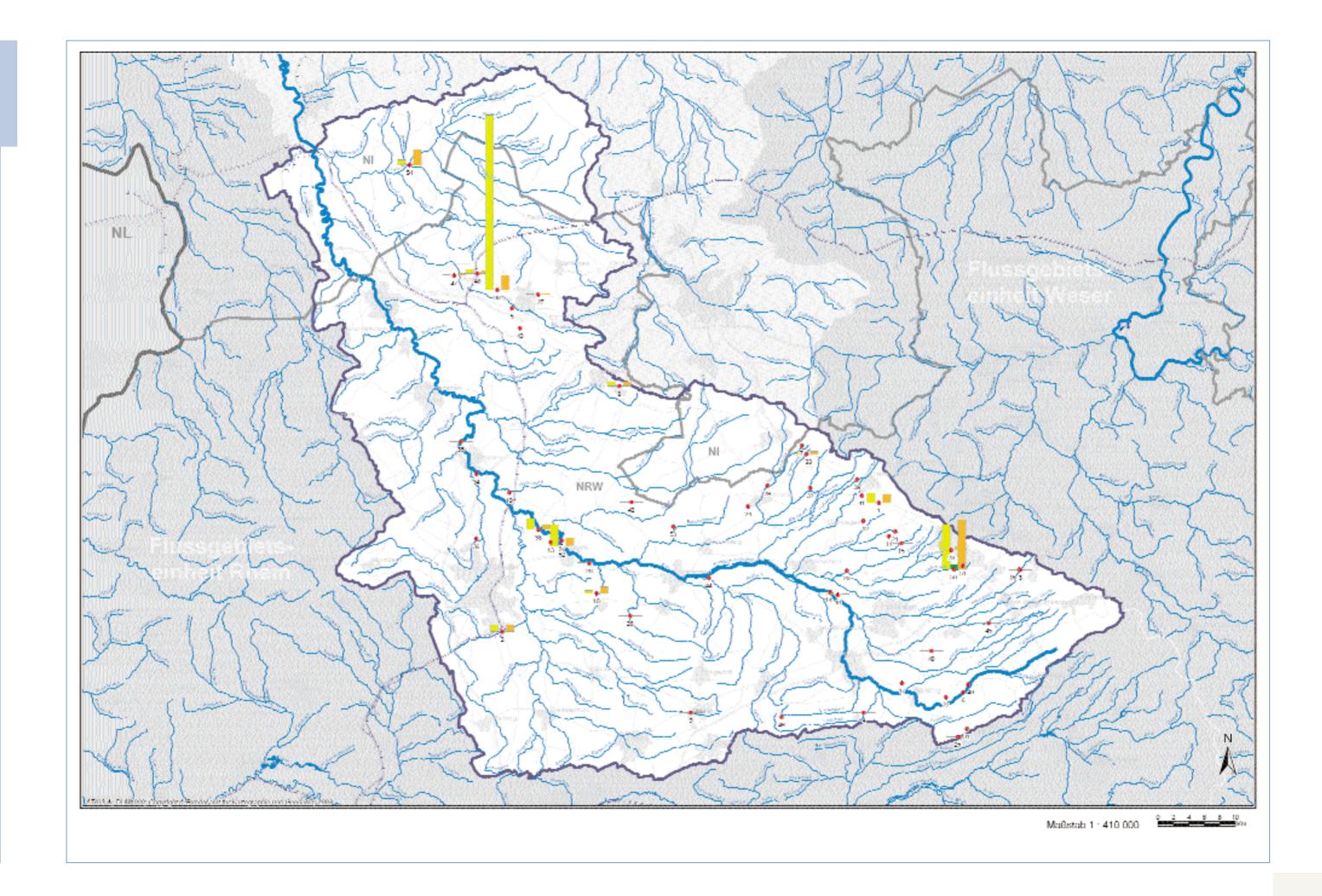


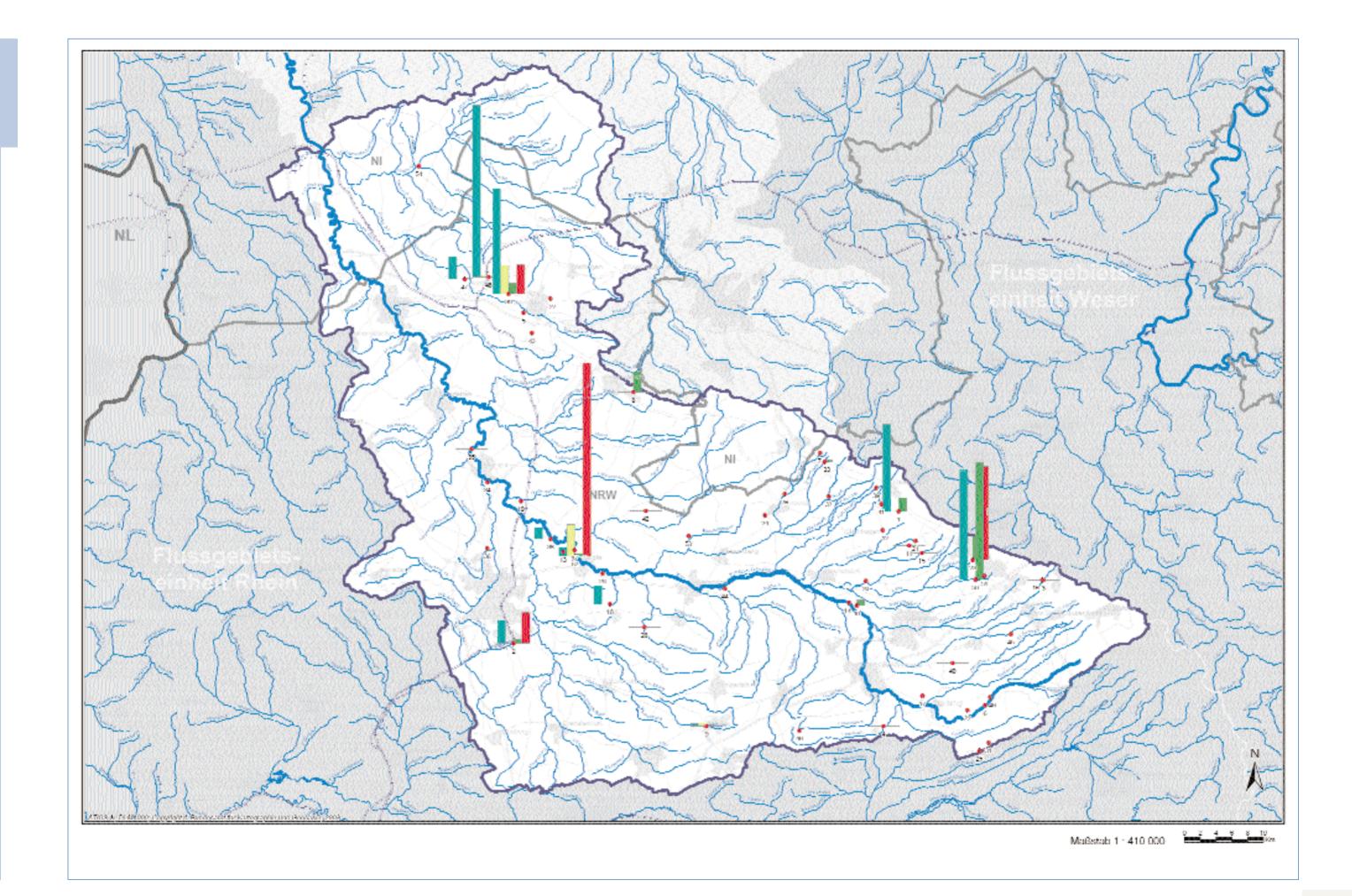


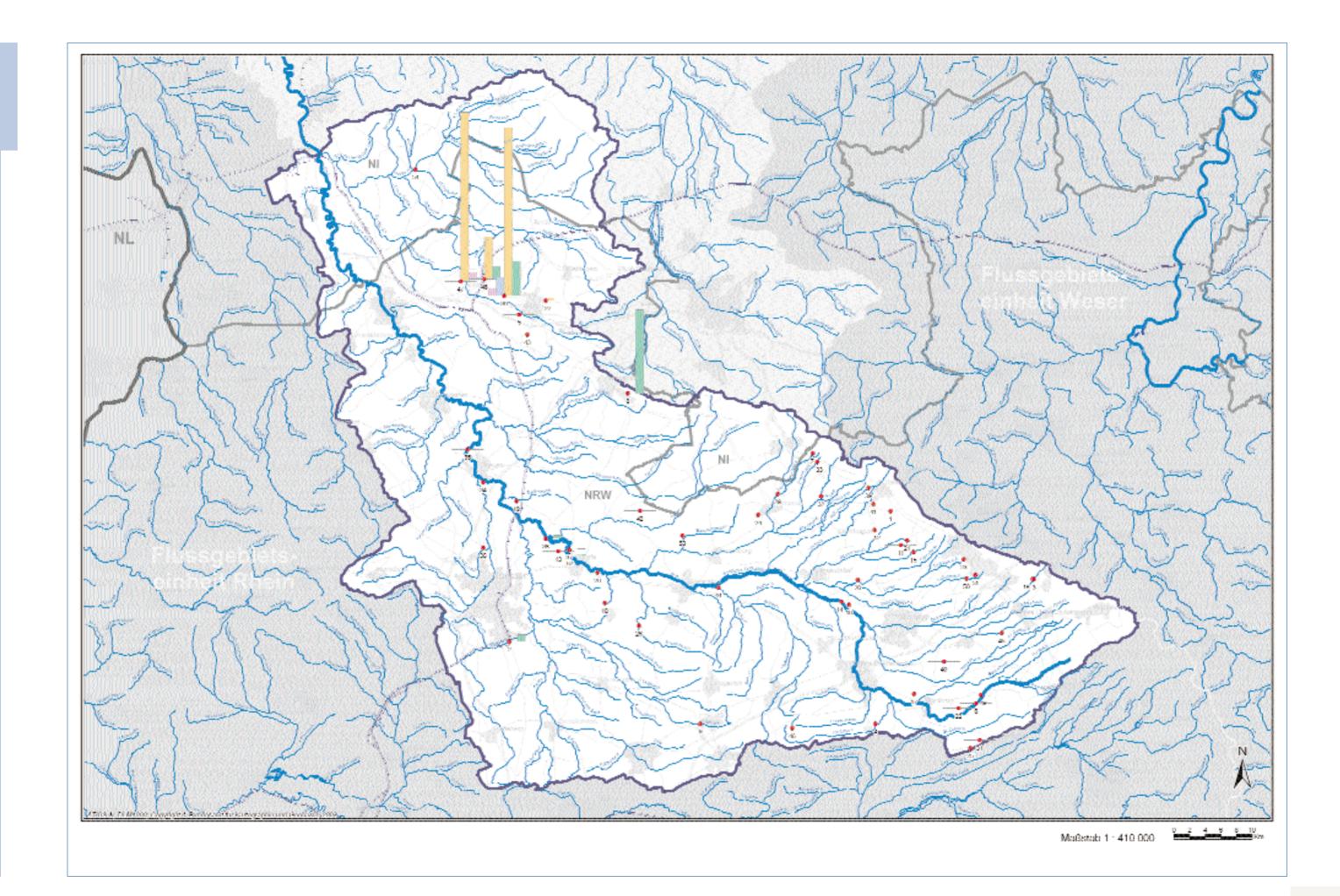


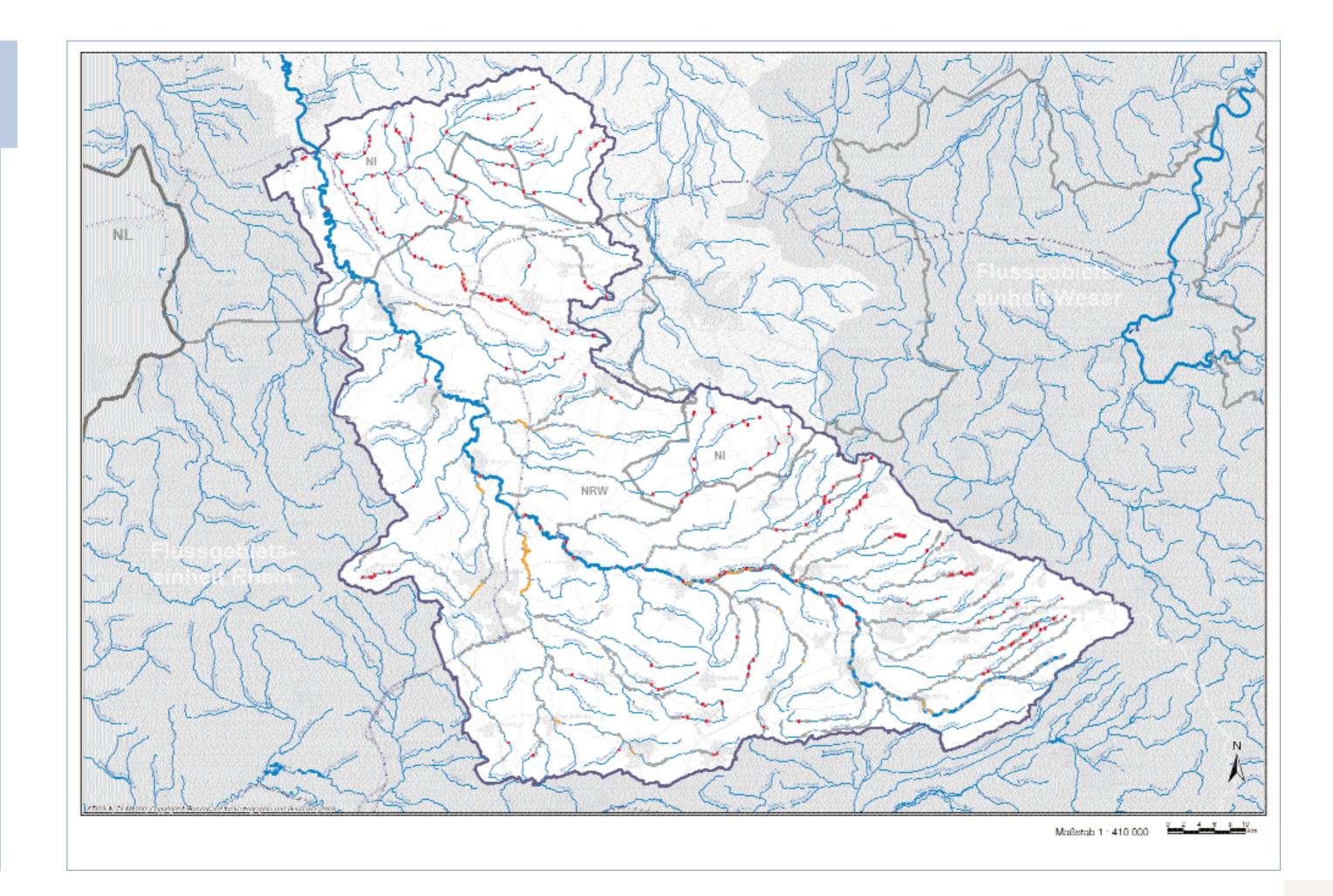


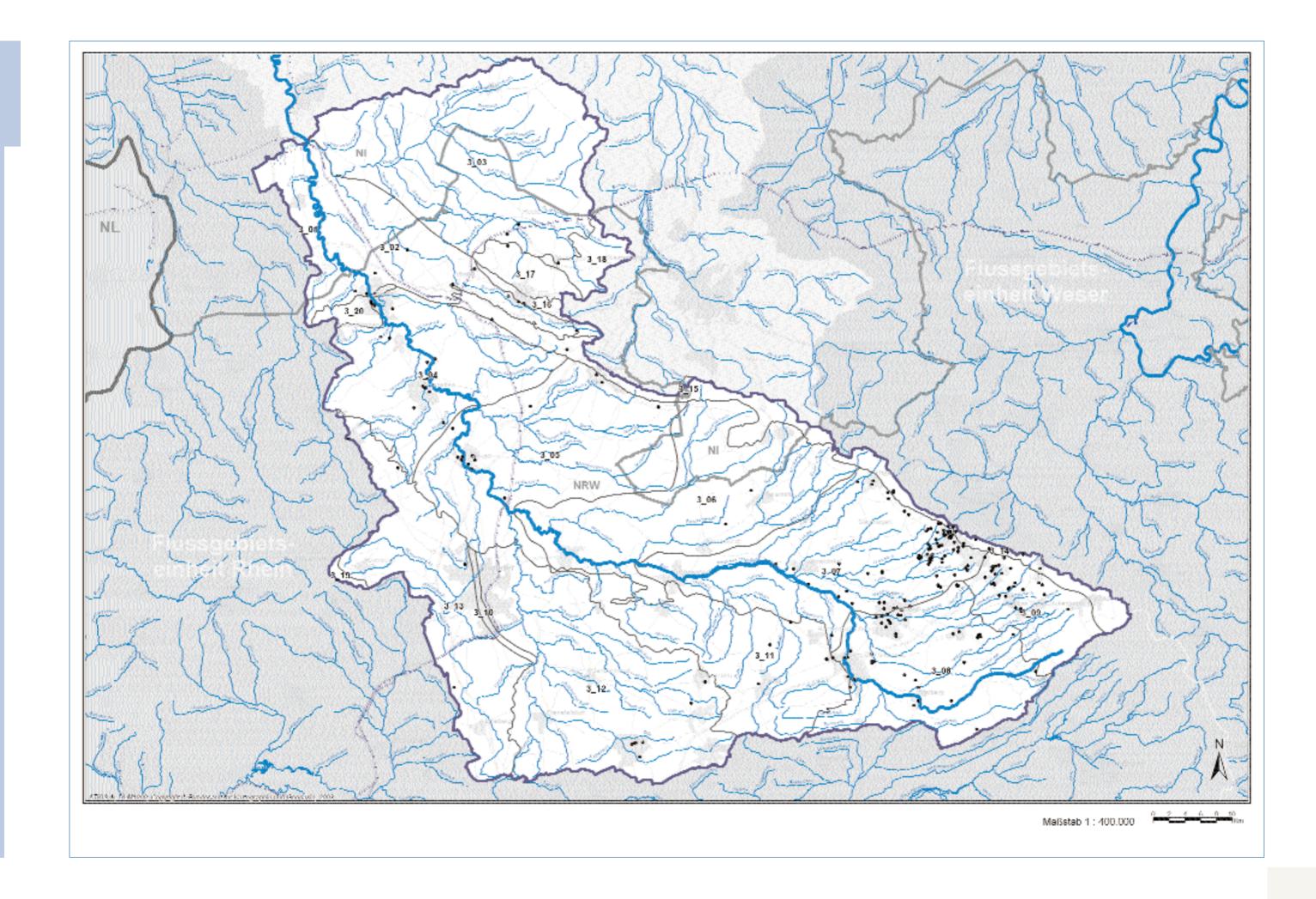


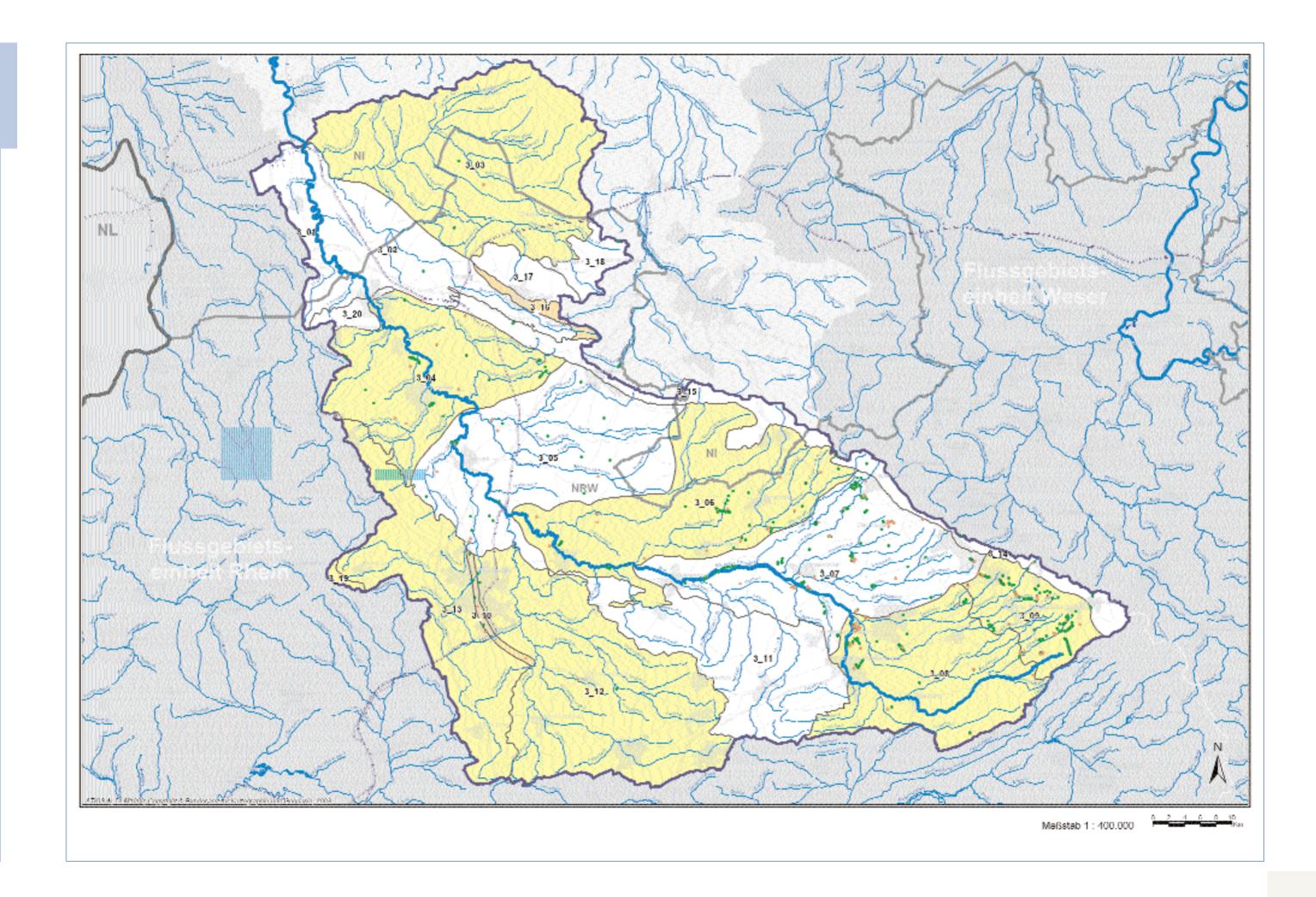


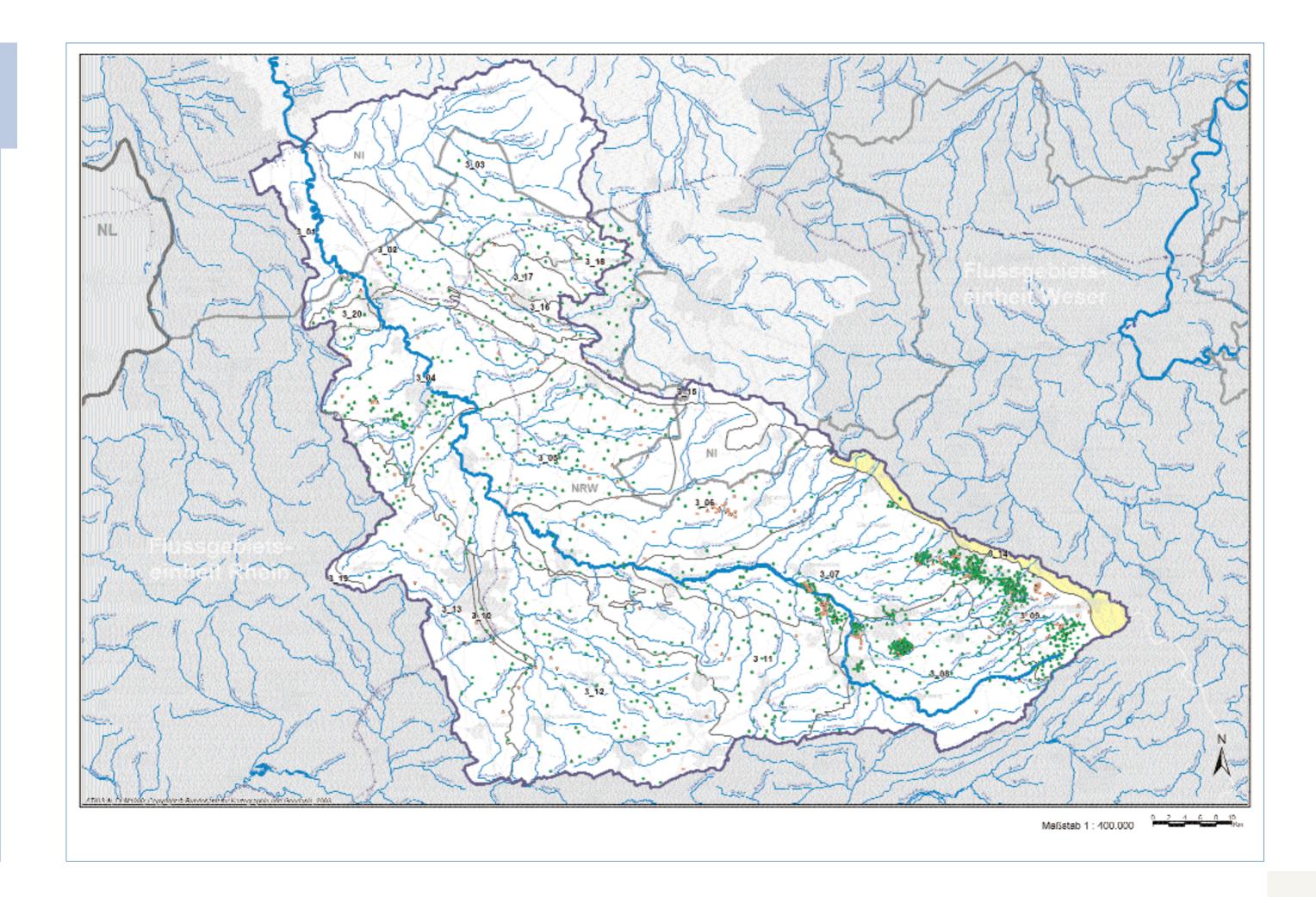


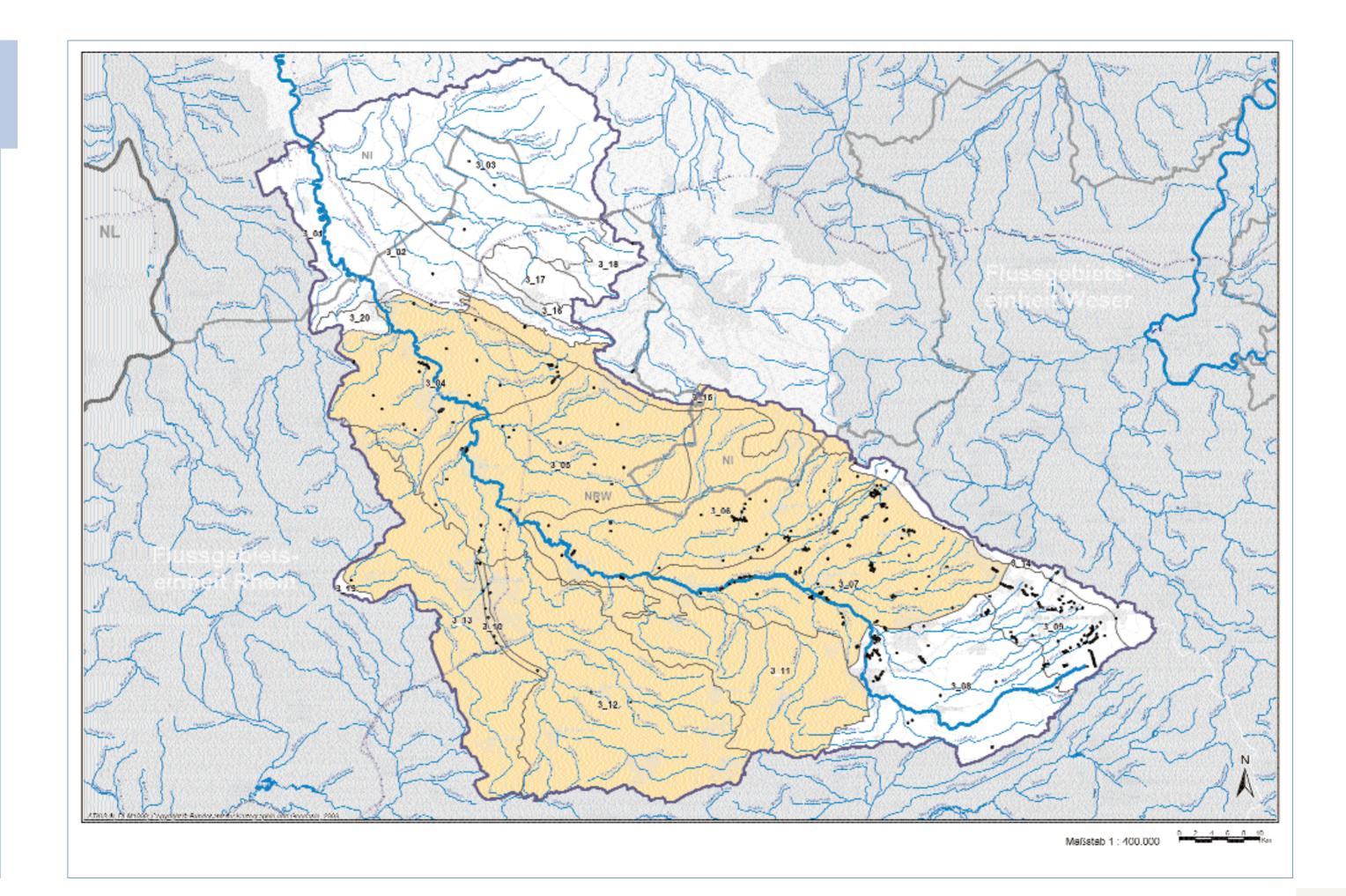


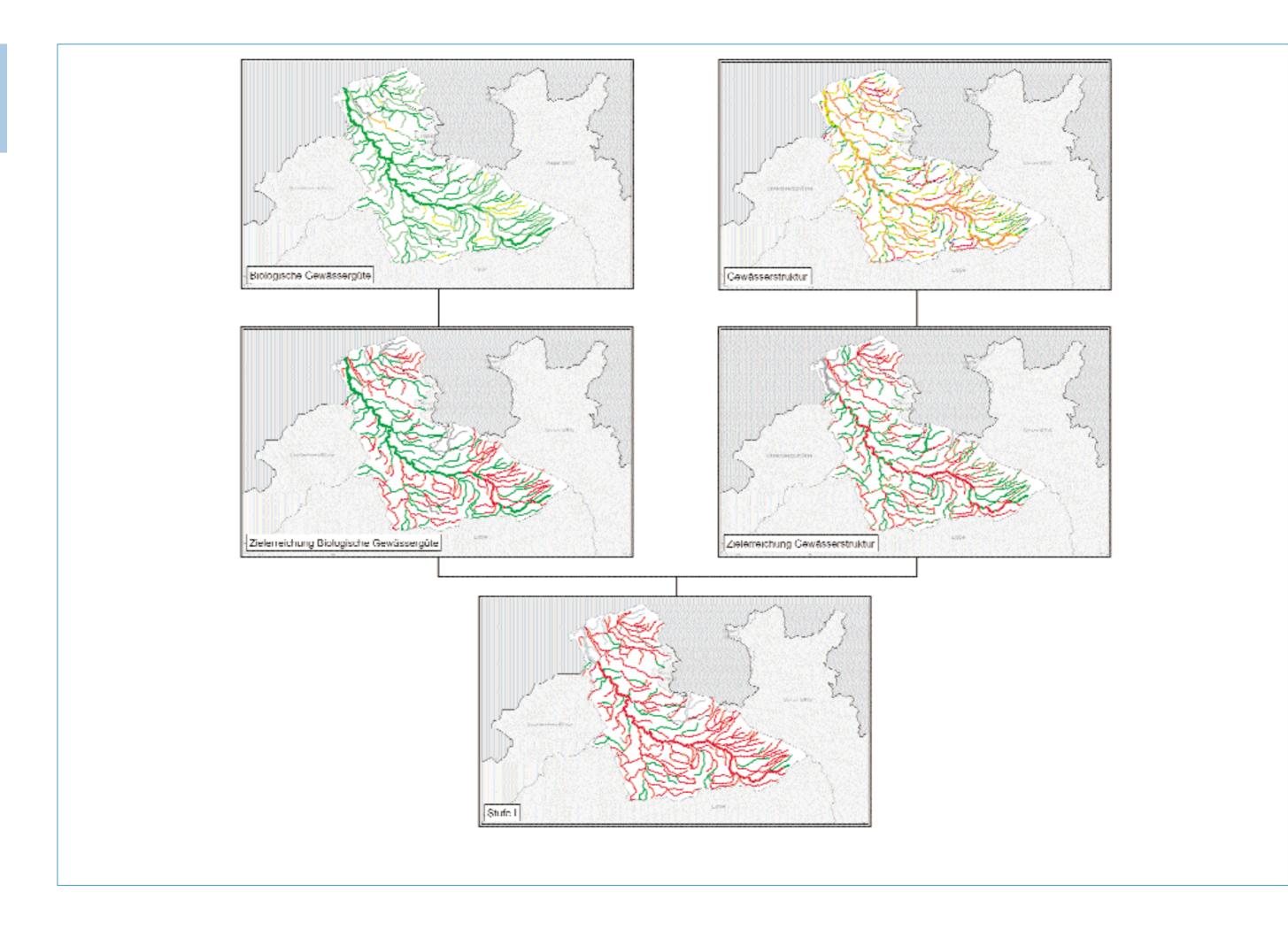




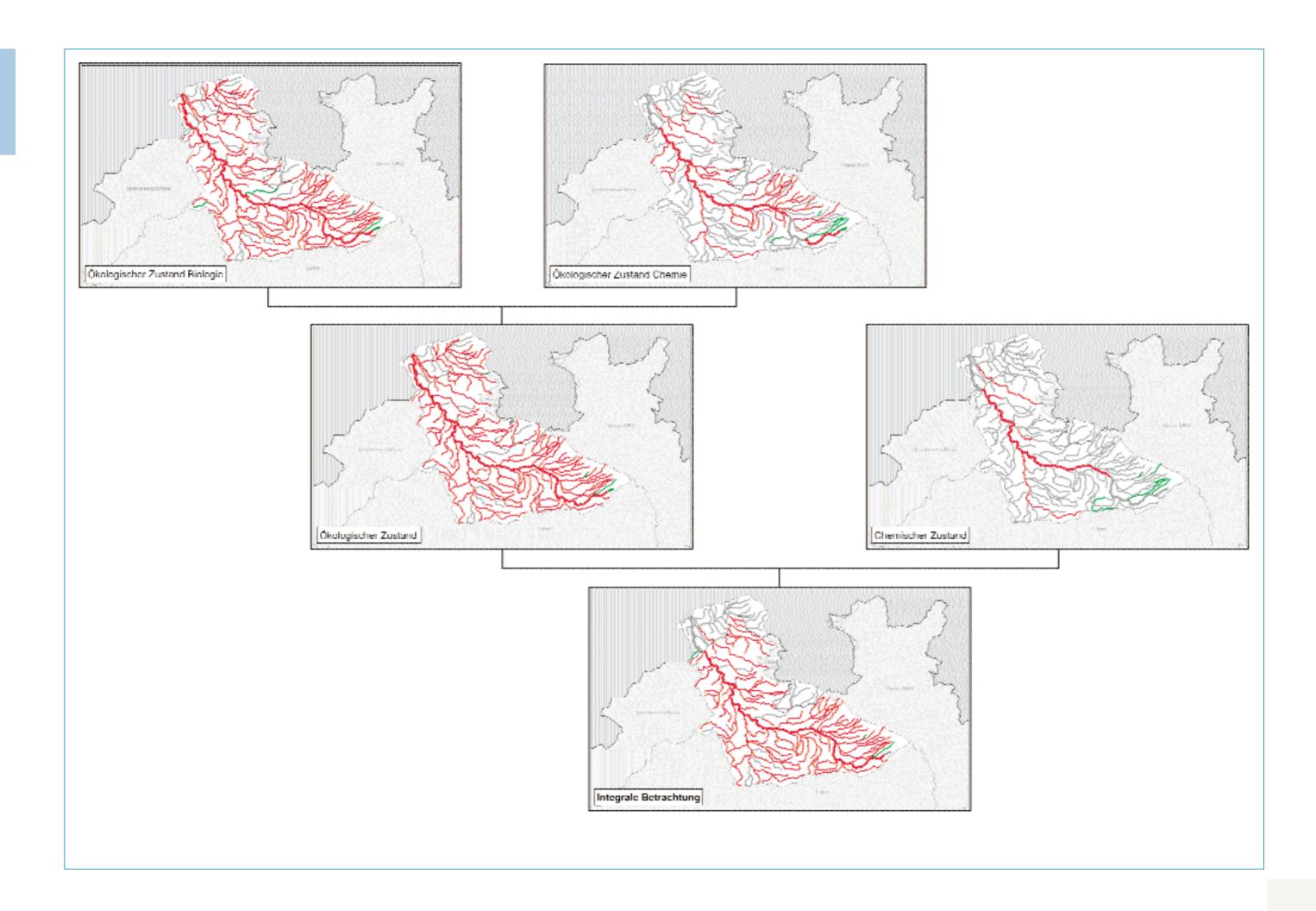


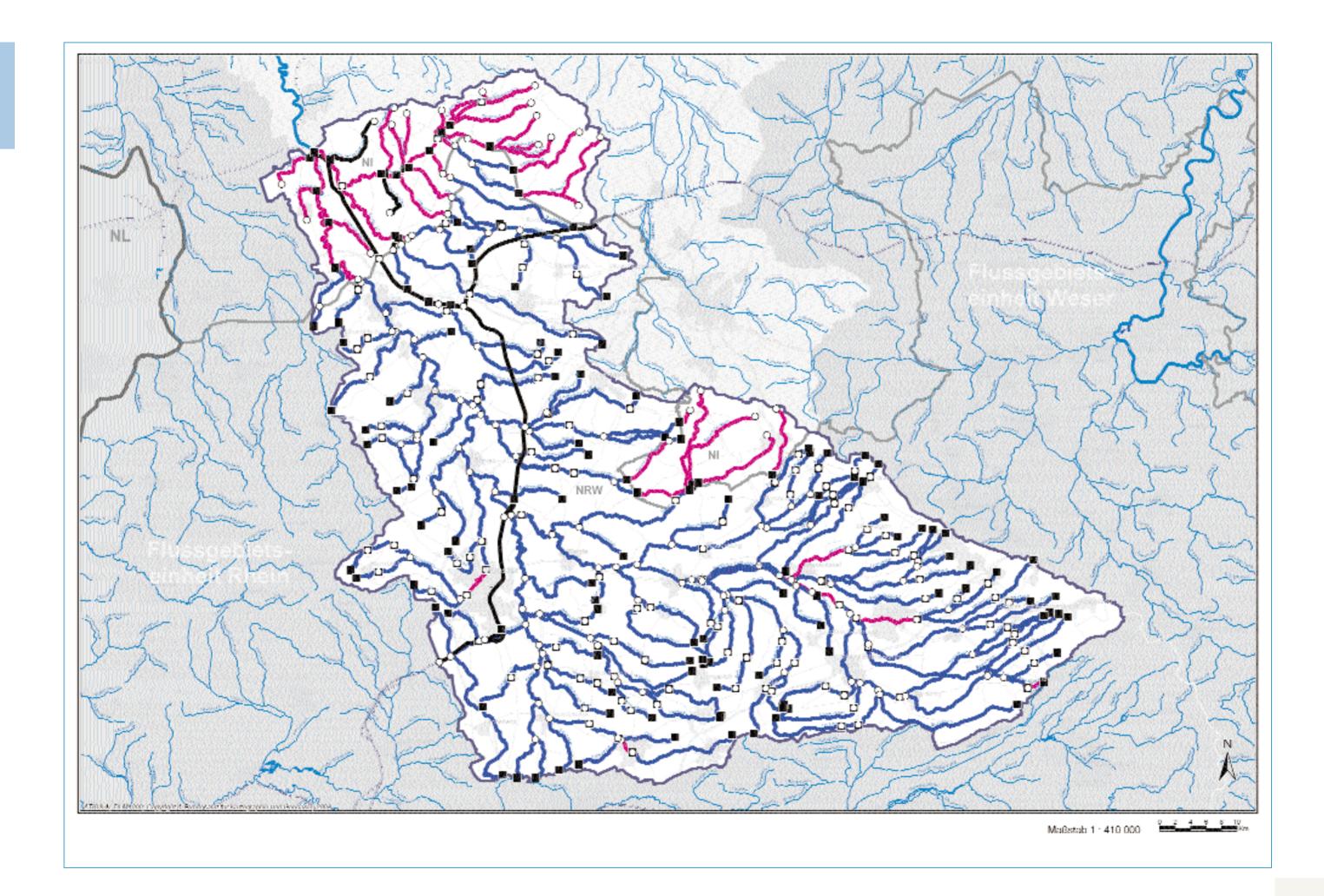


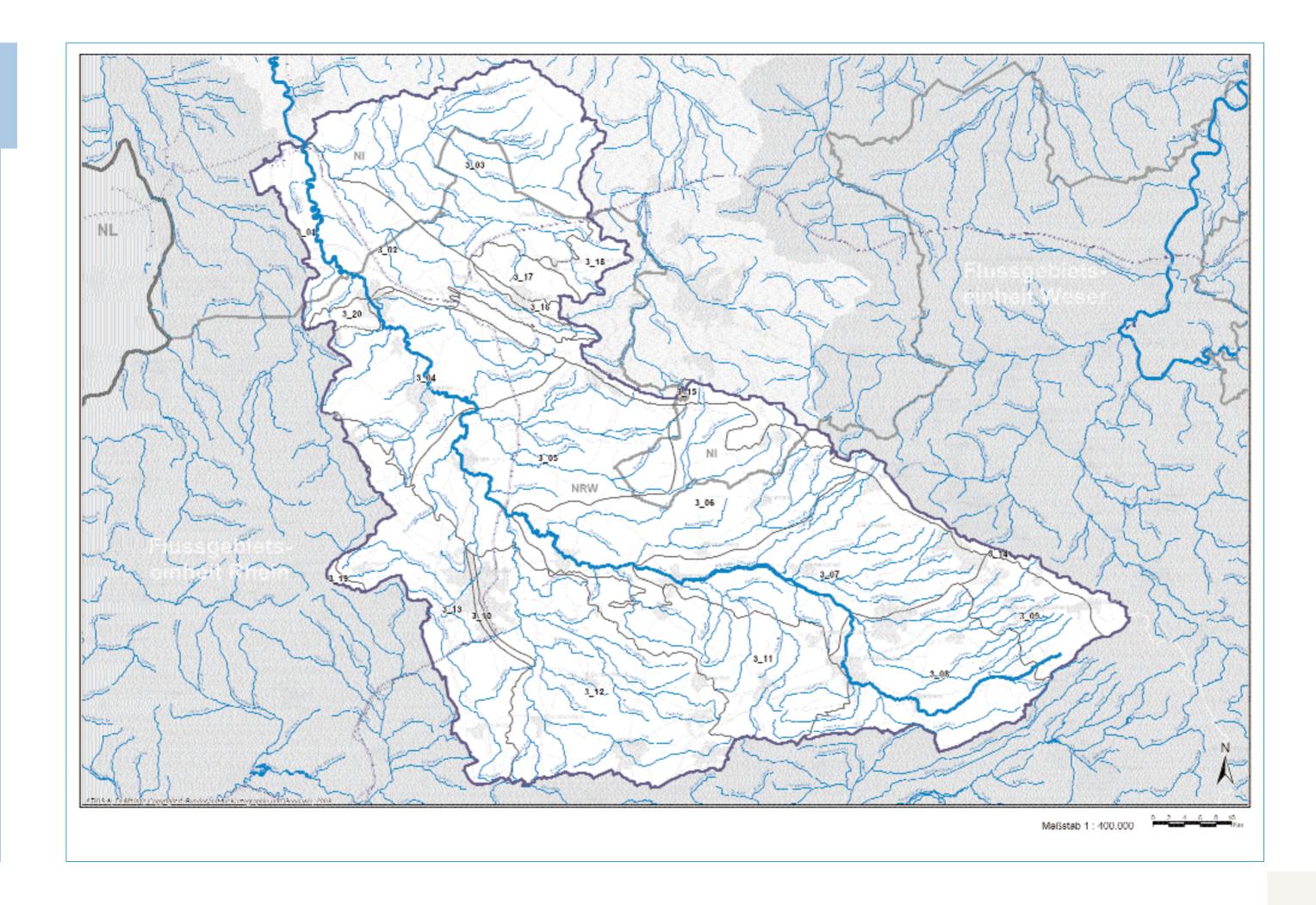


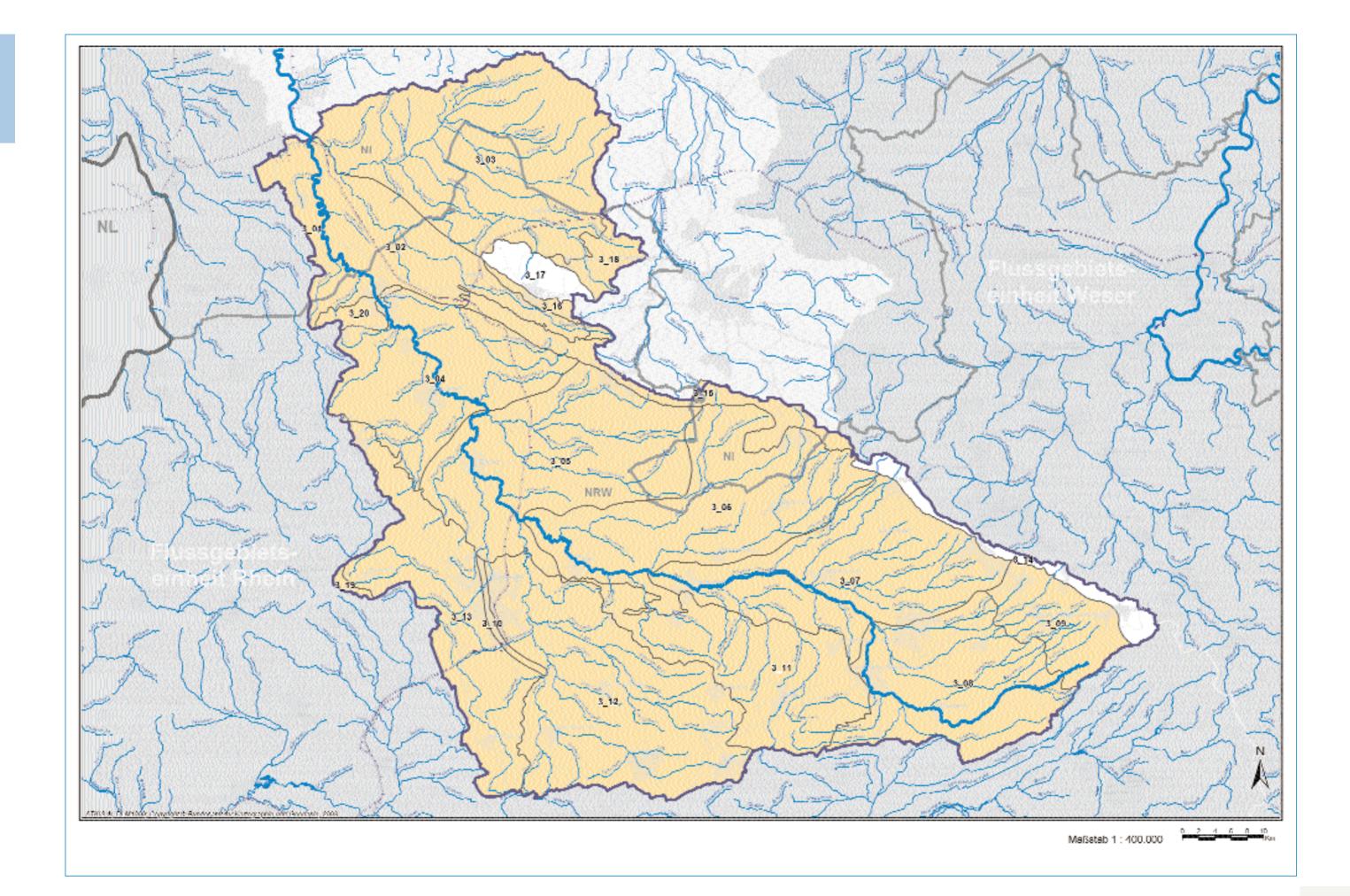

K 3.2-2

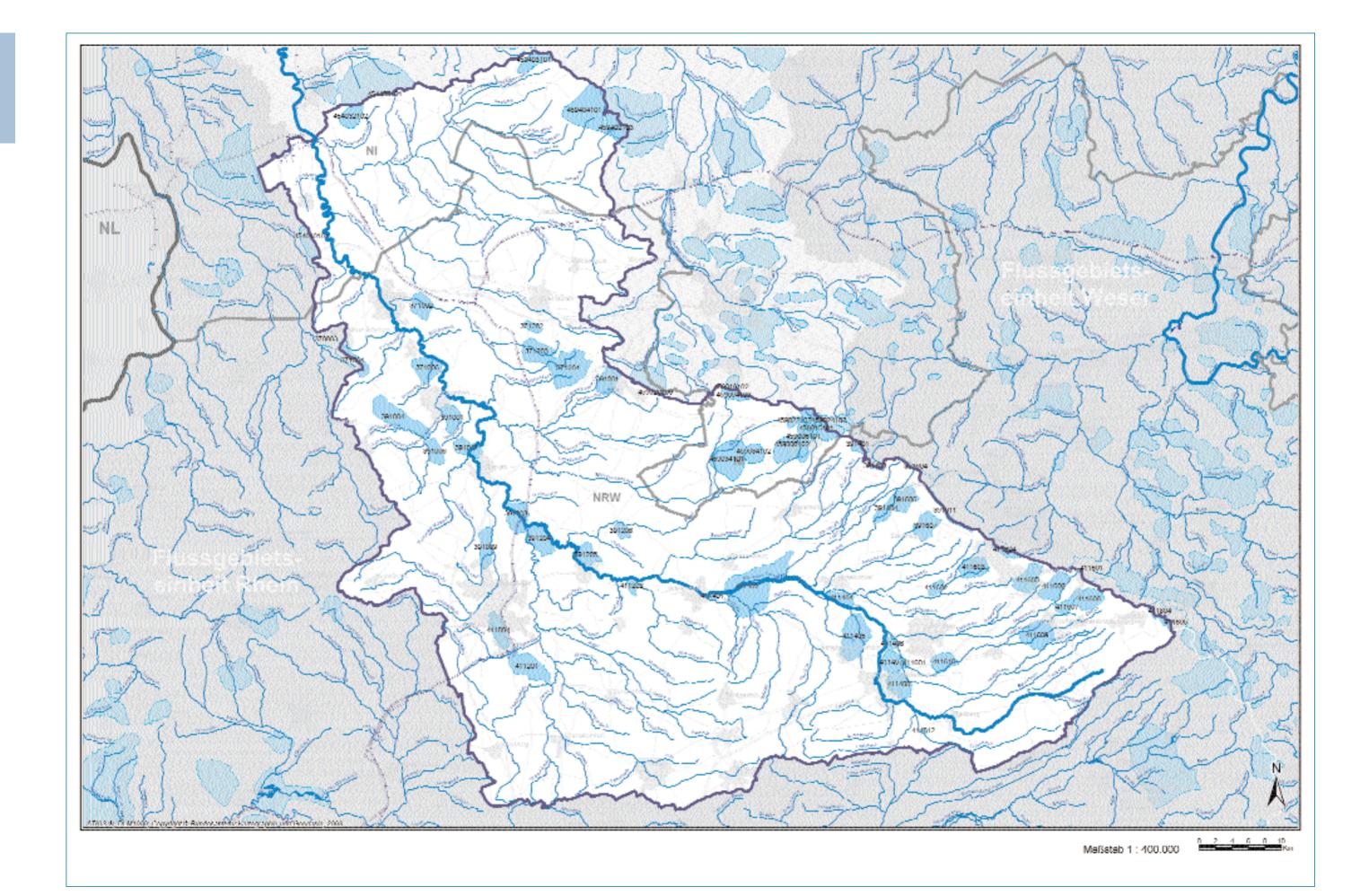
K 3.2-3



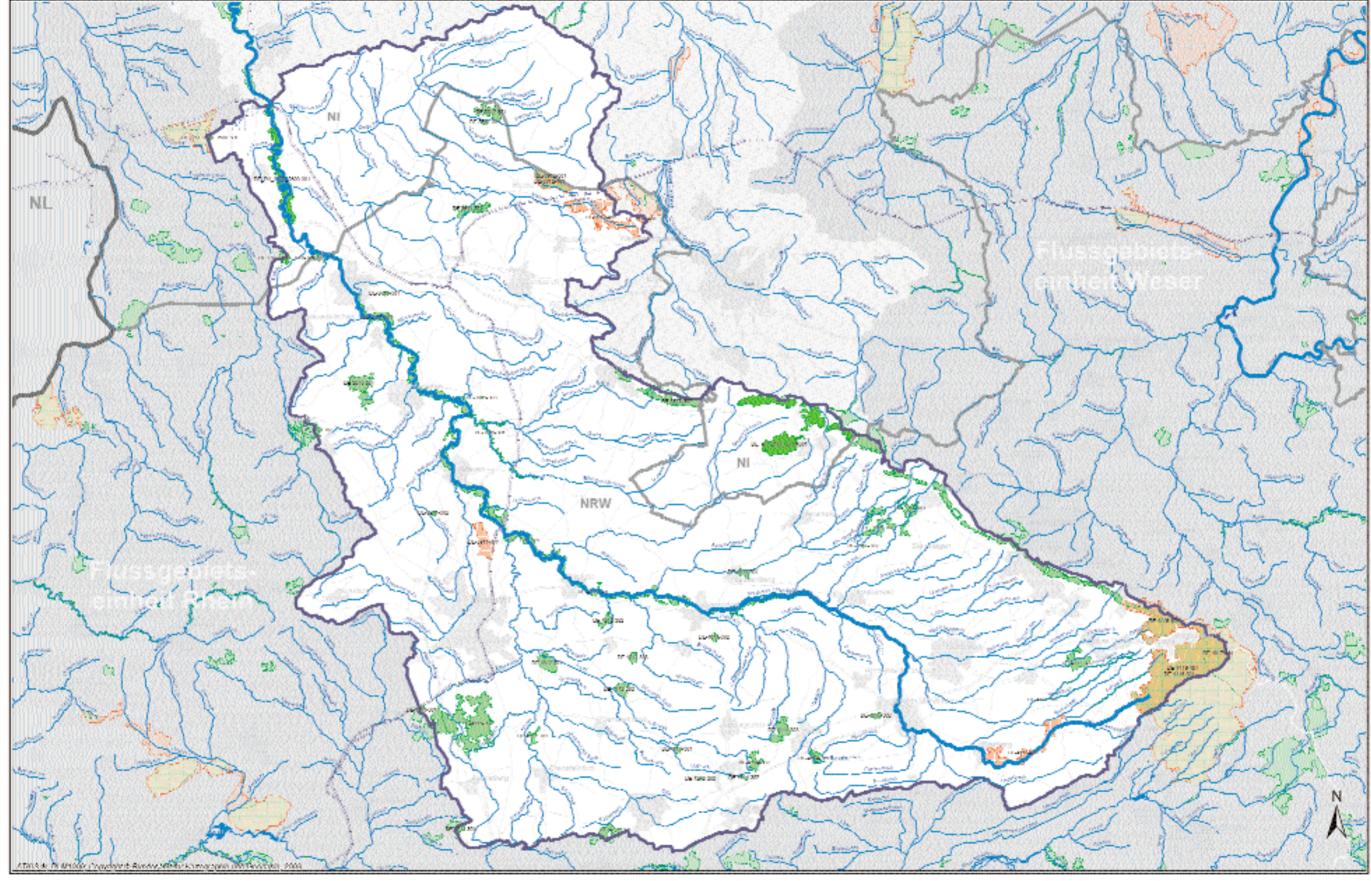


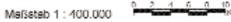



K 4.1-2b



K 4.2-1





K 5.5-1

